SlideShare a Scribd company logo
15-1
Networking
• Computer network A collection of
computing devices that are connected in
various ways in order to communicate and
share resources
Usually, the connections between
computers in a network are made using
physical wires or cables
However, some connections are wireless,
using radio waves or infrared signals
15-2
Networking
• The generic term node or host refers to
any device on a network
• Data transfer rate The speed with which
data is moved from one place on a
network to another
• Data transfer rate is a key issue in
computer networks
15-3
Networking
• Computer networks have opened up an
entire frontier in the world of computing
called the client/server model
Figure 15.1 Client/Server interaction
15-4
Networking
• File server A computer that stores and
manages files for multiple users on a
network
• Web server A computer dedicated to
responding to requests (from the browser
client) for web pages
15-5
Types of Networks
• Local-area network (LAN) A network
that connects a relatively small number of
machines in a relatively close
geographical area
15-6
Types of Networks
• Various configurations, called topologies, have
been used to administer LANs
– Ring topology A configuration that connects all nodes
in a closed loop on which messages travel in one
direction
– Star topology A configuration that centers around one
node to which all others are connected and through
which all messages are sent
– Bus topology All nodes are connected to a single
communication line that carries messages in both
directions
Types of Networks
• A bus technology called Ethernet has become the
industry standard for local-area networks
Figure 15.2 Various network topologies
15-10
15-8
Types of Networks
• Wide-area network (WAN) A network that
connects two or more local-area networks over a
potentially large geographic distance
Often one particular node on a LAN is set up to serve
as a gateway to handle all communication going
between that LAN and other networks
Communication between networks is called
internetworking
The Internet, as we know it today, is essentially the
ultimate wide-area network, spanning the entire globe
15-9
Types of Networks
• Metropolitan-area network (MAN) The
communication infrastructures that have
been developed in and around large cities
15-10
So, who owns the Internet?
Well, nobody does. No single person or
company owns the Internet or even
controls it entirely. As a wide-area
network, it is made up of many smaller
networks. These smaller networks are
often owned and managed by a person or
organization. The Internet, then, is really
defined by how connections can be made
between these networks.
15-11
Types of Networks
Figure 15.1 Local-area networks connected across a distance to
create a wide-area network
15-12
Internet Connections
• Internet backbone A set of high-speed
networks that carry Internet traffic
These networks are provided by
companies such as AT&T, GTE, and IBM
• Internet service provider (ISP) A
company that provides other companies or
individuals with access to the Internet
15-13
Internet Connections
• There are various technologies available that you can
use to connect a home computer to the Internet
– A phone modem converts computer data into an analog
audio signal for transfer over a telephone line, and then a
modem at the destination converts it back again into data
– A digital subscriber line (DSL) uses regular copper phone
lines to transfer digital data to and from the phone company’s
central office
– A cable modem uses the same line that your cable TV
signals come in on to transfer the data back and forth
15-14
Internet Connections
• Broadband A connection in which transfer
speeds are faster than 128 bits per second
– DSL connections and cable modems are broadband
connections
– The speed for downloads (getting data from the
Internet to your home computer) may not be the same
as uploads (sending data from your home computer
to the Internet)
Packet Switching
• To improve the efficiency of transferring information over
a shared communication line, messages are divided into
fixed-sized, numbered packets
• Network devices called routers are used to direct
packets between networks
Figure 15.4
Messages
sent by
packet
switching
15-18
15-16
Open Systems
• Proprietary system A system that uses
technologies kept private by a particular
commercial vendor
One system couldn’t communicate with another,
leading to the need for
• Interoperability The ability of software and
hardware on multiple machines and from multiple
commercial vendors to communicate
Leading to
• Open systems Systems based on a common
model of network architecture and a suite of
protocols used in its implementation
15-17
Open Systems
• The International
Organization for
Standardization (ISO)
established the Open
Systems
Interconnection (OSI)
Reference Model
• Each layer deals with a
particular aspect of
network communication
Figure 15.5 The layers of the OSI Reference Model
15-18
Network Protocols
• Network protocols are layered such that
each one relies on the protocols that
underlie it
• Sometimes referred to as a protocol
stack
Figure 15.6 Layering of key network protocols
15-19
TCP/IP
• TCP stands for Transmission Control Protocol
TCP software breaks messages into packets,
hands them off to the IP software for delivery,
and then orders and reassembles the packets
at their destination
• IP stands for Internet Protocol
IP software deals with the routing of packets
through the maze of interconnected networks
to their final destination
15-20
TCP/IP (cont.)
