SlideShare a Scribd company logo
MOLECULAR SPINTRONICS
with SAMs
e-
Instituto de Ciencia Molecular · Universitat de València (Spain)
Unité Mixte de Physique CNRS/Thales · Palaiseau (France)
Sergio.Tatay@uv.es
1
A MULTIDISCIPLINAR AREA
2
MOLECULAR Science Institute
University of Valencia
Paterna (SPAIN)
Unité Mixte de PHYSIQUE CNRS/Thales
Palaiseau (France)
PhD
Michele Mattera
PhD
Clément Barraud
Marta Galbiati
Sophie Delprat
e
e
e
e
e
e
e e
The BASIC ELECTRONIC DEVICE
V
e
e
e e
e e
e
e
CONDUCTING
CONDUCTING
3
e
e
e e
e e
e
e
The BASIC SPINTRONIC DEVICE (I)
Ferromagnetic electrode = spin polarizer
Spintronic devices = spin polarizer-analizer
V
CONDUCTING
MAGNETIC
CONDUCTING
MAGNETIC
e
e
e
e
e
e
e e
4
The BASIC SPINTRONIC DEVICE (I)
The BASIC SPINTRONIC DEVICE (II)
Spintronic devices = spin polarizer-analizer
Two configurations are possible
V
e
V
e
e
e
e
5
The BASIC SPINTRONIC DEVICE (III)
Two configurations are possible
We can switch between them using and external magnetic field
Magnetic Field
Resistance
Magnetic Field
6
V
e
e
e
e
V e
The BASIC SPINTRONIC DEVICE (IV)
Two configurations are possible
We can switch between them
Magnetic Field
MR
7
MAGNETORESISTANCE
MR is proportional to de spin
polarization of the electrodes 0
SPINTRONICS WHAT FOR?
8
+
NVEMag.Sensor
APPLICATIONS
GMR effect (2007 Nobel prize) already in all your hard drives…
FreescaleMRAM
ToshibaHD
ToshibaHD
Thales,
IBM,
Intel,
Seagate
…
SPIN DEPENDENT TRANSPORT NANOSTRUCTURATION
9
WHY?
10
MOLECULES as SPINTRONIC BARRIERS
• Long spin life-time
• Plastic compatibility and low price
Barraud et al. Appl. Phys. Lett. 96 (2010) 072502
(CNRS Thales)
Is that all?
MAIN ADVANTAGES
B. Dlubak et al. Nat. Phys. (2012) 587
(CNRS Thales)
lsf ≈ 300 µm
11
AT THE INTERFACE
InorganicMetal
EF
V. B.
C. B.
12
MOLECULAR HIBRIDIZTION
ϵ0
EF
Γ
ϵeff
At the interface Isolated/bulk
LUMO
HOMO
MoleculeMetal
Molecule
ΔE↓
ΔE↑
Γ↑ LUMO
2nd Molecular layer1rst molecular layer Isolated / bulk
Γ↓
13
SPIN DEPENDENT HYBRIDIZATION (I)
FM Metal
Spinterface
EF
ϵ0
Galbiati, Tatay et al. MRS Bull. (2014) In Press
(CNRS Thales)
Spinterface “effective” electrode = metal + 1st interfacial molecular state
FM metal Molecule
discrete level
EF
SPIN DEPENDENT HYBRIDIZATION (III)
14
Spinterface “effective” electrode = metal + 1st interfacial molecular state
Γ >> ΔE (Strong Interaction) Γ << ΔE (Weak Interaction)
Pint = - PFM
FM metal
EF
Molecule
discrete level
Pint > PFM
Spin polarization inversion Spin polarization enhancement
The spin polarization at the new interface depends on the
