1. 2023 최신 반도체 집적회로 설계기술 워크샵
Low-Dropout (LDO) Voltage Regulators
– From Basics to Recent Design Trends
(presented in A-SSCC 2022)
Prof. Hyun-Sik Kim
(hyunskim@kaist.ac.kr)
November 22, 2023
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 1 of 94
2. Contents
Basics of LDO Regulator
Key Performance Metrics & LDO Configurations
Frequency Response & Stability
Fast Transient-Response LDO Designs
Power Supply Rejection (PSR)
Energy-Efficient Ultra-Low-Dropout (Triode) LDO
Conclusion
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 2 of 94
3. Contents
Basics of LDO Regulator
Key Performance Metrics & LDO Configurations
Frequency Response & Stability
Fast Transient-Response LDO Designs
Power Supply Rejection (PSR)
Energy-Efficient Ultra-Low-Dropout (Triode) LDO
Conclusion
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 3 of 94
4. What is the Voltage Regulator?
Ideal Regulator?: an voltage source (VOUT) used to be VDD of a load system
Keep VOUT fixed voltage under any situations
◼ VIN varies, but VOUT is fixed → Regulator’s Line Regulation
◼ ILOAD varies, but VOUT is fixed → Regulator’s Load Regulation
Always “VIN > VOUT” due to the LDO’s resistive voltage generation
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 4 of 94
VIN
VOUT
ILOAD
Regulator
LDO, Buck: VIN > VOUT
Boost: VIN < VOUT
VIN
VOUT
Fixed (Regulated) LDO input
LDO output
time
5. Key Features of LDO Regulator
Ripple Suppression (Power-Supply Rejection, PSR) → Used as a Post-Regulator
Impedance Isolation (Low ZOUT like as a buffer )
Low Output Noise (No switching operation) → Useful for noise-sensitive loads
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 5 of 94
Battery Switching
DC-DC
Converter
LDO
Regulator
w/ High-PSR
LDO
Regulator
w/ Low-PSR
Image
Sensor
#2
Image
Sensor
#1
high fsw @ heavy load
low fsw @ light load
ΔVRIPPLE
L size → fsw
VDD1
VDD2
Clear
Noisy
Noise-sensitive load
L size ↓ → fsw ↑
6. Usages of LDO Regulator
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 6 of 94
Discrete LDO chips
Velodyne LIDAR Puck VLP-16 Sensor
(source: Tech Insights)
SoC-Integrated LDO IPs
AMD 7-nm Zen 2
(ISSCC’20)
◼ Clean voltage-supply (low-noise of LDO)
◼ Step-down DC-DC conversion
◼ Per-Core voltage-scaling (compactness)
LDO (TI)
LDO
(Microchip)
LDO
(Microchip)
Integrated LDOs
7. Conceptual Realization of LDO Regulator (1/2)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 7 of 94
VIN RL
RIN
+
VOUT
VOUT-sense
& α-control
L
OUT IN
IN L
R
V V
R R
=
+ OUT IN
1
V V
α 1
=
+
Unregulated ☺ Regulated
VOUT generated using a resistive divider
◼ Fixed divider ratio → sensitive to load current (RL) changes
Feedback loop regulates RIN (= α·RL) such that it is always a desired fraction
of load current
◼ VOUT is independent to load current (RL)
VIN RL
α·
RL
+
VOUT
8. Conceptual Realization of LDO Regulator (2/2)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 8 of 94
Feedback loop adjusts RIN such that
◼ VOUT is ideally independent to VIN
◼ Feedback resistors (RF1 + RF2) >> RL
VIN RL
RIN
+
VOUT
+
EA
VREF
RF1
RF2
CL
Pass Element (transistor)
F1 F2
OUT REF
F2
R R
V V
R
+
=
9. Comparison of Power Converter Topologies (1/2)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 9 of 94
Linear Regulator
(LDO)
Switched Inductor
DC-DC
Switched Capacitor
(e.g., Charge-Pump)
Transfer
Media
Resistive Inductive Capacitive
Efficiency Low High ☺ Medium
Noise
Very Low ☺
(no switching)
High Medium
Output
Current
Low to Medium Low to High Low
Step-Up X O O
Step-Down O O O
Footprint Small ☺ Large Medium
10. Comparison of Power Converter Topologies (2/2)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 10 of 94
CPU @ 24MHz CPU @ 48MHz
LDO Regulator 165 μA/MHz 158 μA/MHz
Switched Inductor
DC-DC
92 μA/MHz 96 μA/MHz
LDO regulator: small footprint & low noise, but low efficiency
11. Basic Architecture of LDO Regulator
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 11 of 94
PMOS Pass
Element
VIN
+
BGR
VREF
R1
R2
CL IL
VOUT
rDS
EA VDO = VIN – VOUT
Dropout Voltage
+
–
1 2
OUT REF
2
R R
V V
R
+
=
◼ Bandgap (BGR): fixed reference voltage VREF
◼ Error-Amplifier (EA): comparing VREF vs. VOUT, and providing feedback loop-gain (T)
◼ CL: used to “filter” ripple and noise
12. Contents
Basics of LDO Regulator
Key Performance Metrics & LDO Configurations
Frequency Response & Stability
Fast Transient-Response LDO Designs
Power Supply Rejection (PSR)
Energy-Efficient Ultra-Low-Dropout (Triode) LDO
Conclusion
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 12 of 94
13. Key Performance Metrics
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 13 of 94
Regulation (in DC-domain)
◼ Line/load regulation
Voltage (VOUT) accuracy
Transient response
◼ Voltage droop & Recovery time
◼ Loop-bandwidth (GBW)
◼ Slew rate
Dropout voltage (VDO)
◼ Power efficiency
Input/output range
◼ Input (VIN) range
◼ Output (VOUT) range
◼ Max. output current (IL,MAX)
Quiescent current (IQ)
◼ Current efficiency
Power supply rejection (PSR)
Stability
◼ Load (IL) dynamic range
◼ Output capacitor (CL)
Output noise
◼ RMS noise voltage within BW
14. Performance Metrics: Line Regulation (1/2)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 14 of 94
Ability to maintain desired VOUT with varying VIN
◼ Line Regulation = ΔVOUT/ΔVIN
◼ Unit: [mV/V] or [%/V]
(source: TI tech. review)
15. Performance Metrics: Line Regulation (2/2)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 15 of 94
Line Regulation =
( )
( )
mp L DS 1 2
OUT
IN EA0
EA0 mp L DS 1 2
g R ||r || R R
ΔV 1
ΔV βA
1 βA g R ||r || R R
+
=
+ +
PMOS Pass
Element
VIN
+
BGR
VREF
R1
R2
CL IL
VOUT
rDS
EA
AEA0
gmp
2
1 2
R
β
R R
=
+
( ) ( )
IN OUT EA0 mp L DS 1 2 OUT
ΔV ΔV βA g R ||r || R R ΔV
− + =
+
–
Changes in VIN suppressed by error-amp (EA)’s gain (AEA0)
16. Performance Metrics: Load Regulation
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 16 of 94
Ability to maintain desired VOUT with varying IL
