SlideShare a Scribd company logo
Finite Elements for 2‐D Problems
General Formula for the Stiffness Matrix
f
ff
Displacements (u, v) in a plane element are interpolated from nodal displacements 
(ui, vi) using shape functions Ni as follows,

where N is the shape function matrix, u the displacement vector and d the nodal
displacement vector. Here we have assumed that u depends on the nodal values of u
only, and v on nodal values of v only. Most commonly employed 2‐D elements are
linear or quadratic triangles and quadrilaterals.
Constant Strain Triangle (CST or T3)
This is the simplest 2 D element, which is also called linear triangular element.
This is the simplest 2‐D element which is also called linear triangular element

For this element, we have three nodes at the vertices of the triangle, which are
numbered around the element in the counterclockwise direction. Each node has
two degrees of freedom (can move in the x and y directions). The displacements u
and v are assumed to be linear functions within the element, that is,

where bi (i = 1, 2, ..., 6) are constants. From these, the strains are found to be,

which are constant throughout the element.
The displacements should satisfy the following six equations,

Solving these equations, we can find the coefficients b1, b2, ..., and b6 in terms of 
nodal displacements and coordinates.
The displacements can be expressed as
The shape functions (linear functions in x and y) are

and
d

is the area of the triangle.
is the area of the triangle.
The strain‐displacement relations are written as

where xij = xi ‐ xj and yij = yi ‐ yj (i, j = 1, 2, 3). Again, we see constant strains within 
the element. From stress‐strain relation, we see that stresses obtained using the
CST element are also constant.
The element stiffness matrix for the CST element,

in which t is the thickness of the element. Notice that k for CST is a 6 by 6 
symmetric matrix.
i
i
The Natural Coordinates

We introduce the natural coordinates              on the triangle, then the shape functions 
can be represented simply by,
Notice that,

which ensures that the rigid body translation is represented by the chosen shape 
functions. Also, as in the 1‐D case,

and varies linearly within the element.
The plot for shape function N1 is shown in the following figure. N2 and N3 have similar 
features.

We have two coordinate systems for the element: the global coordinates (x, y) and the 
natural coordinates               . The relation between the two is given by

where xij = xi ‐ xj and yij = yi ‐ yj (i, j = 1, 2, 3) as defined earlier.
Displacement u or v on the element can be viewed as functions of (x, y) or              .    
Using the chain rule for derivatives, we have,
g

where J is called the Jacobian matrix of the transformation, and is expressed as 
h
Ji
ll d h J bi
i f h
f
i
di
d

where

and A is the area of the triangular element.
Similarly,

Using the relations                                              , we obtain the strain‐displacement matrix,

Applications of the CST Element:
∙  Use in areas where the strain gradient is small.
(
)
∙  Use in mesh transition areas (fine mesh to coarse mesh).
∙  Avoid using CST in stress concentration or other crucial areas in the 
structure, such as edges of holes and corners.
∙  Recommended for quick and preliminary FE analysis of
2‐D problems.
2 D problems
Linear Strain Triangle (LST or T6)
This element is also called quadratic triangular element.

There are six nodes on this element: three corner nodes and three mid‐side nodes. Each 
node has two degrees of freedom (DOF) as before. The displacements (u, v) are assumed 
to be quadratic functions of (x, y),

where bi (i = 1, 2, ..., 12) are constants.
The strains are found to be,

which are linear functions. Thus, we have the “linear strain triangle” (LST), which 
provides better results than the CST.
In the natural coordinate system we defined earlier, the six shape functions for the LST 
element are,

in which
Each of these six shape functions represents a quadratic form on the element as shown in 
the following figure.

Displacements can be written as,
p
,
Linear Quadrilateral Element (Q4)

There are four nodes at the corners of the quadrilateral shape. In the 
natural coordinate system              , the four shape functions are,

at any point inside the element.
The displacement field is given by

which are bilinear functions over the element.
Q
Quadratic Quadrilateral Element (Q8)
Q
(Q )
This is the most widely used element for 2‐D problems due to its high accuracy in 
analysis and flexibility in modeling.