• UDP stands for User Datagram Protocol
– It is an alternative to TCP
– The main difference is that TCP is highly
reliable, at the cost of decreased
performance, while UDP is less reliable, but
generally faster
15-21
High-Level Protocols
• Other protocols build on the foundation
established by the TCP/IP protocol suite
– Simple Mail Transfer Protocol (SMTP)
– File Transfer Protocol (FTP)
– Telnet
– Hyper Text Transfer Protocol (http)
15-22
MIME Types
• Related to the idea of network protocols
and standardization is the concept of a
file’s MIME type
– MIME stands for Multipurpose Internet Mail
Extension
– Based on a document’s MIME type, an
application program can decide how to deal
with the data it is given
15-23
MIME Types
Figure 15.7
Some
protocols and
the ports they
use
15-24
Firewalls
• Firewall A machine and its software that
serve as a special gateway to a network,
protecting it from inappropriate access
– Filters the network traffic that comes in,
checking the validity of the messages as
much as possible and perhaps denying some
messages altogether
– Enforces an organization’s access control
policy
15-25
Firewalls
Figure 15.8 A firewall protecting a LAN
15-26
Network Addresses
• Hostname A unique identification that
specifies a particular computer on the
Internet
For example
matisse.csc.villanova.edu
condor.develocorp.com
15-27
Network Addresses
• Network software translates a hostname
into its corresponding IP address
For example
205.39.145.18
15-28
Network Addresses
• An IP address can be split into
– network address, which specifies a specific network
– host number, which specifies a particular machine in
that network
Figure 15.9
An IP address is
stored in four
bytes
15-29
Domain Name System
• A hostname consists of the computer name
followed by the domain name
• csc.villanova.edu is the domain name
– A domain name is separated into two or more
sections that specify the organization, and possibly a
subset of an organization, of which the computer is a
part
– Two organizations can have a computer named the
same thing because the domain name makes it clear
which one is being referred to
15-30
Domain Name System
• The very last section of the domain is called its
top-level domain (TLD) name
Figure 15.10 Top-level domains, including some relatively new ones
15-31
Domain Name System
• Organizations based in countries other than the
United States use a top-level domain that
corresponds to their two-letter country codes
Figure 15.11
Some of the top-level domain
names based on country codes
15-32
Domain Name System
• The domain name system (DNS) is
chiefly used to translate hostnames into
numeric IP addresses
– DNS is an example of a distributed database
– If that server can resolve the hostname, it
does so
– If not, that server asks another domain name
server

More Related Content

PPTX
Computer-Networks--Network.pptx
PPT
Information system for you Chapter 15
PPTX
computer networking slides with full detail
PPT
Networking.
PPT
Computer networks- week 1
PPT
Computer networks--network 2019
PPTX
Website Networking
PPT
Computing 9
Computer-Networks--Network.pptx
Information system for you Chapter 15
computer networking slides with full detail
Networking.
Computer networks- week 1
Computer networks--network 2019
Website Networking
Computing 9

Recently uploaded (20)

PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Business Ethics Teaching Materials for college
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
Classroom Observation Tools for Teachers
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
Mark Klimek Lecture Notes_240423 revision books _173037.pdf
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
master seminar digital applications in india
PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Basic Mud Logging Guide for educational purpose
PPTX
Institutional Correction lecture only . . .