(source: TI tech. review)
PMOS Pass
Element
VIN
+
BGR
VREF
R1
R2
CL IL
VOUT
rDS
EA
AEA0
gmp
2
1 2
R
β
R R
=
+
( )
OUT
L OUT EA0 mp
DS 1 2
ΔV
ΔI ΔV β A g
r || R R
= +
+
Load Regulation =
( )
( )
DS 1 2
OUT DS
L 0
EA0 mp DS 1 2
r || R R
ΔV r
ΔI 1 T
1 βA g r || R R
+
=
+
+ +
Dependent of feedback loop-gain (T0)
17. Performance Metrics: Voltage Accuracy
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 17 of 94
◼ Line/Load regulation: ΔVLR, ΔVLDR
◼ Reference voltage drift: ΔVO,REF
◼ Error-Amp offset drift: ΔVO,EA
◼ Feedback resistor tolerance: ΔVO,R
PMOS Pass
Element
VIN
+
BGR
VREF
R1
R2
CL IL
VOUT
rDS
EA
LDO’s accuracy =
2 2 2
LR LDR O,REF O,EA O,R
OUT
ΔV ΔV ΔV ΔV ΔV
%
V
+ + + +
18. Performance Metrics: Power Efficiency (η)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 18 of 94
Efficiency (η) =
PMOS Pass
Element
VIN
+
BGR
VREF
R1
R2
CL IL
VOUT
rDS
EA
IIN
IQ
Quiescent current
(ground current)
IL
( )
( )
( )
IN DO L
OUT L OUT L
IN IN IN L Q IN L Q
V V I
V I V I
[%]
V I V I I V I I
−
= =
+ +
VDO = VIN – VOUT = VDS of PMOS
Dropout Voltage
+
–
19. Performance Metrics: Min. Dropout (VDO,min)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 19 of 94
(source: TI tech. review)
PMOS Pass
Element
VIN
+
BGR
VREF
R1
R2
CL IL
VOUT
rDS
EA VDO = VIN – VOUT
+
–
≈ 0
VG
VDO,min
Min. dropout voltage (VDO,min): minimum regulating point @ full-load (IL,max)
◼ At VDO,min & IL,max, the EA’s output (VG) reaches the minimum limit (≈ 0V)
◼ Conventional LDOs have VDO,min of 50mV ~ 200mV
◼ High aspect ratio (W/L) of pass element → large parasitic capacitance (CG)
20. Performance Metrics: Power-Supply Rejection
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 20 of 94
PSR
(V
OUT
/V
IN
)
[dB]
fsw
0 dB
Lower is Better
Typical
LDO PSR
VIN VOUT
fLow fMid fHigh
LDO
Regulator
ΔVIN(fsw)
ΔVOUT(fsw)
More
Desirable
highly rejected
reduced
rather amplified
Power-supply rejection = OUT
IN
ΔV (f)
PSR(f)
ΔV (f)
=
◼ Similar to line regulation, but measured ∆VOUT for small-signal ∆VIN variations
◼ PSR = ripple rejection capability
21. Performance Metrics: Transient Reponses
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 21 of 94
Voltage dip/spike
Line Regulation
Voltage dip/spike
Load Regulation
Line (∆VIN) transient response Load (∆IL) transient response
◼ ∆VOUT is dependent of load-step(∆IL), CL, loop bandwidth (GBW), and slew rate (SR)
(source: TI tech. review)
22. Various Types of LDO (1/4)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 22 of 94
VIN RL
RIN
+
VOUT
+
EA
VREF
RF1
RF2
CL VIN RL
+
VOUT
+
EA
VREF
RF1
RF2
CL
Variable CS
Triode LDO Saturation LDO
◼ Pass element works in triode region
◼ Small VDO (high η) ☺
◼ Low regulation due to low loop-gain
(T)
◼ Bad PSR due to small RDS
◼ Normally not preferred
◼ Pass element works in saturation region
◼ High VDO (lower η)
◼ Good regulation performance due to
high loop-gain (T) ☺
◼ Good PSR owing to large RDS ☺
◼ Adopted in most LDOs
23. Various Types of LDO (2/4)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 23 of 94
P-type LDO N-type LDO
◼ Pass element = PMOS
◼ Better regulation performance
(higher loop-gain) ☺
◼ Stability design issue
◼ Pass element = NMOS
◼ Lower regulation performance
◼ Easier stability design ☺
◼ Additional charge-pump (VDD)
PMOS Pass
Element
VIN
+
VREF
R1
R2
CL IL
VOUT
EA NMOS Pass
Element
VIN
+
VREF
R1
R2
CL IL
VOUT
EA
CP
VDD >VIN
24. Various Types of LDO (3/4)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 24 of 94
Cap LDO Capless LDO
◼ External capacitor (CL) is required
◼ Larger PCB footprint
◼ Low voltage droop @ ∆IL ☺
◼ Good PSR @ high freq. ☺
◼ Narrow bandwidth
◼ Stability issue over wide IL
◼ No “external” component (CL)
◼ Compact or fully-integrated ☺
◼ High voltage droop @ ∆IL
◼ Bad PSR @ high freq.
◼ Wider (faster) bandwidth
◼ Easier stability compensation ☺
VIN RL
RIN
+
VOUT
+
EA
VREF
RF1
RF2
CL VIN RL
RIN
+
VOUT
+
EA
VREF
RF1
RF2
25. Various Types of LDO (4/4)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 25 of 94
Analog LDO Digital LDO
◼ Analog control & single pass-TR.
◼ Excellent PSR ☺
◼ No ripple & clean VOUT ☺
◼ Re-design @ different tech. nodes
◼ Hard to work in low VIN
◼ Digital control & segmented pass-TR.
◼ Scalable design @ various CMOS tech. ☺
◼ Digitally synthesizable ☺
◼ Limit cycle oscillation (LCO) ripple
◼ Friendly to low VIN ☺
26. Contents
Basics of LDO Regulator
Key Performance Metrics & LDO Configurations
Frequency Response & Stability
Fast Transient-Response LDO Designs
Power Supply Rejection (PSR)
Energy-Efficient Ultra-Low-Dropout (Triode) LDO
Conclusion
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 26 of 94
27. Feedback Loop-Gain’s Transfer Function: T(s)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 27 of 94
VIN
+
BGR
VREF
R1
R2
CL IL
VOUT
rDS
EA
Cgg
gmp
rEA
gmEA
VX
VY
( ) Y
EA mp OUT
X
P1 P2
V 1
T s A g R β
V s s
1 1
ω ω
= − =
+ +
( )
EA mEA EA
OUT DS 1 2 L
2
1 2
A g r
R r || R R ||R
R
β
R R
=
= +
=
+
ωP2
ωP1
P2
EA gg
1
ω
r C
=
P1
OUT L
1
ω
R C
=
Transfer function of feedback loop-gain:
, where
*Note: Cgg becomes higher for low VDO & high IL
28. Basics of Frequency Response
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 28 of 94
VIN
+
BGR
VREF
R1
R2
CL IL
VOUT
rDS
EA
Cgg
gmp
rEA
gmEA
VX
VY
ωP2
ωP1
ω [rad/s]
Loop
Gain
[dB]
X
0 mEA EA mp OUT
T β g r g r
=
X
P1
ω
P2
EA gg
1
ω
r C
=
UGF
ω
P2
ω
|
P1
OUT L
1
ω
r C
=
Unity-gain frequency (ωUGF, GBW) determines the LDO’s transient response
◼ Wide bandwidth (high ωUGF) = fast transient speed
Closely-spaced poles compromise stability
◼ “ωUGF ≤ non-dominant pole” is desirable: just 1-pole under ωUGF
◼ Frequency (stability) compensation is necessary
29. Load Current (IL) Dependency of Output Pole
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 29 of 94
VIN
+
BGR
VREF
R1
R2
CL IL
VOUT
rDS
EA
Cgg
gmp
rEA
gmEA
VX
VY
Why cap-LDO (w/ CL) is difficult to be stable?