There are eight nodes for this element, four corners nodes
and four mid‐side nodes.
In the natural coordinate system  

the eight shape functions are,

Again, we have                        at any point inside the element.
Again we have
at any point inside the element
The displacement field is given by

which are quadratic functions over the element. Strains and stresses over a quadratic 
quadrilateral element are quadratic functions, which are better representations.
Notes:

∙  Q4 and T3 are usually used together in a mesh with linear elements.
∙  Q8 and T6 are usually applied in a mesh composed of quadratic elements.
∙  Quadratic elements are preferred for stress analysis, because of their high 
accuracy and the flexibility in modeling complex geometry, such as curved 
boundaries.
Stress Calculation
The stress in an element is determined by the following relation,
y
g

where B is the strain‐nodal displacement matrix and d is the nodal displacement 
vector which is known for each element once the global FE equation has been solved.
Stresses can be evaluated at any point inside the element (such as the center) or at 
the nodes. Contour plots are usually used in FEA software packages (during post‐
p
y
p
g (
gp
process) for users to visually inspect the stress results.
The von Mises Stress:
The von Mises stress is the effective or equivalent stress for 2‐D and 3‐D stress 
The von Mises stress is the effective or equivalent stress for 2 D and 3 D stress
analysis.

in which 
and are the three principle stresses at the
considered point in a structure.
For 2‐D problems, the two principle stresses in the plane are determined by

Thus, we can also express the von Mises stress in terms of the stress components in the 
xy coordinate system. 
For plane stress conditions, we have,

More Related Content

PPT
Constant strain triangular
PPT
temperature stresses in Strength of materials
PPT
Finite Element Analysis - UNIT-4
PDF
ME6603 - FINITE ELEMENT ANALYSIS
PPT
PPTX
2D Finite Element Analysis.pptx
PPTX
Finite Element Analysis - UNIT-5
PPTX
Lect14
Constant strain triangular
temperature stresses in Strength of materials
Finite Element Analysis - UNIT-4
ME6603 - FINITE ELEMENT ANALYSIS
2D Finite Element Analysis.pptx
Finite Element Analysis - UNIT-5
Lect14

What's hot (20)

PPT
Stages of fea in cad environment
PPTX
Finite Element Analysis of Truss Structures
PDF
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANK
PPT
Introduction to finite element method(fem)
PPTX
Stress concentration
PPTX
Compatibility equation and Airy's stress function of theory of elasticity
PPTX
Chapter 12 kinematics of a particle part-i
PDF
Unit 1 notes-final
PPTX
Fem ppt
PDF
Me2353 finite-element-analysis-lecture-notes
PDF
ME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANK
PPT
Theories of failure_scet
PPTX
Fem frame
PDF
Computational fracture mechanics
PDF
EXPERIMENTAL STRESS ANALYSIS CHAPTER-01
PPTX
Finite element method
PDF
Finite Element Analysis Rajendra M.pdf
PDF
5. stress function
PDF
Point Collocation Method used in the solving of Differential Equations, parti...
Stages of fea in cad environment
Finite Element Analysis of Truss Structures
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANK
Introduction to finite element method(fem)
Stress concentration
Compatibility equation and Airy's stress function of theory of elasticity
Chapter 12 kinematics of a particle part-i
Unit 1 notes-final
Fem ppt
Me2353 finite-element-analysis-lecture-notes
ME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANK
Theories of failure_scet
Fem frame
Computational fracture mechanics
EXPERIMENTAL STRESS ANALYSIS CHAPTER-01
Finite element method
Finite Element Analysis Rajendra M.pdf
5. stress function
Point Collocation Method used in the solving of Differential Equations, parti...
Ad

Viewers also liked (20)

PDF
Introduction to finite element analysis
PPTX
Finite Element Method
PPTX
Graphing inverse functions
PDF
Finite Element Methode (FEM) Notes
PPT
Curso de Analisis por elementos finitos
PPT
The beauty of mathematics
PDF
Finite elements : basis functions
PPTX
Computing transformations
PPTX
Dependent v. independent variables
PPT
Introduction to FEA and applications
PPT
Interpolation functions
PPT
Finete Element
PPT
An Introduction to the Finite Element Method
PDF
Mapping the sphere
PPTX
Finite element - axisymmetric stress and strain
PDF
11 x1 t16 05 volumes (2013)
PDF
Aerostructure analysis WIKI project
PPT
Three forces-system
PDF
Data-Driven Threat Intelligence: Metrics on Indicator Dissemination and Sharing
PDF
11 x1 t01 03 factorising (2014)
Introduction to finite element analysis
Finite Element Method
Graphing inverse functions
Finite Element Methode (FEM) Notes
Curso de Analisis por elementos finitos
The beauty of mathematics
Finite elements : basis functions
Computing transformations
Dependent v. independent variables
Introduction to FEA and applications
Interpolation functions
Finete Element
An Introduction to the Finite Element Method
Mapping the sphere
Finite element - axisymmetric stress and strain
11 x1 t16 05 volumes (2013)
Aerostructure analysis WIKI project
Three forces-system
Data-Driven Threat Intelligence: Metrics on Indicator Dissemination and Sharing
11 x1 t01 03 factorising (2014)
Ad