PPTX
Cell Types and Its function , kingdom of life
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
Pharma ospi slides which help in ospi learning
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Business Ethics Teaching Materials for college
TR - Agricultural Crops Production NC III.pdf
102 student loan defaulters named and shamed – Is someone you know on the list?
Classroom Observation Tools for Teachers
O7-L3 Supply Chain Operations - ICLT Program
Mark Klimek Lecture Notes_240423 revision books _173037.pdf
STATICS OF THE RIGID BODIES Hibbelers.pdf
master seminar digital applications in india
Anesthesia in Laparoscopic Surgery in India
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
VCE English Exam - Section C Student Revision Booklet
Abdominal Access Techniques with Prof. Dr. R K Mishra
Basic Mud Logging Guide for educational purpose
Institutional Correction lecture only . . .
Cell Types and Its function , kingdom of life
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Pharma ospi slides which help in ospi learning
Ad
Ad

Keterampilan Komputer dan Pengelolaan Informasi-pengenalan jaringan komputer.ppt

  • 1. 15-1 Networking • Computer network A collection of computing devices that are connected in various ways in order to communicate and share resources Usually, the connections between computers in a network are made using physical wires or cables However, some connections are wireless, using radio waves or infrared signals
  • 2. 15-2 Networking • The generic term node or host refers to any device on a network • Data transfer rate The speed with which data is moved from one place on a network to another • Data transfer rate is a key issue in computer networks
  • 3. 15-3 Networking • Computer networks have opened up an entire frontier in the world of computing called the client/server model Figure 15.1 Client/Server interaction
  • 4. 15-4 Networking • File server A computer that stores and manages files for multiple users on a network • Web server A computer dedicated to responding to requests (from the browser client) for web pages
  • 5. 15-5 Types of Networks • Local-area network (LAN) A network that connects a relatively small number of machines in a relatively close geographical area
  • 6. 15-6 Types of Networks • Various configurations, called topologies, have been used to administer LANs – Ring topology A configuration that connects all nodes in a closed loop on which messages travel in one direction – Star topology A configuration that centers around one node to which all others are connected and through which all messages are sent – Bus topology All nodes are connected to a single communication line that carries messages in both directions
  • 7. Types of Networks • A bus technology called Ethernet has become the industry standard for local-area networks Figure 15.2 Various network topologies 15-10
  • 8. 15-8 Types of Networks • Wide-area network (WAN) A network that connects two or more local-area networks over a potentially large geographic distance Often one particular node on a LAN is set up to serve as a gateway to handle all communication going between that LAN and other networks Communication between networks is called internetworking The Internet, as we know it today, is essentially the ultimate wide-area network, spanning the entire globe
  • 9. 15-9 Types of Networks • Metropolitan-area network (MAN) The communication infrastructures that have been developed in and around large cities
  • 10. 15-10 So, who owns the Internet? Well, nobody does. No single person or company owns the Internet or even controls it entirely. As a wide-area network, it is made up of many smaller networks. These smaller networks are often owned and managed by a person or organization. The Internet, then, is really defined by how connections can be made between these networks.