◼ Load current (IL) variation significantly changes the pole of ωP1
ωP1
ω [rad/s]
Loop
Gain
[dB]
X X
P1
ω UGF
ω
P2
ω
|
L
P1
OUT L A L
I
1
ω
r C V C
= =
|
UGF
ω
X
P1
ω
0 mEA EA mp OUT
T β g r g r
=
Heavy load (high IL)
Light load (low IL)
Total ROUT (open-loop) = ( )
OUT DS 1 2 L
R r || R R ||R
= +
L
P1
OUT L DS L A L
I
1 1
ω
R C r C V C
= =
30. Stability Compensation I: Zero-Insertion (1/3)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 30 of 94
VIN
+
BGR
VREF
R1
R2 CL
IL
VOUT
rDS
EA
Cgg
gmp
rEA
gmEA
ESR
ωP2
ωP1
ω [rad/s]
Loop
Gain
[dB]
X
0 mEA EA mp OUT
T β g r g r
=
X
P1
ω
Z
ESR L
1
ω
R C
=
UGF
ω
P2
ω
|
O
Z
ω
P2
EA gg
1
ω
r C
=
P1
OUT L
1
ω
R C
=
Z
ESR L
1
ω
R C
=
1 UGF
Z
ω
PM tan
ω
−
Zero (ωZ) insertion by adding ESR (equivalent series resistance) in CL
31. Stability Compensation I: Zero-Insertion (2/3)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 31 of 94
Choose the right ESR to secure the phase margin
ω
Loop
Gain
[dB]
X X
P1
ω
UGF
ω
P2
ω
|
O
Z
ω
ω [rad/s]
Loop
Gain
[dB]
X X
P1
ω
UGF
ω
P2
ω
|
w/o ESR compensation w/ ESR compensation (desirable) ☺
X
P3
ω
ω
Loop
Gain
[dB]
X X
P1
ω
UGF
ω
P2
ω
|
O
Z
ω
w/ too high ESR (unstable)
X
P3
ω
ω
Loop
Gain
[dB]
X X
P1
ω UGF
ω
P2
ω
| O
Z
ω
w/ too low ESR (unstable)
Stable region of ESR
32. Stability Compensation I: Zero-Insertion (3/3)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 32 of 94
Tunnel-of-Death graph: desirable range of stable ESR
◼ ESR on CL may cause a large spike/dip at load transient response
Kim & Kim, IEEE TPEL 2020 Texas Instrument, LDO
33. Stability Compensation II: Gate Buffering
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 33 of 94
Shield Cgg from loading the error-amplifier output using a Buffer
VIN
+
BGR
VREF
R1
R2
CL IL
VOUT
rDS
EA
Cgg
RO,EA
VEA VG
RB
Buffer
B O,EA
Buffer R R
◼ w/o gate buffering: P2
gg O,EA
1
ω
C R
=
P2,A
B O,EA
1
ω
C R
= P2,B
gg B
1
ω
C R
=
(low-frequency one pole)
(high-frequency two poles)
◼ w/ gate buffering:
B gg
Buffer C C
34. SSF-based Gate Buffer Design (1/3)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 34 of 94
Gate buffer design with Super Source Follower (SSF)
B
mB SSF mB mS X
1 1 1 1
R
g T g g r
= =
ωG = gmB/Cgg
ωX = 1/(rXCX)
Local feedback loop further reduces RB by loop-gain (TSSF)
SSF loop-gain (TSSF) has closely-spaced two poles: ωG & ωX
◼ Local stability should be also considered in the design of SSF-based gate buffer
35. SSF-based Gate Buffer Design (2/3)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 35 of 94
AC-peaking at SSF output
B
mB SSF
1 1
R
g T (s)
=
ωG = gmB/Cgg
ωX = 1/(rXCX)
ω
Output
Z
(R
B
)
[Ω]
X
mB SSF,DC
1 1
g T
ω
Loop
Gain
[dB]
SSF
T (s)
UGF
ω
|
X
X
ω
X
G
ω
G SSF
EA SSF
V T (s)
(s)
V 1 T (s)
=
+
AC-peaking
(ΔPhase ≈ 180°)
AC-peaking ➔
Complex pole-pair effect at VG/VEA(s)
Dominant-pole of TSSF loop
mB
1
g
( )
SSF UGF
T jω 1
Cgg
RB(s)
gg
1
jωC
SSF,DC mS X
T g r
=
◼ Impedance analysis
◼ Closed-loop analysis
36. SSF-based Gate Buffer Design (3/3)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 36 of 94
AC-peaking solution: Capacitive impedance (1/sCgg) does not cross the inductive RB
ω
Output
Z
(R
B
)
[Ω]
X
mB SSF,DC
1 1
g T
ω
Loop
Gain
[dB]
SSF
T (s)
UGF
ω
|
X
X
ω
X
G
ω
G
EA
V
(s)
V
AC-peaking
(ΔPhase ≈ 180°)
Dominant-pole of TSSF loop
mB
1
g
( )
SSF UGF
T jω 1
Cgg
RB(s)
ω
Output
Z
(R
B
)
[Ω]
X
ω
Loop
Gain
[dB]
SSF
T (s)
|
X
X
ω
X
G
ω
G
EA
V
(s)
V
No AC-peaking
(ΔPhase ≈ 90°)
Dominant-pole of TSSF loop
mB
1
g
( )
SSF UGF
T jω 1
gg
1
jωC
Unstable Case Stable Case ☺
mS
X
g
C
X X
1
r C
=
mB
gg
g
C
=
gg
1
jωC
37. Dual-Loop Gate Buffer Design (1/4)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 37 of 94
Kim & Kim, IEEE TPEL 2020
VBP
Cgg
MP
M19
M21
M18
VBI
Power
PMOS
VIN
VOUT
IB2
M22
VG
VBN
M20
Cp
LM
Loop-Gain
ω
0 dB
X
X
Original LM
ωp1 ωp2
gm21·
rds20
ωt
ω
-90°
0°
-180°
Phase
Original LM
◼ Conventional SSF-based gate buffer
◼ Single-loop (LM)
◼ Two poles are closely spaced → instability issue & GBW (ωt) limit
38. Dual-Loop Gate Buffer Design (2/4)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 38 of 94
Kim & Kim, IEEE TPEL 2020
◼ Insertion of RS and CS
◼ CS works for dominant-pole compensation (ωp2 ➔ ωp2’)
◼ RS introduces a zero (ωz1)
VBP CS
RS
Cgg
MP
M19
M21
M18
VBI
Power
PMOS
VIN
VOUT
IB2
M22
VG
VBN
M20
Cp
LM
Loop-Gain
LM
ω
0 dB
X
X
Original LM
ωp1 ωp2
ωz1
ωp2'
gm21·
rds20
gm21·
(rds20||RS) ωt
ω
-90°
0°
-180°
Phase
Original LM
ωp3
X
O
39. Dual-Loop Gate Buffer Design (3/4)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 39 of 94
Kim & Kim, IEEE TPEL 2020
◼ An additional loop of LS forms and co-exists with LM-loop
◼ Dual-loop design (LM + LS)
VBP CS
RS
Cgg
MP
M19
M21
M18
VBI
Power
PMOS
VIN
VOUT
IB2
M22
VG
VBN
M20
Cp
LM
LS
VB
Loop-Gain
LM
ω
0 dB
LS
ωp1
ωz1
ωp2'
gm21·
rds20
gm19·
(rds20||RS)
gm21·
(rds20||RS) ωt'
ω
-90°
0°
-180°
Phase
Original LM
ωp3
40. Dual-Loop Gate Buffer Design (4/4)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 40 of 94
Kim & Kim, IEEE TPEL 2020
◼ Low-frequency region dominated by LM
◼ LS covers high-frequency region
◼ Proposed dual-loop offers faster response (ωt’) with higher stability (PM ≈ 90º) ☺
VBP CS
RS
Cgg
MP
M19
M21
M18
VBI
Power
PMOS
VIN
VOUT
IB2
M22
VG
VBN
M20
Cp
LM
LS
VB
Loop-Gain
LM
ω
0 dB
X
X
LS
(LS+LM)
Original LM
X
X
O
ωp1 ωp2
ωz1
ωp2'
gm21·
rds20
gm19·
(rds20||RS)
gm21·
(rds20||RS) ωt ωt'
ωzc
ω
-90°
0°
-180°
Phase
(LS+LM)
Original LM
ωp3
41. Stability Compensation III: Miller Effect (1/2)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 41 of 94
gm
1
+
CA
rO1
COUT
RL
gm
P
+
IB
CM
α
Atten.
ITH
M1
M2
MB
1/IB
VOUT
R1
R2
VREF
ω
0 dB
X
X
Loop-Gain
ωP1
ωP2
@ IL > 0
Miller compensation (pole-splitting) by CM is one of viable options in LDO design
◼ Dominant pole:
◼ Non-dominant pole:
( )
+
P1
O1 mp OUT M
1
ω
r 1 g R C
mp
P2
L
g
ω
C
ωP1
ωP2
42. Stability Compensation III: Miller Effect (2/2)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 42 of 94
gm
1
+
CA
rO1
COUT
RL
gm
P
+
IB
CM
α
Atten.
ITH
M1
M2
MB
1/IB
VOUT
R1
R2
VREF
IL
ω
0 dB
X
X
Loop-Gain
ωP1
ωP2
ω
0 dB
X
X
Loop-Gain
ωP1
ωP2
@ IL 0
@ IL > 0
X
0
No Miller-Effect issue at deep light loads
◼ At light-load (IL ≈ 0) → gmp ≈ 0 (no gain in Pass-Element) → No Miller Effect
◼ Miller compensation is difficult to cover IL ≈ 0
◼ Otherwise, large static current via R1 and R2 must be consumed
No Miller Effect
43. Stability Compensation III: Miller w/ LLSL (1/3)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 43 of 94
Kim & Kim, VLSI 2019
80°
60°
40°
20°
Phase
Margin
(PM)
100°
Load Current IL (log-scale)
200mA
20mA
2mA
0.2mA
20μA
2μA
LLSL on
LLSL off
with COUT = 1μF
IL,trip ≈ 4mA
PMmin
≥ 40°
@IL 0
gm
1
+
CA
rO1
COUT
RL
gm
P
+
IB
CM
α
Atten.
