SlideShare a Scribd company logo
2
Most read
3
Most read
7
Most read
ME 6201: Applied Elasticity and Plasticity
STRESS FUNCTION
Cartesian coordinates
Prof. S.K.Sahoo
Plane
Stress
   
   
0,
1
1
1
,
1







yzxzxyxy
yxyxz
xyyyxx
E
E
EE










)(
2
1
0)(
2
1
)(
2
1
,,
x
w
z
u
y
w
z
xy
u
z
w
y
v
x
u
xz
yz
xy
zyx


































0 yzxzz 
Stress-strain
relationship
strain-displacement
equations
The equilibrium equations
Field equations
),(),,(),,( yxyxyx xyxyyyxx  
0
0












Y
yx
X
yx
yxy
xyx


Plane
Strain
0),,(),,(  wyxvvyxuu
0,2
)()(
2)(
2)(




yzxzxyxy
yxyxz
yyxy
xyxx
G
G
G




0
0












Y
yx
X
yx
yxy
xyx


0
)(
2
1
,,













yzxzz
xy
yx
xy
u
yx
u





)21)(1(
21
2
1
3
3
2













E
G
KGK
 = Lamé’s constant
G = shear modulus
xyxy
xyy
yxx
E
v
v
v
E
v
v
v
E
v



)1(
)
1
(
1
)
1
(
1
2
2










0 yzxzz 
xyxy
xyy
yxx
v
E
v
v
E
v
v
E



)1(
)(
1
)(
1
2
2








Simplified Elasticity Formulations
Displacement Formulation
Eliminate the stresses and strains
from the general system of
equations. This generates a system
of three equations for the three
unknown displacement components.
Equations are on u, v, w terms.
Stress Formulation
Eliminate the displacements and
strains from the general system of
equations. This generates a system
of six equations and for the six
unknown stress components.
Equations are on
terms
A practical elasticity problem may requires to solve 15 equations with 15
unknowns. It is very difficult to solve many real problems, so modified
formulations have been developed.
F(z)
G(x,y)
z
x
y Even using displacement or stress formulations
three-dimensional problems are difficult to solve.
So most solutions are assumed to of two-dimensional problems
],,,,,[ zxyzxyzzyyxx 
Displacement Formulation
0
)1(2
0
)1(2
2
2






























Y
y
v
x
u
yv
E
vG
X
y
v
x
u
xv
E
uG
Plane stress
+
),(),,( yxvvyxuu bb 
(B.C.)
Plane strain
+
),(),,( yxvvyxuu bb 
0)(
0)(
2
2




























Y
y
v
x
u
y
GvG
X
y
v
x
u
x
GuG


(B.C.)
)21)(1(
21
2
1
3
3
2













E
G
KGK
 = Lamé’s constant
G = shear modulus
Stress Formulation
yxxy
xyyx







 
2
2
2
2
2
2












y
Y
x
X
vyx )1()(2

0
0












Y
yx
X
yx
yxy
xyx


+
or
+
Plane stress Plane strain
0
0












Y
yx
X
yx
yxy
xyx















y
Y
x
X
v
yx
)1(
1
)(2

yyxy
yxxx
mlY
mlX




yyxy
yxxx
mlY
mlX




(B.C.)
or
yxxy
xyyx







 
2
2
2
2
2
2
+
+
Stress Function Approach
0
0












Y
yx
X
yx
yxy
xyx


yxxy
xyyx







 
2
2
2
2
2
2
Solution of plain problems:













y
Y
x
X
v
yx
1
1
)(2

Plain Strain












y
Y
x
X
vyx )1()(2

Plain Stress
0)(2
2
2
2











yx
yx

3 different equations
with 3 unknowns
Airy (An English Mathematician) for 2D
problems proposes a single stress
function (function of space coordinates)
that will satisfy all equations
yyxy
yxxx
mlY
mlX