Similar to Finite elements for 2‐d problems (20)

PPTX
Curves in space
PPT
1 d analysis
DOCX
Unit 2 FEA Notes.docx
DOCX
Chapter 12 Section 12.1 Three-Dimensional Coordinate Sys
PDF
Lecture2 (vectors and tensors).pdf
PDF
Frenet Curves and Successor Curves: Generic Parametrizations of the Helix and...
DOC
EE8120_Projecte_15
PPTX
rotationalmovement11-21010513442740.pptx
PDF
CAD Topology and Geometry Basics
PDF
Introduction to mechanics
PPT
generalformulation.ppt
PPT
generalformulationofFiniteelementofmodel
PDF
Fundamentals of Physics "MOTION IN TWO AND THREE DIMENSIONS"
PPTX
shape functions of 1D and 2 D rectangular elements.pptx
PPTX
dynamics chapter 2.pptx
PPTX
3.1 Ordinary Differential equation with Higher Order
PPTX
Unit_3_Lecture_Notes_PPT.pptxon differential Equation
PDF
How to find moment of inertia of rigid bodies
PPTX
Unit-2 - Copy.pptx anjdjdjdjjjsdjfsjf vnkjkd
PPTX
Finite element analysis of shape function
Curves in space
1 d analysis
Unit 2 FEA Notes.docx
Chapter 12 Section 12.1 Three-Dimensional Coordinate Sys
Lecture2 (vectors and tensors).pdf
Frenet Curves and Successor Curves: Generic Parametrizations of the Helix and...
EE8120_Projecte_15
rotationalmovement11-21010513442740.pptx
CAD Topology and Geometry Basics
Introduction to mechanics
generalformulation.ppt
generalformulationofFiniteelementofmodel
Fundamentals of Physics "MOTION IN TWO AND THREE DIMENSIONS"
shape functions of 1D and 2 D rectangular elements.pptx
dynamics chapter 2.pptx
3.1 Ordinary Differential equation with Higher Order
Unit_3_Lecture_Notes_PPT.pptxon differential Equation
How to find moment of inertia of rigid bodies
Unit-2 - Copy.pptx anjdjdjdjjjsdjfsjf vnkjkd
Finite element analysis of shape function

More from Tarun Gehlot (20)

PDF
Materials 11-01228
PDF
Binary relations
PDF
Continuity and end_behavior
PDF
Continuity of functions by graph (exercises with detailed solutions)
PDF
Factoring by the trial and-error method
PDF
Error analysis statistics
PDF
Matlab commands
PPT
Introduction to matlab
PDF
Linear approximations and_differentials
PDF
Local linear approximation
PDF
Propeties of-triangles
PDF
Gaussian quadratures
PDF
Basics of set theory
PPT
Numerical integration
PPT
Applications of set theory
PDF
Miscellneous functions
PDF
Intervals of validity
PDF
Modelling with first order differential equations
PDF
Review taylor series
PDF
Review power series
Materials 11-01228
Binary relations
Continuity and end_behavior
Continuity of functions by graph (exercises with detailed solutions)
Factoring by the trial and-error method
Error analysis statistics
Matlab commands
Introduction to matlab
Linear approximations and_differentials
Local linear approximation
Propeties of-triangles
Gaussian quadratures
Basics of set theory
Numerical integration
Applications of set theory
Miscellneous functions
Intervals of validity
Modelling with first order differential equations
Review taylor series
Review power series

Recently uploaded (20)

PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
Pharma ospi slides which help in ospi learning
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Sports Quiz easy sports quiz sports quiz
PDF
Classroom Observation Tools for Teachers
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
master seminar digital applications in india
PPTX
Cell Types and Its function , kingdom of life
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
Cell Structure & Organelles in detailed.
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
2.FourierTransform-ShortQuestionswithAnswers.pdf
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Pharma ospi slides which help in ospi learning
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
102 student loan defaulters named and shamed – Is someone you know on the list?
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Sports Quiz easy sports quiz sports quiz
Classroom Observation Tools for Teachers
Final Presentation General Medicine 03-08-2024.pptx
O5-L3 Freight Transport Ops (International) V1.pdf
master seminar digital applications in india
Cell Types and Its function , kingdom of life
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Cell Structure & Organelles in detailed.
human mycosis Human fungal infections are called human mycosis..pptx
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Module 4: Burden of Disease Tutorial Slides S2 2025
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Abdominal Access Techniques with Prof. Dr. R K Mishra
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx

Finite elements for 2‐d problems