ITH
M1
M2
MB
1/IB
VOUT
R1
R2
VREF
IL
ω
0 dB
Loop-Gain
ωP1
ωP2
@ IL 0
X
X
ωP1
Light-load stabilizer loop (LLSL) w/ Miller
◼ If IL < pre-defined ITH, LLSL is activated and
then IB (= ITH – IL) is added to gm1 to reduce rO1
◼ Proposed LLSL can guarantee sufficient phase margin even at IL ≈ 0 ☺
44. Stability Compensation III: Miller w/ LLSL (2/3)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 44 of 94
Kim & Kim, VLSI 2019
VBP
VOUT
CM
CA
I
TH
VBP
CS
VBN
VBP
VBN
VREF
VIN
Miller Compensation Loop
Light-Load Stabilizer Loop (LLSL)
gm1
gmC
-A0
rO1
gm2
gm3 gm4
rO4
gm5
gm6
gm
7
Cgg
gmP
gm
8
CF
R1
R2
C
OUT
RL
M1
M2
IB IB VBI
Power
PMOS
IL
rO2
rO6
MB MB
VBP
RS
Load-current (IL) sensor
Compare-and-subtractor
IB-boosting circuit
45. Stability Compensation III: Miller w/ LLSL (3/3)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 45 of 94
Kim & Kim, VLSI 2019
200
mA/div
20 μs/div
VOUT LLSL On
LLSL Off
t = 10 ns
20
mV/div
Δ0.3 A
Heavy-load
Light-load
IL
@ IL 0
g
m2,3
+
CA
rO1
COUT
RL
g
mP
+
IB1
CM
IL-Sensor
Atten.
ITH
M23
M24
M6,7
1/IB1
~
VOUT
R1
R2
VREF
IL
IM4,5
VO1
◼ At load transition from 300mA to 0A, a ringing is well suppressed by LLSL ☺
46. Contents
Basics of LDO Regulator
Key Performance Metrics & LDO Configurations
Frequency Response & Stability
Fast Transient-Response LDO Designs
Power Supply Rejection (PSR)
Energy-Efficient Ultra-Low-Dropout (Triode) LDO
Conclusion
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 46 of 94
47. Understanding Load-Transient Response (1/6)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 47 of 94
Light-to-heavy load transition
Pass-Element
VIN
+
VREF
R1
R2
CL
IL
VOUT
EA
R
ESR
IL,light
VOUT
Load
Current IL,light
IL,heavy
IL,light
◼ At the steady-state, VOUT is stabilized and no current via CL
◼ PMOS’s supply current = Load current = IL,light
48. Understanding Load-Transient Response (2/6)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 48 of 94
Light-to-heavy load transition
◼ A load transition from light to heavy current occurs
◼ Initially CL reacts to cover the current mismatch between PMOS and load
◼ Large voltage droop (∆VESR) appears at VOUT:
Pass-Element
VIN
+
VREF
R1
R2
CL
IL
VOUT
EA
R
ESR
IL,light
VOUT
Load
Current IL,light
IL,heavy
IL,heavy – IL,light
+
VESR
IL,heavy
( )
ESR ESR L,heavy L,light
ΔV R i i
−
49. Understanding Load-Transient Response (3/6)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 49 of 94
Light-to-heavy load transition
◼ VOUT falls until PMOS current reaches IL,heavy
◼ Voltage-droop period:
◼ Droop voltage:
Pass-Element
VIN
+
VREF
R1
R2
CL
IL
VOUT
EA
R
ESR
IL,light
VOUT
Load
Current IL,light
IL,heavy
Vdip
IL,heavy
BW
SR
Tdip
VG
G
dip SR gg
@light load SR,EA @light load
ΔV
1 1
T T C
BW I BW
− −
+ = + , where TSR = slew time
L,heavy L,light
dip dip ESR
L
i i
ΔV T ΔV
C
−
= +
*Note: LDO’s loop-BW is dependent of IL
50. Understanding Load-Transient Response (4/6)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 50 of 94
Light-to-heavy load transition
◼ Fine-settling time (Trecover) is dominated by LDO’s loop-BW and phase margin (PM)
◼ VOUT’s DC error after fine-settling is caused by limited load-regulation performance
(insufficient loop-gain in DC-domain)
Pass-Element
VIN
+
VREF
R1
R2
CL
IL
VOUT
EA
R
ESR
VOUT
Load
Current IL,light
IL,heavy IL,heavy
BW
Trecover
VG
Load reg. (DC)
IL,heavy
51. Understanding Load-Transient Response (5/6)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 51 of 94
Heavy-to-light load transition
Pass-Element
VIN
+
VREF
R1
R2
CL
IL
VOUT
EA
R
ESR
VOUT
Load
Current IL,light
IL,heavy
VG
IL,heavy
IL,light
IL,heavy – IL,light
Vspike
Tspike
IL,light
◼ Overshoot period:
◼ Overshoot voltage:
G
spike SR gg
@heavy load SR,EA @heavy load
ΔV
1 1
T T C
BW I BW
− −
+ = +
L,heavy L,light
spike spike ESR
L
i i
ΔV T ΔV
C
−
= + Dominated by slew-rate (SR) and BW…
52. Understanding Load-Transient Response (6/6)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 52 of 94
Heavy-to-light load transition
◼ Typical LDO has no sinking capability (only pull-down path is R1 and R2)
◼ Return-to-base period:
Pass-Element
VIN
+
VREF
R1
R2
CL
IL
VOUT
EA
R
ESR
VOUT
Load
Current IL,light
IL,heavy
VG
IL,light Tdischarge
Load reg. (DC)
spike spike
discharge L L
REF
R2
2
ΔV ΔV
T C C
V
i
R
=
53. Figure-of-Merit (FoM)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 53 of 94
Load-transient response
G
dip SR gg
@light load SR,EA @light load
ΔV
1 1
T T C
BW I BW
− −
+ = +
L,heavy L,light
dip dip ESR
L
i i
ΔV ΔT ΔV
C
−
= +
LDO’s FoM in terms of load-transient response
L dip Q
2
L,max
C ΔV I
FoM
ΔI
=
dip Q
L,max
T I
ΔI
2) FoM shows the efficiencies of SR and BW
against IQ consumption…
1) Pass element’s Cgg needs to be higher to
accommodate larger IL,max
54. Zero-IQ Ultra-High Slew-Rate Buffer (1/5)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 54 of 94
Koh & Kim, ISSCC’21 & JSSC’21
VI VI+
Mn2
Mp3
Mn3
Mp2
V
OUT
CL
VDZ
I
DCCA
VIN >VDZ = VTH,n2+VTH,p3
MX IX
VX
VIN = VI+ VI-
A
VIN
IDCCA
VDZ
-VDZ
VOUT
Time
VH
VL
VDZ
Type A
VI+
◼ Zero-IQ at steady-state at |∆VIN| < VDZ & Large dynamic current IDCCA ∝ ∆VIN