  • 11. 15-11 Types of Networks Figure 15.1 Local-area networks connected across a distance to create a wide-area network
  • 12. 15-12 Internet Connections • Internet backbone A set of high-speed networks that carry Internet traffic These networks are provided by companies such as AT&T, GTE, and IBM • Internet service provider (ISP) A company that provides other companies or individuals with access to the Internet
  • 13. 15-13 Internet Connections • There are various technologies available that you can use to connect a home computer to the Internet – A phone modem converts computer data into an analog audio signal for transfer over a telephone line, and then a modem at the destination converts it back again into data – A digital subscriber line (DSL) uses regular copper phone lines to transfer digital data to and from the phone company’s central office – A cable modem uses the same line that your cable TV signals come in on to transfer the data back and forth
  • 14. 15-14 Internet Connections • Broadband A connection in which transfer speeds are faster than 128 bits per second – DSL connections and cable modems are broadband connections – The speed for downloads (getting data from the Internet to your home computer) may not be the same as uploads (sending data from your home computer to the Internet)
  • 15. Packet Switching • To improve the efficiency of transferring information over a shared communication line, messages are divided into fixed-sized, numbered packets • Network devices called routers are used to direct packets between networks Figure 15.4 Messages sent by packet switching 15-18
  • 16. 15-16 Open Systems • Proprietary system A system that uses technologies kept private by a particular commercial vendor One system couldn’t communicate with another, leading to the need for • Interoperability The ability of software and hardware on multiple machines and from multiple commercial vendors to communicate Leading to • Open systems Systems based on a common model of network architecture and a suite of protocols used in its implementation
  • 17. 15-17 Open Systems • The International Organization for Standardization (ISO) established the Open Systems Interconnection (OSI) Reference Model • Each layer deals with a particular aspect of network communication Figure 15.5 The layers of the OSI Reference Model
  • 18. 15-18 Network Protocols • Network protocols are layered such that each one relies on the protocols that underlie it • Sometimes referred to as a protocol stack Figure 15.6 Layering of key network protocols
  • 19. 15-19 TCP/IP • TCP stands for Transmission Control Protocol TCP software breaks messages into packets, hands them off to the IP software for delivery, and then orders and reassembles the packets at their destination • IP stands for Internet Protocol IP software deals with the routing of packets through the maze of interconnected networks to their final destination
  • 20. 15-20 TCP/IP (cont.) • UDP stands for User Datagram Protocol – It is an alternative to TCP – The main difference is that TCP is highly reliable, at the cost of decreased performance, while UDP is less reliable, but generally faster
  • 21. 15-21 High-Level Protocols • Other protocols build on the foundation established by the TCP/IP protocol suite – Simple Mail Transfer Protocol (SMTP) – File Transfer Protocol (FTP) – Telnet – Hyper Text Transfer Protocol (http)
  • 22. 15-22 MIME Types • Related to the idea of network protocols and standardization is the concept of a file’s MIME type – MIME stands for Multipurpose Internet Mail Extension – Based on a document’s MIME type, an application program can decide how to deal with the data it is given
  • 24. 15-24 Firewalls • Firewall A machine and its software that serve as a special gateway to a network, protecting it from inappropriate access – Filters the network traffic that comes in, checking the validity of the messages as much as possible and perhaps denying some messages altogether – Enforces an organization’s access control policy
  • 25. 15-25 Firewalls Figure 15.8 A firewall protecting a LAN
  • 26. 15-26 Network Addresses • Hostname A unique identification that specifies a particular computer on the Internet For example matisse.csc.villanova.edu condor.develocorp.com
  • 27. 15-27 Network Addresses • Network software translates a hostname into its corresponding IP address For example 205.39.145.18
  • 28. 15-28 Network Addresses • An IP address can be split into – network address, which specifies a specific network – host number, which specifies a particular machine in that network Figure 15.9 An IP address is stored in four bytes
  • 29. 15-29 Domain Name System • A hostname consists of the computer name followed by the domain name • csc.villanova.edu is the domain name – A domain name is separated into two or more sections that specify the organization, and possibly a subset of an organization, of which the computer is a part – Two organizations can have a computer named the same thing because the domain name makes it clear which one is being referred to
  • 30. 15-30 Domain Name System • The very last section of the domain is called its top-level domain (TLD) name Figure 15.10 Top-level domains, including some relatively new ones
  • 31. 15-31 Domain Name System • Organizations based in countries other than the United States use a top-level domain that corresponds to their two-letter country codes Figure 15.11 Some of the top-level domain names based on country codes
  • 32. 15-32 Domain Name System • The domain name system (DNS) is chiefly used to translate hostnames into numeric IP addresses – DNS is an example of a distributed database – If that server can resolve the hostname, it does so – If not, that server asks another domain name server