When No body force
0)(2
 yx  or
Philosophy:
Stress = f (strain)
Strain = f (displacement)
= f (space coordinate)
= f (x, y, z)
=> Stress = f (x, y, z)
Airy Stress Function Method
Plane Problems with No Body Forces
0
0












yx
yx
yxy
xyx


0)(2
 yx
Stress Formulation
yxxy
xyyx















2
2
2
2
2
,,
Airy Representation
02 4
4
4
22
4
4
4









yyxx
Biharmonic Governing Equation
(Single Equation with Single function  satisfy equilibrium and
compatibility equations. The unknown parameters of stress function can
be find out by putting boundary conditions. )
0)(2
2
2
2











yx
yx

Let assume a stress function = (x,y)
such that:
or
Putting it on equilibrium equations, it
can be checked that both equations are
satisfied.
Putting on compatibility equation
gives
Steps of the Stress Function Approach
1. Choose a stress function, 
2. Confirm  is biharmonic (compatibility is satisfied)
3. Derive stresses from second derivatives of 
4. Use boundary conditions to identify unknown parameters of 
5. Derive strains from stress-strain relationships
6. Integrate strain-displacement relations to get displacements
Example of biharmonic Polynomial Stress Functions
 




2
0211
2
20011000
0 0
),( yAxyAxAyAxAAyxAyx
m n
nm
mn
terms do not contribute to the stresses and are therefore dropped1 nm
terms will automatically satisfy the biharmonic equation3 nm
terms require constants Amn to be related in order to satisfy
biharmonic equation
3 nm
cbyax ,If
22
If, cybxyax 
04
 
...........,If 2234222322
 ykxyjxhxgyfxyyexdxcybxyax
c
y
xx 2002
2





 0022
2



 a
x
yy

 00
2



 b
yx
xy


Stress distribution can be obtained but
all to satisfy biharmonic equation,
which requires that there exist some
relations among coefficients.
..........2006200200 2
kxgyfxcxx 
...........26120026002 22
kyjxyhxeydxayy 
..........430022000 2
kxyjxfyexbxy 
stress function have no meaning, as it gives zero stress in
the body.
Any quadratic function of x and y will automatically satisfy the biharmonic equation
but give constant values of stresses.
04
 
Stress functions with body forces (Plane strain)
0








X
zyx
zxxyxx 
0








Y
zyx
yzyyxy 
0








Z
zyx
zzyzzx 
0





X
yx
xyxx

0





Y
yx
yyxy 
0


z
zz
We have general equilibrium equation; For plane strain condition;
The component of body force X and Y
independent Z & Z=0. The body force can be
expressed by a potential function Ω, so that; x
X



y
Y



  ,0





yx
xy
xx

   0





yy
xy
yy

So equilibrium equation becomes,
2
2
y
xx





yx
xy





2
2
2
x
yy





If we now choose a stress function
Φ so that,
The third equation will be
dropped from the
discussion for the time
being, since its solution
only indicates
, which value may later be
determined as a function
of
 yxfzz ,
yyxx  &
We can verify that the equilibrium equations are
identically satisfied. For complete solution, we
must consider the compatibility condition, i.e. 












y
Y
x
X
v
yyxx
1
1
)(2

)())(( 2
2
2
2
2
2
2
2
2
2
2
2
1
1
yxxyyx 




















Stress functions with body forces (Plane strain)……..
xyyyxx  &,Now substituting the in the terms of stress function. This will
result a differential equation will be such that any solution to it will satisfy
both equilibrium & compatibility condition.
Simplifying,
It gives,
If there is no body force,
0
1
1
22 )()()( 2
2
2
2
22
4
4
4
4
4
2
2
2
2






















yxyxyxyx 

0
1
21
2 )()( 2
2
2
2
22
4
4
4
4
4

















yxyxyx 


0
1
21 222






 0
1
21 24







04
 
This gives the condition of stress function equation for the solution of
problem of plane strain, provided the proper boundary conditions are also
satisfied.
Stress functions with body forces (Plane stress)
0








X
zyx
zxxyxx 
0








Y
zyx
yzyyxy 
0








Z
zyx
zzyzzx 
0





X
yx
xyxx

0





Y
yx
yyxy 
We have general equilibrium equation; For plane stress condition;
The component of body force X and Y
independent Z & Z=0. The body force can be
expressed by a potential function Ω, so that; x
X



y
Y



  ,0





yx
xy
xx

   0





yy
xy
yy

So equilibrium equation becomes,
2
2
y
xx





yx
xy





2
2
2
x
yy





If we now choose a stress function
Φ so that,
We can verify that the equilibrium equations are
identically satisfied. For complete solution, we
must consider the compatibility condition, i.e. 