2 ☺
◼ Dead-zone (VDZ) is too large
55. Zero-IQ Ultra-High Slew-Rate Buffer (2/5)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 55 of 94
Koh & Kim, ISSCC’21 & JSSC’21
VIN
IDCCA VTH.n
-VDZ VDZ
VOUT
Time
VH
VL
Type B
VI+
VTH,n
VI VI+
Mn2
Mp3
Mn3
Mp2
V
OUT
CL
VTH,n
I
DCCA
VIN > VDZ VTH,n
B
VIN = VI+ VI-
◼ VTH of transistors can be cancelled by inserting the series voltage sources ☺
◼ Dead-zone (VDZ) still remains
56. Zero-IQ Ultra-High Slew-Rate Buffer (3/5)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 56 of 94
Koh & Kim, ISSCC’21 & JSSC’21
VI VI+
Mn2
Mp3
Mn3
Mp2
V
OUT
CL
VTH,n
I
DCCA
VIN > VDZ VTH,n VR
VR VOUT
Time
VH
VL
Type C
VI+
VR
VIN
IDCCA
VDZ
-VDZ
Decrease
VR
C
VIN = VI+ VI-
◼ Recursive-current-controlled voltage sources are introduced
◼ Near-zero dead-zone (VDZ ≈ 0) ☺ & Ultra-high slewing current (IDCCA) ☺
57. Zero-IQ Ultra-High Slew-Rate Buffer (4/5)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 57 of 94
Koh & Kim, ISSCC’21 & JSSC’21
VI VI+
Mn2
Mp3
Mn3
Mp2
V
OUT
CL
VTH,n
I
DCCA
VIN > VDZ VTH,n VR
VR
C
VIN = VI+ VI-
VI+
VDD
GND
V
OUT
CL
IBD
IBD
Mn2 Mp2
Mp3
Mn3
Mn6
Mp5
Mp4
Mn4 Mn7
Mp7
Mp6
Mp23
Mn23
Mn5
VI-
R
CP
R
CN
Mp1
VRCP
Mn1
VRCN
◼ Mn5-Mn6 & Mp5-Mp6 forms recursive (positive) feedback loops
◼ Near-zero dead-zone (VDZ ≈ 0) ☺ & Ultra-high slewing current (IDCCA) ☺
58. Zero-IQ Ultra-High Slew-Rate Buffer (5/5)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 58 of 94
Koh & Kim, ISSCC’21 & JSSC’21
VI+
VDD
GND
V
OUT
CL
IBD
IBD
Mn2 Mp2
Mp3
Mn3
Mn6
Mp5
Mp4
Mn4 Mn7
Mp7
Mp6
Mp23
Mn23
Mn5
VI-
R
CP
R
CN
Mp1
VRCP
Mn1
VRCN
◼ SR+ (rise) 10.3V/μs at 800pF, SR- (fall) 10.2V/μs at 800pF
◼ IQ consumption = 30nA & Max. slewing current = 9mA (= 300,000 x IQ) ☺
CL = 800pF
4.5V
0.3V SR+ 0.021V/μs
1V SR- 0.03V/μs
100μs
200ns
1V
SR- 10.2V/μs
INPUT
Proposed
SR+ 10.3V/μs
59. Low-IQ Gm-Boosted OTA Design (1/4)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 59 of 94
VI VI+
1
1 : 1 K
:
VOUT
Mp8 Mp9
IB
1 K
:
( )
( ) ( )
IDC [(3+K)/2]·IB
Gm K·gmp
Typical mirror-type OTA design (A)
◼ Effective Gm can only be amplified by output-stage mirror-ratio (K)
◼ To increase Gm, larger IDC is required (Gm ∝ IDC → low FoM)
60. Low-IQ Gm-Boosted OTA Design (2/4)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 60 of 94
VOUT
1 K
:
1 1
:
VI VI+
Mn8
Mp8 Mn9 Mp9
IB
IB
1 : 1 :
1 K
VNX
VPX
( ) ( )
( )
)
(
IDC (3+K)·IB
Gm K·(gmn+gmp)
Rail-to-rail mirror-type OTA design (B)
◼ N-type & P-type differential pairs synergies to improve the effective Gm
◼ But, the quiescent current (IDC) is also increased
61. Low-IQ Gm-Boosted OTA Design (3/4)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 61 of 94
Koh & Kim, ISSCC’21 & JSSC’21
Ka
:
1 Kb
: :
1 K
VI VI+ VOUT
Mn8
Mp8 Mn9 Mp9
IB
IB
1 Ka
: Kb
Mn16
Mp16
:
1 K
VNX
Mn14
VPX
:
( ) ( )
( )( )
IDC [2+Kb+K·(1+Kb-Ka)/2]·IB
Gm K·(1+Ka+Kb)·(gmn+gmp)/2
Proposed low-IQ Gm-boosted OTA design (C)
◼ Signal can be amplified by Ka, but the DC current is reduced by a ratio of Ka ☺
◼ If Ka = Kb = 1 ➔ 1.5x higher Gm compared to (B) for the same IDC
62. Low-IQ Gm-Boosted OTA Design (4/4)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 62 of 94
Koh & Kim, ISSCC’21 & JSSC’21
P+ N-
V
OUT
ML1 ML4
1:1
VI- VI+
P-
1:K
Mn14 Mn16
IB
2
(2-K)IB
2
P+ N-
V
OUT
ML1 ML4
1:1
VI-
VI+
IB IB
Gmp
Gmn
Gms
Conventional
(K/2)Gms
Gms
Gm_Eff
Proposed
Proposed low-IQ Gm-boosted OTA design (C)
◼ Signal can be amplified by K, but the DC current is reduced to (2-K)/2
63. Contents
Basics of LDO Regulator
Key Performance Metrics & LDO Configurations
Frequency Response & Stability
Fast Transient-Response LDO Designs
Power Supply Rejection (PSR)
Energy-Efficient Ultra-Low-Dropout (Triode) LDO
Conclusion
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 63 of 94
64. Supply-Ripple Delivery Paths
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 64 of 94
VIN
+
BGR
R1
R2
C
OUT
VOUT
rDS
Cgg
RL
AEA
gmP
Main Path
(PSRMain)
ωRC
ro,EA
VREF
PSRBGR
TLoop(s)
PSR
[dB]
ω
0 dB
ωP1
ωBW
Main Path
(PSRMain)
Total PSRLDO
ωRC
ωP2
PSRBGR w/i ωRC
PSRBGR w/o ωRC
Power-supply rejection: PSR(s) = ΔVOUT/ΔVIN
Supply-ripple delivery paths from VIN to VOUT
◼ Main path: rDS & gmP of power PMOS
◼ Reference path (VREF): limited PSR of the reference (BGR) voltage circuit
65. Ripple Delivery via rDS: PSR Model (1/6)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 65 of 94
VIN
+
BGR
VREF
R1
R2 CL
IL
VOUT
rDS
EA
Cgg
gmp
rEA
gmEA
ESR
( )
LOAD ESR 1 2 L
L
1
Z R || R R ||R
sC
= + +
LOAD DS
CL,OUT
Z || r
Z
T(s)
=
0 EA mp OUT
T A g R β
=
LOAD CL,OUT
OUT
IN DS LOAD CL,OUT
(Z || Z )
v
PSR(s) (s)
v r (Z || Z )
= =
+
VIN
rDS
Z
LOAD
Z
CL,OUT
VOUT
◼ Open-loop load impedance:
◼ Closed-loop output impedance:
◼ PSR transfer function (via rDS):
66. Ripple Delivery via rDS: PSR Model (2/6)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 66 of 94
LOAD CL,OUT
OUT
IN DS LOAD CL,OUT
(Z || Z )
v
PSR(s) (s)
v r (Z || Z )
= =
+
VIN
rDS
Z
LOAD
Z
CL,OUT
VOUT
VIN
+
BGR
VREF
R1
R2 CL
IL
VOUT
rDS
EA
Cgg
gmp
rEA
gmEA
ESR
( )
LOAD ESR 1 2 L
L
1
Z R || R R ||R
sC
= + +
LOAD DS
CL,OUT
Z || r
Z
T(s)
=
ω [rad/s]
PSR:
V
OUT
/V
IN
[dB]
VIN
rDS
VOUT
RCL,OUT
DC
DC
1
PSR
T
=
1 2 L DS
CL,OUT DC
DC
1 2 L DS
DS CL,OUT DC
DS
DC
(R R )||R || r
R T 1
PSR
(R R )||R || r
r R T
r
T
+
= =
+
+
+
67. Ripple Delivery via rDS: PSR Model (3/6)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 67 of 94
LOAD CL,OUT
OUT
IN DS LOAD CL,OUT
(Z || Z )
v
PSR(s) (s)
v r (Z || Z )
= =
+
VIN
rDS
Z
LOAD
Z
CL,OUT
VOUT
VIN
+
BGR
VREF
R1
R2 CL
IL
VOUT
rDS
EA
Cgg
gmp
rEA
gmEA
ESR
( )
LOAD ESR 1 2 L
L
1
Z R || R R ||R
sC
= + +
LOAD DS
CL,OUT
Z || r
Z
T(s)
=
ω [rad/s]
PSR:
V
OUT
/V
IN
[dB]
P
ω
DC
DC
1
PSR
T
=
O X
UGF
ω
1
PSR
T(s)
VIN
rDS
Z
CL,OUT
VOUT
VIN
rDS
VOUT
(R
1
+R
2
)||R
L
Assumed that the dominant pole (ωP) ≈ 1/(rEA·Cgg)
68. Ripple Delivery via rDS: PSR Model (4/6)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 68 of 94
LOAD CL,OUT
OUT
IN DS LOAD CL,OUT
(Z || Z )
v
PSR(s) (s)
v r (Z || Z )
= =
+
VIN
rDS
Z
LOAD
Z
CL,OUT
VOUT
VIN
+
BGR
VREF
R1
R2 CL
IL
VOUT
rDS
EA
Cgg
gmp
rEA
gmEA
ESR
( )
LOAD ESR 1 2 L
L
1
Z R || R R ||R
sC
= + +
LOAD DS
CL,OUT
Z || r
Z
T(s)
=
ω [rad/s]
PSR:
V
OUT
/V
IN
[dB]
P
ω
DC
DC
1
PSR
T
=
O X
UGF
ω
1
PSR
T(s)
X
CL
ω
VIN
rDS
VOUT
(R
1
+R
2
)||R
L
CL
ESR
ω
O
VIN
rDS
VOUT
CL
RESR
VIN
rDS
VOUT
RESR
69. Ripple Delivery via rDS: PSR Model (5/6)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 69 of 94
LOAD CL,OUT
OUT
IN DS LOAD CL,OUT
(Z || Z )
v
PSR(s) (s)
v r (Z || Z )
= =
+
VIN
rDS
Z
LOAD
Z
CL,OUT
VOUT
VIN
+
BGR
VREF
R1
R2 CL
IL
VOUT
rDS
EA
Cgg
gmp
rEA
gmEA
ESR
( )
LOAD ESR 1 2 L
L
1
Z R || R R ||R
sC
= + +
LOAD DS
CL,OUT
Z || r
Z
T(s)
=
ω [rad/s]
PSR:
V
OUT
/V
IN
[dB]
P
ω
VIN
rDS
VOUT
RCL,OUT
DC
DC
1
PSR
T
=
O X
UGF
ω
1
PSR
T(s)
VIN
rDSZ
CL,OUT
VOUT
VIN
rDS
VOUT
(R
1
+R
2
)||R
L
X
CL
ω
VIN
rDS
VOUT
(R
1
+R
2
)||R
L
CL
ESR
ω
O
VIN
rDS
VOUT
CL
RESR
VIN
rDS
VOUT
RESR
70. Ripple Delivery via rDS: PSR Model (6/6)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 70 of 94
LOAD CL,OUT
OUT
IN DS LOAD CL,OUT
(Z || Z )
v
PSR(s) (s)
v r (Z || Z )
= =
+
VIN
rDS
Z
LOAD
Z
CL,OUT
VOUT
VIN
+
BGR
VREF
R1
R2 CL
IL
VOUT
rDS
EA
Cgg
gmp
rEA
gmEA
ESR
( )
LOAD ESR 1 2 L
L
1
Z R || R R ||R
sC
= + +
LOAD DS
CL,OUT
Z || r
Z
T(s)
=
ω [rad/s]
PSR:
V
OUT
/V
IN
[dB]
P
ω
DC
DC
1
PSR
T
=
O X
UGF
ω
1
PSR
T(s)
X
CL
ω ESR
ω
O
◼ If ωCL (by CL) = dominant-pole
(ωP = 2nd pole) ➔ More desirable ☺
71. Ripple Delivery via gmP: Ripple Feedforward (1/2)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 71 of 94
Kim & Kim, VLSI’19 & TPEL’20
VIN
+
BGR
VREF
R1
R2 COUT
VOUT
rDS
R
ESR
EA
ΔVRipple
RL
ωP1
AEA
gmP
Main
PSR
PSR
(V
OUT
/V
IN
)
[dB]
ω
0 dB
ωP1
ωBW
Lower is Better
Main PSR
w/o Ripple
Feedforward
ΔVRipple
+ X
Main PSR
w/ Ripple
Feedforward
Δvgs,P 0
𝑷𝑺𝑹𝑳𝒐𝒘 =
𝟏
𝑨𝑬𝑨 ∙
𝑹𝟐
𝑹𝟏 + 𝑹𝟐
𝟏
𝑻𝑳𝒐𝒐𝒑,𝑫𝑪
𝑷𝑺𝑹𝑯𝒊𝒈𝒉 = 𝒈𝒎𝑷 𝒓𝑫𝑺||𝑹𝑳
𝑹𝑳
𝒓𝑫𝑺 + 𝑹𝑳
❶
❷
❶ ❷
TLoop
☺
72. Ripple Delivery via gmP: Ripple Feedforward (2/2)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 72 of 94
Kim & Kim, VLSI’19 & TPEL’20
VBP
CS
RS
Cgg
MP
M8
M7
M6
VBI
Power
PMOS
VIN
Low-Z by
feedback
VRipple
FF-path2
(+)
VOUT Cgg
MP
M7
M6
VBI
Power
PMOS
VIN
M8
VRipple
Δvgs,M8
0 X
VOUT
Proposed ripple-feedforward buffer
◼ VRipple is absorbed into low-Z via CS
Conventional buffer
◼ No feedforward by Δvgs,M8 ≈ 0
73. Ripple Delivery via VREF: Recursive LDO (1/3)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 73 of 94
Kim & Kim, VLSI’19 & TPEL’20
Total PSR of LDO ≈ Worst(Main-PSR, BGR-PSR) Total PSR of LDO ≈ Main-PSR
VIN
BGR LDO
VIN
VOUT
LDO
VOUT
Conventional Architecture BGR-recursion
BGR BGR LDO
Out
Clean
Power
Recursion
BGR LDO
Out
Noisy Ref
Power w/ ripple
VREF
VREF
VIN
VREF
VOUT
VREF
Clean Ref
PSR
[dB]
ω
0 dB
ωP1
ωBW
Lower is Better
Main PSR
Total PSR
PSR
[dB]
ω
0 dB
ωP1
ωBW
Lower is Better
Main PSR
Total PSR
☺
74. Ripple Delivery via VREF: Recursive LDO (2/3)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 74 of 94
Kim & Kim, VLSI’19 & TPEL’20
Design Consideration (1) in recursive LDO: stability
◼ TLoop(s) = main LDO regulation loop, TPFB(s) = BGR-recursive loop
◼ For stability, TPFB(s) < TLoop(s)
VIN
+
BGR R1
R2
VOUT
AEA gmP
Neg. TLoop(s)
VREF
CREF
Pos. TPFB(s)
CF
RP
I
PTAT
rds
Q1
C
p,BGR
VDD,BGR
VIN
+
BGR R1
R2
VOUT
AEA gmP
Neg. TLoop(s)
VREF
CREF
Pos. TPFB(s)
CF
RP
I
PTAT
rds
Q1
C
p,BGR
VDD,BGR
( ) ( )
,
,
, , ,
||
+
+
=
+ +
+ + +
p BGR ds
P e Q
BGR
ds P e Q p BGR REF ds P e Q
sC r
R r
PSR
r R r s C C r R r
1
1 1
1
1
( )
( )
||
+
=
+ +
F
F
R sC R
β s
R R sC R R
2 1
1 2 1 2
1
1
( )
( ) ( ) ( ) ( )
( )
+ = −
1 BGR
tot Loop PFB Loop
PSR s
T s T s T s T s
β s
75. Ripple Delivery via VREF: Recursive LDO (3/3)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 75 of 94
Kim & Kim, VLSI’19 & TPEL’20
Design Consideration (2) in recursive LDO: startup & deadlock
◼ As a result of VOUT fault, the recursive LDO may fall in a deadlock
◼ When fault is detected, the recursive-loop is unlocked & temporarily VIN-supplied
VIN
BGR LDO
VIN
VOUT
LDO
VOUT
VDD,BGR VIN
BGR-cascaded
EN=1
?
BGR-Replica
ON (VRP)
BGR-Output
Soft ON (VREF)
Yes
<
VRP = 0.8V VREF = 0→1.2V
CMP
VDD,BGR VOUT(LDO)
BGR-recursion
EN=0
?