y
Y
x
X
vyyxx )1()(2

)())(( 2
2
2
2
2
2
2
2
2
2
2
2
)1(
yxxyyx 


















Stress functions with body forces (Plane stress)……..
xyyyxx  &,Now substituting the in the terms of stress function. This will
result a differential equation will be such that any solution to it will satisfy
both equilibrium & compatibility condition.
Simplifying,
It gives,
If there is no body force,
0)1(22 )()()( 2
2
2
2
22
4
4
4
4
4
2
2
2
2





















yxyxyxyx


0)1(2 )()( 2
2
2
2
22
4
4
4
4
4















yxyxyx

0)1( 222
  0)1( 24
 
04
 
This gives the condition of stress function equation for the solution of
problem of plane stress, provided the proper boundary conditions are also
satisfied.
Summary: Solutions to Plane Problems in Cartesian Coordinates
yxxy
xyyyxx















2
2
2
2
2
,,
Airy Representation for stresses
02 4
4
4
22
4
4
4









yyxx
Biharmonic Governing Equation
),(,),( yxfYyxfX yx 
Boundary Conditions
R
S
x
y
0)1( 24
  0
1
21 24







If there is no body force,
Plane Stress Plane Strain
yyxy
yxxx
mlY
mlX




Example:
)23(
:FunctionStressFollowingthemin
2
3
ydxy
d
F
forstressestheeDetr

Appears to Solve the Beam Problem:
x
y
dF
)(
6
,0
)(
6
:
3
2
2
2
32
2
ydy
d
F
yxx
ydx
d
F
y
Answer
xyy
x

















T
1
T
+X
+Y
L L
C
C
O
Uniaxial Tension
Example: Two-dimensional plane stress of a long rectangular narrow
beam by a uniform traction T at each end.
Boundary conditions are:
0yy
Txx 
0xy
Cy 
at (3)
at (2)
For all values of yLx 
For all values of x
0xy Cy at (4)For all values of x
at (1)For all values of yLx 
Surface force, T is per unit area
Because constant stresses at boundaries, let
choose a second-order stress function: 2
Ay
Φ is a valid stress function as 04
 
Hence, 0,22
2



 xyyyxx A
y



The first boundary condition implies that , 2
T
A 
So, the stress field solution is, 0,  xyyyxx T 
Let find the displacement field, i.e., u ,v
 
E
T
Ex
u
yyxxxx 



1
 
E
T
Ey
xxyyyy  

 1v
0
v







Gxy
u xy
xy

Total shear strain,
(5)
(6)
(7)
Integrating Equations (5) and (6) w.r.t. x & y
)(yfx
E
T
u 
)(v xgy
E
T
 
f(y) is a arbitrary function of y
g(x) is a arbitrary function of x
Putting in equation (7) cxgyfxgyf  )()(0)()( ''''
Integrating,
Dcyyf )( Dcxxg )( c, D are arbitrary constants
It gives, Dcyx
E
T
u  Dcxy
E
T
 v
Displacement boundary conditions are,
At x=0, y=0 u=0 & v=0 also v=0 at x=±L for all y
It gives, c=0 & D=0 So, final displacement field is,
x
E
T
u  y
E
T
v
22
ByAx 
3
Ax  224
3 yxxA 
Problems: Prove that the followings are Airy’s stress function & examine the stress
distribution represented by them: , ,
22
ByAx 
,2Ax
x


 By
y
2


A
x
22
2


 B
y
22
2


 
04
4



x

04
4



y

022
4



yx

00002 4
4
22
4
4
4
4










yyxx


0,2,2
2
2
2
2
2










yx
A
x
B
y
xyyyxx






Ans:
Hence it is a Airy’s stress function.
It is a uniform two-dimensional stress function.
,3 2
Ax
x