No
Yes
No
Yes
Ref
Ref
BGR
VOUT
=0 ? Yes
No
Anti
dead
lock
CMP
= 0
76. Contents
Basics of LDO Regulator
Key Performance Metrics & LDO Configurations
Frequency Response & Stability
Fast Transient-Response LDO Designs
Power Supply Rejection (PSR)
Energy-Efficient Ultra-Low-Dropout (Triode) LDO
Conclusion
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 76 of 94
77. Triode LDO vs. Saturation (CS) LDO
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 77 of 94
VIN RL
RIN
+
VOUT
+
EA
VREF
RF1
RF2
CL VIN RL
+
VOUT
+
EA
VREF
RF1
RF2
CL
Variable CS
Triode LDO Saturation LDO
◼ Pass element works in triode region
◼ Small VDO (high η) ☺
◼ Low regulation due to low loop-gain
(T)
◼ Bad PSR due to small RDS
◼ Normally not preferred
◼ Pass element works in saturation region
◼ High VDO (lower η)
◼ Good regulation performance due to
high loop-gain (T) ☺
◼ Good PSR owing to large RDS ☺
◼ Adopted in most LDOs
+ –
1% of VOUT
+ –
10% of VOUT
78. Low PSR of Triode LDO
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 78 of 94
-
+
VREF,P
Buffer
Av
MP
CL
IL
Av
RL
RO
T
RPASS
VDO
RPASS -
+
vIN (From SCC)
vOUT
VOUT
Condition: RPASS >> RL
RO = RPASS / T
T = AV x gm,P x RPASS
RPASS
Small
Dropout
RO + RPASS
RO
Low
PSR
= T
1
=
(15V)
(0.2V)
VH,M
VBOOST
(15.2V)
EROC
VOUT
=
+
VDO
inimized
(16V)
Extremely excellent efficiency ☺: VDO = 0.2V [≈ 1.3% of VOUT (15V)]
Low PSR due to small RPASS (= RDS of MP)
◼ MP (power PMOS) working in triode region has a lower RDS
80. Current Mirroring
IL
= IC + IV
IC
CL
VH,M
Minimized
Dropout
β
VOUT
MC
-
+
VDO
-
+
VREF,P
Buffer
Av
VH,A
MV
IV
Voltage Regulation (TV)
Aux.
Boost
Efficiency
High
VOUT VDO
+
VOUT
(+15V)
Large Dropout
(VDO + VBAT)
x
Small Pass Current (IV)
=
Low Power Loss
Small Dropout (VDO)
x
Large Pass Current (IC)
=
Low Power Loss
VBAT
-
+
Voltage-Current-Hybrid (VIH) LDO (2/6)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 80 of 94
◼ Proposed VIH LDO: power current (IC) = β·
IV via power (triode) PMOS ☺
◼ TV-loop regulates the voltage VOUT, while handling smaller IV (≈ ILoad/β)
Ko & Kim, ISSCC’21 & JSSC’23
81. Current Regulation (TC)
ro,C
1/β
Rds,C
MC
(Main Pass TR.)
CL
VG
VH,M
IL
IC
VOUT
-
+
VREF,P
Buffer
Av
VH,A
MV
Aux.
Boost
(+15V)
IV
Rds,V
Current Loop (TC)
TC = 1/β x gm,C x ro,C
RPASS-Boosting
RPASS =
(1 + TC) x Rds,C
Av
-gm,C
RL
Rds,V
vH,M
ro,C
vOUT
RPASS
TC
1/β
+
-
vG
Rds,C
Small Sign Analysis
VBAT
-
+
Voltage-Current-Hybrid (VIH) LDO (3/6)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 81 of 94
Ko & Kim, ISSCC’21 & JSSC’23
◼ PMOS’s RDS is small because of working in triode region, BUT
◼ RPASS is highly boosted by current-loop gain (TC): RDS → (1+ TC)RDS
82. ro,C
1/β
Rds,C
MC
(Main Pass TR.)
CL
VH,M
VG
IL
VOUT
-
+
VREF,P
Buffer
Av
VH,A
MV
Voltage Regulation (TV)
Aux.
Boost
(+15V)
Voltage Loop (TV)
TV = AV x gm,V x RL
Gm-Boosting
RO =
RL / (1 + β x TV)
Av
-gm,C
RL
Rds,V
vH,M
ro,C
RO
TV
TTOTAL vOUT
1/β
+
-
vG
Rds,C
Small Sign Analysis
VBAT
-
+
is
β x is
vH,M
gm-boosting
β x gm,V
IV
Rds,V
Voltage-Current-Hybrid (VIH) LDO (4/6)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 82 of 94
Ko & Kim, ISSCC’21 & JSSC’23
◼ RO is further reduced owing to GM-boosting effect (β): TV → β·
TV
83. Current Regulation (TC)
ro,C
1/β
Rds,C
MC
(Main Pass TR.)
CL
VH,M
VG
IL
VOUT
-
+
VREF,P
Buffer
Av
VH,A
MV
Voltage Regulation (TV)
Rds,V
Aux.
Boost
(+15V)
Voltage Loop (TV)
TV = AV x gm,V x RL
Current Loop (TC)
TC = 1/β x gm,C x ro,C
Gm-Boosting RPASS-Boosting
PSR
High
RO =
RL / (1 + β x TV)
RPASS =
(1 + TC) x Rds,C
RO + RPASS
RO
Av
-gm,C
RL
Rds,V
vH,M
ro,C
RO
TV
TTOTAL vOUT
RPASS
TC
1/β
+
-
vG
Rds,C
Small Sign Analysis
VBAT
-
+
is
β x is
vH,M
gm-boosting
β x gm,V
Voltage-Current-Hybrid (VIH) LDO (5/6)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 83 of 94
Ko & Kim, ISSCC’21 & JSSC’23
◼ Small RO (by TV-loop) & Boosted RPASS (by TC-loop) ➔ high PSR even low VDO ☺
84. ro,C
1/β
Rds,C
MC
(Main Pass TR.)
CL
VH,M
VG
IL
VOUT -
+
VDO
-
+
VREF,P
Buffer
Av
VH,A
MV
Rds,V
Aux.
Boost
(+15V)
Load-Current-Reused (LCR)
Voltage Regulation
-
+
VBAT
VBAT
-
+
> VBAT
IBIAS
Load-Current-Reused (LCR)
Voltage Regulation
Lower Noise
@ Given Power & Size
Load-Current
Reused IBIAS
Low-Noise
5V CMOS
Using VH,A-VOUT
Supply Rail
Voltage-Current-Hybrid (VIH) LDO (6/6)
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 84 of 94
Ko & Kim, ISSCC’21 & JSSC’23
◼ Bias current (IBIAS) consumed in TV-loop is re-used as a part of ILoad
◼ Thus, high bias current (IBIAS) can contribute on low noise of VOUT ☺
85. Implementation of VIH LDO
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 85 of 94
Ko & Kim, ISSCC’21 & JSSC’23
Mn2 :Mn3 MV :MVS
2:1 Mp3 :Mp4 :Mp5 10 :1:1
Mn5 :Mn6 1:10 Mn5 :Mn7 1:5 Mn9 :Mn8 :MGD
IV :IGD (=N:1)
30 :1
1:1:1
30 :1
MC :MCS
Mn5 :Mn6
300:1
IC :IGU 6000 :1
1:1
IC :In6 600:1 IC :IL,SEN 1200 :1
-
+
A2
x1
Buffer
-
+
AV MV
VH,A
VBAT
VREF
VOUT
MC-gate drive IC-sensing stage Low-voltage domain current-mirroring stage IV-sensing stage Balancing load Output
Voltage regulation stage
MVS
MC
MCS
IBV
IBB
MGU
MGD
MBAL
RBAL
CL
RZ
IL
CC1
CC2
Mp1
Mn1
Mp2
Mn2 Mn3
Mn4 Mn5
Mn6 Mn7
Mn8 Mn9
Mp3
Mp4 Mp5
Mp6 Mp7
IV
IC
IGU
IGD
In6 IL,SEN
IBAL
VM
VG
ICS IVS
5V CMOS
40V
LDMOS
IC :IGU = 6000 :1 (Nxβ:1)
IV :IGD = 30:1 (N:1)
LDO input (VIN = 15.2V)
VIN + VBAT (= 4V)
(= 15V)
β (current gain) = 200 A/A
86. Frequency & Stability of VIH LDO
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 86 of 94
Ko & Kim, ISSCC’21 & JSSC’23
Av
CL
RZ
ro,C
CC1
RL
iV
iC = β(s)iV
TV
TC
ro,ea
Cbuf
x1 vOUT
vG
Notation Pole/Zero Frequency [rad/s]
ωp1,V Pole 1/(RL·CL)
ωBW,C Pole gm,C/(N·β·CC1)
ωp2,V Pole 1/(ro,ea·Cbuf)
ωz,V Zero 1/(RZ·CL)
β·ωBW,C Zero gm,C/(N·CC1)
TTotal(s)
rad/s
TV(s)
ω
z,V
Heavy IL
Light IL
TC(s)
dB
β
ω
BW,C
rad/s
Pole-Zero Location
ω
p1,V
ω
BW,C
ω
p2,V
IL
( ) ( ) ( )
( ) ( )
( )( )( )
Total V
z,V BW,C
V m,V L
p1,V BW,C p2,V
T s β s T s
s ω s β ω
β A g R
s ω s ω s ω
= +
+ +
+ + +
1
1 1
1 1 1
( )
( )
( )
C
C
V C BW,C
T s
i
β s β β
i T s s ω
= =
+ +
1
1 1
◼ Overall TTotal(s) has 3 poles and 2 zeros
◼ VIH LDO can cover a wide load range
87. Effects of VIH LDO
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 87 of 94
Ko & Kim, ISSCC’21 & JSSC’23
VM,N (100 mV/div)
VOUT,N (50 mV/div)
VOUT,P (50 mV/div)
VM,P (100 mV/div)
10μs
160 mV
160 mV
◼ VIH LDO effectively rejects
the switching ripple
100 1k 100k 1M
Frequency [Hz]
Noise
[V/sqrt(Hz)]
1.E-8
1.E-7
1.E-6
1.E-5
1.E-4
1.E-3
1.E-2
10k
VM,P
VOUT,P
IL = 20 mA
IL = 1 mA
fSW @ IL = 20 mA
fSW @ IL = 1 mA
PSR = -75 dB
@ 30 kHz
◼ -75dB PSR @ 30kHz & 28.7μVRMS noise
End-to-End
Efficiency
[%]
Output Power [mW]
Peak Efficiency
90.5%
95
90
85
80
75
70
600
400
200
VBAT = 4V
(w/o post-regulator)
VBAT = 4 V
VBAT = 3.5 V
VBAT = 4.5 V
◼ Efficiency loss is only 1.3%
88. Summary of VIH (triode) LDO
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 88 of 94
Ko & Kim, ISSCC’21 & JSSC’23
IBIAS
IV
x1/β
MC
(Main Pass TR.)
CL
VM
VG
-
+
VDO
-
+
Av
VH,A
MV
VBAT
-
+
-
+
VBAT
IL
IC
VREF
(15V)
ro,C
VOUT
IGU
IGD
Aux.
CP
VBAT
Dedicated separate two loops
◼ TV (voltage) regulates VOUT by handling low IV
◼ TC (current) supplies IC (= β·
IV) via ultra-low VDO
High PSR even at ultra-low VDO
◼ RPASS is boosted: RDS → (1+ TC)RDS
◼ Gm-boosting (β) effect further reduces RO
Fabricated results
◼ Power efficiency = 98.7%
◼ PSR = -75dB @ 30kHz
◼ VOUT noise = 28.7μVRMS integrated in 0.1 – 500kHz
0.34mm2 in 0.18-μm BCD
VIN = 15.2V, VOUT = 15V
89. Contents
Basics of LDO Regulator
Key Performance Metrics & LDO Configurations
Frequency Response & Stability
Fast Transient-Response LDO Designs
Power Supply Rejection (PSR)
Energy-Efficient Ultra-Low-Dropout (Triode) LDO
Conclusion
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 89 of 94
90. Conclusion
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 90 of 94
LDO performs DC-DC step-down conversion via a resistive power transfer media
◼ Error amplifier compares VOUT with VREF and controls the gate volt. of pass transistor
◼ Features: no ripple (clean VOUT), high PSR, small footprint (no bulky L), low efficiency
Transient response of LDO is determined by loop bandwidth and slew-rate
◼ Dynamic range of load current that LDO can accommodate affects the loop stability
◼ Good FoM in LDO = bandwidth & slew rate vs. IQ consumption
Supply-ripple (∆VIN) may leak to VOUT via three paths: 1) rDS, 2) gmP, 3) VREF
◼ Wide loop-BW helps to suppress ∆VIN that is transferred through rDS
◼ Ripple-feedforward to gate can restrain ∆VGS of power PMOS, improving PSR
◼ Recursive (self-biased) LDO design is introduced to be free from PSR of VREF
Ultra-low-dropout (triode) LDO resolves a major drawback of low efficiency
◼ Voltage-current-hybrid (VIH) design is a good option for both high eff. & high PSR
92. References (1/2)
H.-S. Kim, “Exploring Ways to Minimize Dropout Voltage for Energy-Efficient Low-Dropout Regulators: Viable
approaches that preserve performance”, IEEE Solid-State Circuits Magazine (SSC-M), Spring 2023, pp. 59-68.
D.-K. Kim et al., “A 300mA BGR-recursive low-dropout regulator achieving 102-to-80dB PSR at frequencies
from 100Hz to 0.1MHz with current efficiency of 99.98%”, IEEE Symp. VLSI Circuits, 2019. Expanded version in
IEEE Trans. Power Electron. (TPEL), Dec. 2020, pp. 13441-13454.
S.-T. Koh et al., “A 5V Dynamic Class-C Paralleled Single-Stage Amplifier with Near-Zero Dead-Zone Control
and Current-Redistributive Rail-to-Rail Gm-Boosting Technique,” ISSCC, Feb. 2021. Expanded version in IEEE
JSSC, Dec. 2021, pp. 3593-3607.
K.-S. Yoon et al., “Fully-Integrated Digitally-Assisted Low-Dropout Regulator for NAND Flash Memory System,”
IEEE Trans. Power Electron. (TPEL), Jan. 2018, pp. 388-406.
M.-W. Ko et al., “A 90.5%-Efficiency 28.7μVRMS-Noise Bipolar-Output High Step-Up SC DC-DC Converter with
Energy-Recycled Regulation and Post-Filtering for ±15V TFT-Based LAE Sensors,” ISSCC, Feb. 2021. Expanded
version in IEEE JSSC, May 2023, pp. 1400-1413.
Texas Instrument, “Application Report: Technical Review of Low Dropout Voltage Regulator Operation and
Performance”, Aug. 1999.
M. Huang et al., “Review of Analog-Assisted-Digital and Digital-Assisted-Analog Low Dropout Regulators”, IEEE
TCAS-II, 2021, pp. 24-29.
K.-H. Chen, “Power Management Technique for Integrated Circuit Design,” Ed: IEEE Press, 2016.
G. Rincon-Mora, “Analog IC Design with Low-Dropout Regulators,” Ed: McGraw Hill, 2014.
Texas Instruments, “LDO noise examined in detail”, 4Q 2012.
J. Torres et al., “Low Drop-Out Voltage Regulators: Capacitor-less Architecture Comparison”, IEEE Circuits and
Systems Magazine, May 2014, pp. 6-26.
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 92 of 94
93. References (2/2)
X. Liu et al., “A 0.76V Vin Triode Region 4A Analog LDO with Distributed Gain Enhancement and Dynamic Load-
Current Tracking in Intel 4 CMOS Featuring Active Feedforward Ripple Shaping and On-Chip Power Noise
Analyzer,” ISSCC, Feb. 2022.
V. Gupta et al., "Analysis and design of monolithic, high PSR, linear regulators for SoC applications", IEEE Int.
Syst. Chip Conf., Sept. 2004.
P. K. Hanumolu, “Low Dropout Regulators”, Tutorial in CICC 2015.
E. Sanchez-Sinencio, “Low Drop-Out (LDO) Linear Regulators: Design Considerations and Trends for High
Power Supply Rejection (PSR)”, IEEE Santa Clara Valley (SVC), Feb. 2011.
G. W. den Besten et al., “Embedded 5 V-to-3.3 V voltage regulator for supplying digital IC's in 3.3 V CMOS
technology,” IEEE JSSC, July 1998, pp. 956-962.
M. El-Nozahi et al., “A 25mA 0.13μm CMOS LDO Regulator with Power-Supply Rejection Better Than −56dB up
to 10MHz Using a Feedforward Ripple-Cancellation Technique”, ISSCC, Feb. 2009. Expanded version in IEEE
JSSC, Mar. 2010, pp. 565-577.
W.-C. Chen et al., “94% Power-Recycle and Near-Zero Driving-Dead-Zone N-Type Low-Dropout Regulator with
20mV Undershoot at Short-Period Load Transient of Flash Memory in Smart Phone,” ISSCC, Feb. 2018.
Z. Wang et al., “Review, Survey, and Benchmark of Recent Digital LDO Voltage Regulators,” CICC, April 2022.
Texas Instruments, “ESR, Stability, and the LDO Regulator”, Feb. 2020.
B. Xiao et al., “An 80mA Capacitor-Less LDO with 6.5μA Quiescent Current and No Frequency Compensation
Using Adaptive-Deadzone Ring Amplifier”, A-SSCC, Nov. 2019.
S. Naffziger et al., “AMD chiplet architecture for high-performance server and desktop products,” ISSCC, Feb.
2020.
Hyun-Sik Kim (KAIST) 2023 최신 집적회로설계 워크샵: LDO Regulators 93 of 94