04
4
2
2









yyy

Ax
x
62
2


 
A
x
63
3


 
04
4



x

04
  0,2,0  xyyxx Ax  One-dimensional linear stress field.
b) 022
4



yx

 23
64 xyxA
x



  yAxyxA
y
22
66 


 2
2
2
612 yxA
x


 
  22
2
2
66 AxxA
y


  Ax
x
243
3


 
04
4



y

A
x
244
4


 
Axy
yx
12
2


 
Ay
yx
122
3


 
A
yx
1222
4


 
0024244
 AA
2
6Axxx 
 22
612 yxAyy  Axyxy 12
,
,
So it is a Airy’s stress function, and
c)

More Related Content

PDF
Aircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
PPTX
Stresses and its components - Theory of Elasticity and Plasticity
PPTX
Compatibility equation and Airy's stress function of theory of elasticity
PDF
Theory of Elasticity
PDF
Plane stress and plane strain
PPT
Advanced structures - wing section, beams, bending, shear flow and shear center
PDF
Lecture10 mohr's circle
PDF
Lecture 1 stresses and strains
Aircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
Stresses and its components - Theory of Elasticity and Plasticity
Compatibility equation and Airy's stress function of theory of elasticity
Theory of Elasticity
Plane stress and plane strain
Advanced structures - wing section, beams, bending, shear flow and shear center
Lecture10 mohr's circle
Lecture 1 stresses and strains

What's hot (20)

PDF
Theory of Plates and Shells
PPT
Finite Element Analysis - UNIT-1
PPTX
Mini project For M.tech Structural Engineering Deflection of Simply supported...
PPTX
Shear centre
PPTX
Analysis of Thin Plates
PPTX
CE 72.52 - Lecture 5 - Column Design
PPTX
Relation between load shear force and bending moment of beams
PDF
Lecture 12 deflection in beams
PDF
Fem class notes
PPTX
CE 72.52 - Lecture 7 - Strut and Tie Models
PPTX
A study on _ buckling
PDF
Unit 6- Plate Bending Theory.pdf
PPTX
1 static failure theories ductile r1
PPTX
Unsymmetrical bending.ppt
PPTX
Finite Element analysis -Plate ,shell skew plate
PDF
Lateral or transverse vibration of thin beam
PPTX
Bending Stress In Beams
PPTX
theory of elasticity
PDF
Lecture 4 3 d stress tensor and equilibrium equations
PDF
Torsion of Non Circular Bars Saint Venants Theory
Theory of Plates and Shells
Finite Element Analysis - UNIT-1
Mini project For M.tech Structural Engineering Deflection of Simply supported...
Shear centre
Analysis of Thin Plates
CE 72.52 - Lecture 5 - Column Design
Relation between load shear force and bending moment of beams
Lecture 12 deflection in beams
Fem class notes
CE 72.52 - Lecture 7 - Strut and Tie Models
A study on _ buckling
Unit 6- Plate Bending Theory.pdf
1 static failure theories ductile r1
Unsymmetrical bending.ppt
Finite Element analysis -Plate ,shell skew plate
Lateral or transverse vibration of thin beam
Bending Stress In Beams
theory of elasticity
Lecture 4 3 d stress tensor and equilibrium equations
Torsion of Non Circular Bars Saint Venants Theory
Ad

Similar to 5. stress function (20)

PDF
Elasticity and Plasticity - L 04.pdfggghjh
PDF
2-D formulation Plane theory of elasticity Att 6672
PPTX
Basic Elasticity
PDF
Elasticity problem formulation Att 6582
PPTX
LECT_01.pptx
PDF
Lecture 9 Plane Stress of materials .pdf
PPTX
Jayant chaudhary (theory of elasticity)
PPTX
Chapter - 4.pptx
PDF
Theory od ELasticity
PDF
6.7 airy
PPTX
Chapter one.pptx
PDF
PPT
Utech Presentation
PPT
Beams And Columns
PDF
Bending1
PPTX
Finite element method
PDF
Mechanics Of Solids- Stress Transformation in 3D
PPTX
Chapter nine.pptx
PDF
Principal stress
PDF
MDB_20MODULES_201-7.pdf_Bachelor of Science Civil Engineering
Elasticity and Plasticity - L 04.pdfggghjh
2-D formulation Plane theory of elasticity Att 6672
Basic Elasticity
Elasticity problem formulation Att 6582
LECT_01.pptx
Lecture 9 Plane Stress of materials .pdf
Jayant chaudhary (theory of elasticity)
Chapter - 4.pptx
Theory od ELasticity
6.7 airy
Chapter one.pptx
Utech Presentation
Beams And Columns
Bending1
Finite element method
Mechanics Of Solids- Stress Transformation in 3D
Chapter nine.pptx
Principal stress
MDB_20MODULES_201-7.pdf_Bachelor of Science Civil Engineering
Ad

Recently uploaded (20)

PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PDF
Categorization of Factors Affecting Classification Algorithms Selection
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PDF
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
PDF
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PPTX
Module 8- Technological and Communication Skills.pptx
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PPTX
Nature of X-rays, X- Ray Equipment, Fluoroscopy
PPTX
Safety Seminar civil to be ensured for safe working.
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PPTX
Software Engineering and software moduleing
PPTX
Management Information system : MIS-e-Business Systems.pptx
PDF
737-MAX_SRG.pdf student reference guides
PPT
Total quality management ppt for engineering students
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PPTX
Artificial Intelligence
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PPTX
Information Storage and Retrieval Techniques Unit III
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
Categorization of Factors Affecting Classification Algorithms Selection
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
"Array and Linked List in Data Structures with Types, Operations, Implementat...
Module 8- Technological and Communication Skills.pptx
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Nature of X-rays, X- Ray Equipment, Fluoroscopy
Safety Seminar civil to be ensured for safe working.
III.4.1.2_The_Space_Environment.p pdffdf
Software Engineering and software moduleing
Management Information system : MIS-e-Business Systems.pptx
737-MAX_SRG.pdf student reference guides
Total quality management ppt for engineering students
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
Artificial Intelligence
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
Information Storage and Retrieval Techniques Unit III

5. stress function

  • 1. ME 6201: Applied Elasticity and Plasticity STRESS FUNCTION Cartesian coordinates Prof. S.K.Sahoo
  • 2. Plane Stress         0, 1 1 1 , 1        yzxzxyxy yxyxz xyyyxx E E EE           )( 2 1 0)( 2 1 )( 2 1 ,, x w z u y w z xy u z w y v x u xz yz xy zyx                                   0 yzxzz  Stress-strain relationship strain-displacement equations The equilibrium equations Field equations ),(),,(),,( yxyxyx xyxyyyxx   0 0             Y yx X yx yxy xyx   Plane Strain 0),,(),,(  wyxvvyxuu 0,2 )()( 2)( 2)(     yzxzxyxy yxyxz yyxy xyxx G G G     0 0             Y yx X yx yxy xyx   0 )( 2 1 ,,              yzxzz xy yx xy u yx u      )21)(1( 21 2 1 3 3 2              E G KGK  = Lamé’s constant G = shear modulus xyxy xyy yxx E v v v E v v v E v    )1( ) 1 ( 1 ) 1 ( 1 2 2           0 yzxzz  xyxy xyy yxx v E v v E v v E    )1( )( 1 )( 1 2 2        
  • 3. Simplified Elasticity Formulations Displacement Formulation Eliminate the stresses and strains from the general system of equations. This generates a system of three equations for the three unknown displacement components. Equations are on u, v, w terms. Stress Formulation Eliminate the displacements and strains from the general system of equations. This generates a system of six equations and for the six unknown stress components. Equations are on terms A practical elasticity problem may requires to solve 15 equations with 15 unknowns. It is very difficult to solve many real problems, so modified formulations have been developed. F(z) G(x,y) z x y Even using displacement or stress formulations three-dimensional problems are difficult to solve. So most solutions are assumed to of two-dimensional problems ],,,,,[ zxyzxyzzyyxx 
  • 4. Displacement Formulation 0 )1(2 0 )1(2 2 2                               Y y v x u yv E vG X y v x u xv E uG Plane stress + ),(),,( yxvvyxuu bb  (B.C.) Plane strain + ),(),,( yxvvyxuu bb  0)( 0)( 2 2                             Y y v x u y GvG X y v x u x GuG   (B.C.) )21)(1( 21 2 1 3 3 2              E G KGK  = Lamé’s constant G = shear modulus
  • 5. Stress Formulation yxxy xyyx          2 2 2 2 2 2             y Y x X vyx )1()(2  0 0             Y yx X yx yxy xyx   + or + Plane stress Plane strain 0 0             Y yx X yx yxy xyx                y Y x X v yx )1( 1 )(2  yyxy yxxx mlY mlX     yyxy yxxx mlY mlX     (B.C.) or yxxy xyyx          2 2 2 2 2 2 + +
  • 6. Stress Function Approach 0 0             Y yx X yx yxy xyx   yxxy xyyx          2 2 2 2 2 2 Solution of plain problems:              y Y x X v yx 1 1 )(2  Plain Strain             y Y x X vyx )1()(2  Plain Stress 0)(2 2 2 2            yx yx  3 different equations with 3 unknowns Airy (An English Mathematician) for 2D problems proposes a single stress function (function of space coordinates) that will satisfy all equations yyxy yxxx mlY mlX     When No body force 0)(2  yx  or Philosophy: Stress = f (strain) Strain = f (displacement) = f (space coordinate) = f (x, y, z) => Stress = f (x, y, z)
  • 7. Airy Stress Function Method Plane Problems with No Body Forces 0 0             yx yx yxy xyx   0)(2  yx Stress Formulation yxxy xyyx                2 2 2 2 2 ,, Airy Representation 02 4 4 4 22 4 4 4          yyxx Biharmonic Governing Equation (Single Equation with Single function  satisfy equilibrium and compatibility equations. The unknown parameters of stress function can be find out by putting boundary conditions. ) 0)(2 2 2 2            yx yx  Let assume a stress function = (x,y) such that: or Putting it on equilibrium equations, it can be checked that both equations are satisfied. Putting on compatibility equation gives
  • 8. Steps of the Stress Function Approach 1. Choose a stress function,  2. Confirm  is biharmonic (compatibility is satisfied) 3. Derive stresses from second derivatives of  4. Use boundary conditions to identify unknown parameters of  5. Derive strains from stress-strain relationships 6. Integrate strain-displacement relations to get displacements
  • 9. Example of biharmonic Polynomial Stress Functions       2 0211 2 20011000 0 0 ),( yAxyAxAyAxAAyxAyx m n nm mn terms do not contribute to the stresses and are therefore dropped1 nm terms will automatically satisfy the biharmonic equation3 nm terms require constants Amn to be related in order to satisfy biharmonic equation 3 nm cbyax ,If 22 If, cybxyax  04   ...........,If 2234222322  ykxyjxhxgyfxyyexdxcybxyax c y xx 2002 2       0022 2     a x yy   00 2     b yx xy   Stress distribution can be obtained but all to satisfy biharmonic equation, which requires that there exist some relations among coefficients. ..........2006200200 2 kxgyfxcxx  ...........26120026002 22 kyjxyhxeydxayy  ..........430022000 2 kxyjxfyexbxy  stress function have no meaning, as it gives zero stress in the body. Any quadratic function of x and y will automatically satisfy the biharmonic equation but give constant values of stresses. 04  
  • 10. Stress functions with body forces (Plane strain) 0         X zyx zxxyxx  0         Y zyx yzyyxy  0         Z zyx zzyzzx  0      X yx xyxx  0      Y yx yyxy  0   z zz We have general equilibrium equation; For plane strain condition; The component of body force X and Y independent Z & Z=0. The body force can be expressed by a potential function Ω, so that; x X    y Y      ,0      yx xy xx     0      yy xy yy  So equilibrium equation becomes, 2 2 y xx      yx xy      2 2 2 x yy      If we now choose a stress function Φ so that, The third equation will be dropped from the discussion for the time being, since its solution only indicates , which value may later be determined as a function of  yxfzz , yyxx  & We can verify that the equilibrium equations are identically satisfied. For complete solution, we must consider the compatibility condition, i.e.              y Y x X v yyxx 1 1 )(2 
  • 11. )())(( 2 2 2 2 2 2 2 2 2 2 2 2 1 1 yxxyyx                      Stress functions with body forces (Plane strain)…….. xyyyxx  &,Now substituting the in the terms of stress function. This will result a differential equation will be such that any solution to it will satisfy both equilibrium & compatibility condition. Simplifying, It gives, If there is no body force, 0 1 1 22 )()()( 2 2 2 2 22 4 4 4 4 4 2 2 2 2                       yxyxyxyx   0 1 21 2 )()( 2 2 2 2 22 4 4 4 4 4                  yxyxyx    0 1 21 222        0 1 21 24        04   This gives the condition of stress function equation for the solution of problem of plane strain, provided the proper boundary conditions are also satisfied.
  • 12. Stress functions with body forces (Plane stress) 0         X zyx zxxyxx  0         Y zyx yzyyxy  0         Z zyx zzyzzx  0      X yx xyxx  0      Y yx yyxy  We have general equilibrium equation; For plane stress condition; The component of body force X and Y independent Z & Z=0. The body force can be expressed by a potential function Ω, so that; x X    y Y      ,0      yx xy xx     0      yy xy yy  So equilibrium equation becomes, 2 2 y xx      yx xy      2 2 2 x yy      If we now choose a stress function Φ so that, We can verify that the equilibrium equations are identically satisfied. For complete solution, we must consider the compatibility condition, i.e.             y Y x X vyyxx )1()(2 
  • 13. )())(( 2 2 2 2 2 2 2 2 2 2 2 2 )1( yxxyyx                    Stress functions with body forces (Plane stress)…….. xyyyxx  &,Now substituting the in the terms of stress function. This will result a differential equation will be such that any solution to it will satisfy both equilibrium & compatibility condition. Simplifying, It gives, If there is no body force, 0)1(22 )()()( 2 2 2 2 22 4 4 4 4 4 2 2 2 2                      yxyxyxyx   0)1(2 )()( 2 2 2 2 22 4 4 4 4 4                yxyxyx  0)1( 222   0)1( 24   04   This gives the condition of stress function equation for the solution of problem of plane stress, provided the proper boundary conditions are also satisfied.
  • 14. Summary: Solutions to Plane Problems in Cartesian Coordinates yxxy xyyyxx                2 2 2 2 2 ,, Airy Representation for stresses 02 4 4 4 22 4 4 4          yyxx Biharmonic Governing Equation ),(,),( yxfYyxfX yx  Boundary Conditions R S x y 0)1( 24   0 1 21 24        If there is no body force, Plane Stress Plane Strain yyxy yxxx mlY mlX    
  • 15. Example: )23( :FunctionStressFollowingthemin 2 3 ydxy d F forstressestheeDetr  Appears to Solve the Beam Problem: x y dF )( 6 ,0 )( 6 : 3 2 2 2 32 2 ydy d F yxx ydx d F y Answer xyy x                 
  • 16. T 1 T +X +Y L L C C O Uniaxial Tension Example: Two-dimensional plane stress of a long rectangular narrow beam by a uniform traction T at each end. Boundary conditions are: 0yy Txx  0xy Cy  at (3) at (2) For all values of yLx  For all values of x 0xy Cy at (4)For all values of x at (1)For all values of yLx  Surface force, T is per unit area
  • 17. Because constant stresses at boundaries, let choose a second-order stress function: 2 Ay Φ is a valid stress function as 04   Hence, 0,22 2     xyyyxx A y    The first boundary condition implies that , 2 T A  So, the stress field solution is, 0,  xyyyxx T  Let find the displacement field, i.e., u ,v   E T Ex u yyxxxx     1   E T Ey xxyyyy     1v 0 v        Gxy u xy xy  Total shear strain, (5) (6) (7)
  • 18. Integrating Equations (5) and (6) w.r.t. x & y )(yfx E T u  )(v xgy E T   f(y) is a arbitrary function of y g(x) is a arbitrary function of x Putting in equation (7) cxgyfxgyf  )()(0)()( '''' Integrating, Dcyyf )( Dcxxg )( c, D are arbitrary constants It gives, Dcyx E T u  Dcxy E T  v Displacement boundary conditions are, At x=0, y=0 u=0 & v=0 also v=0 at x=±L for all y It gives, c=0 & D=0 So, final displacement field is, x E T u  y E T v
  • 19. 22 ByAx  3 Ax  224 3 yxxA  Problems: Prove that the followings are Airy’s stress function & examine the stress distribution represented by them: , , 22 ByAx  ,2Ax x    By y 2   A x 22 2    B y 22 2     04 4    x  04 4    y  022 4    yx  00002 4 4 22 4 4 4 4           yyxx   0,2,2 2 2 2 2 2           yx A x B y xyyyxx       Ans: Hence it is a Airy’s stress function. It is a uniform two-dimensional stress function. ,3 2 Ax x    04 4 2 2          yyy  Ax x 62 2     A x 63 3     04 4    x  04   0,2,0  xyyxx Ax  One-dimensional linear stress field. b) 022 4    yx   23 64 xyxA x      yAxyxA y 22 66     2 2 2 612 yxA x       22 2 2 66 AxxA y     Ax x 243 3     04 4    y  A x 244 4     Axy yx 12 2     Ay yx 122 3     A yx 1222 4     0024244  AA 2 6Axxx   22 612 yxAyy  Axyxy 12 , , So it is a Airy’s stress function, and c)