strength of the coupling
15
MOLECULES as SPINTRONIC BARRIERS
• Long spin life-time
• Plastic compatibility and low price
MAIN ADVANTAGES
BEYOND INORGANICS
Interface plays a key role in spin injection
It can be tailored by molecules
• Chemically engineered spintronic properties
-­‐0,6 -­‐0,4 -­‐0,2 0,0 0,2 0,4 0,6
0
50
100
150
200
250
300
350 L S MO /A lq3
/C o
	
  
Magnetoresistance	
  (%)
A pplied	
  magnetic	
  field	
  (T )
16
Γ >> ΔE Γ << ΔE
MOLECULES as SPINTRONIC BARRIERS
SPIN DEPENDENT HYBRIDIZTION
-­‐1,0 -­‐0,5 0,0 0,5 1,0
-­‐35
-­‐30
-­‐25
-­‐20
-­‐15
-­‐10
-­‐5
0
5
	
  
Magnetoresistance	
  (%)
A pplied	
  magnetic	
  field	
  (T )
C o/C oP c/C o
EF
Co CoPc
Bottom interface
Pint = - PFM
2K 2K
Alq3
LSMO
Co
Co
Co
CoPc
Spin polarization inversion Spin polarization enhancement
Barraud et al. Manuscript in preparation (CNRS Thales, UMR7504 (Strasbourg))
EF
Co Alq3
Pint > PFM
300K
Pint ≈ + PFM
EF
Co Alq3
Bottom interface
EF
Co CoPc
Bottom interface
Pint = - PFM
300K
17
Γ << ΔE Decoupled
MOLECULES as SPINTRONIC BARRIERS
SPIN DEPENDENT HYBRIDIZTION
Spin polarization inversion Spin polarization enhancement
Alq3
Co
Co
Galbiati, Tatay et al. Unpublished Results (CNRS Thales)
Co
Co
Alq3
Al2O3
18
But, How to control
SPINTERFACES?
Problem dissolved problem solved
Cy3
19
YES,
WE CAN
NO,
WE CANNOT
Alq3 MPc
UHV LIMITATIONS: To Alq3 and BEYOND
Mn12O12(CH3COO)16(H2O)4
Ru(bpy)3
Mn12
PEDOT:PSS
CAN WE EVAPORATE?
20
SELF-ASSEMBLED MONOLAYERS (SAMs)
THE IDEAL SYSTEM
Interacts with the surface
Defined structure
HEAD
BODY
ANCHORING
SOLUTION
21
SELF-ASSEMBLED MONOLAYERS (SAMs)
THE IDEAL SYSTEM
Interacts with the surface
Defined structure
Highly Tunable
22
SELF-ASSEMBLED MONOLAYERS (SAMs)
THE IDEAL SYSTEM
Interacts with the surface
Defined structure
Highly tunable
Controllable thickness
nm
OBJECTIVE
23
ADVANTAGES
SAMs as SPINTRONIC BARRIERS
MAGNETIC
MAGNETIC
• Tunable interaction with the surface
• Defined structure
• Controlable thickness
SAMs as SPINTRONIC BARRIERS
24
PREVIOUS RESULTS
Petta, Slater and Ralph
Phys. Rev. Lett. 93 (2004) 136601
Wang and Richter
Appl. Phys. Lett. 89 (2006) 153105
Ni
Ti
Ni
NANOPORE:10nm
Ni
Co
NANOPORE:10nm
ENCOURAGING
Proof of Concept
RESULTS
Why ONLY
TWO?
MR(%)
0
2
OBJECTIVE
25
MAGNETIC
MAGNETIC
MAGNETIC
(La,Sr)MnO3
CHALLENGES
• Bottom electrode:
COMPATIBLE WITH SAMs WET
BENCH CHEMISTRY (La,Sr)MnO3 (LSMO)
OUR Approach
SAMs as Sintronic Barriers
Air Stable
P = 100%
Epitaxially grown
Tc < r.t.
OBJECTIVE
26
MAGNETIC
MAGNETIC
MAGNETIC
(La,Sr)MnO3
CHALLENGES
• Bottom electrode:
COMPATIBLE WITH SAMs WET
BENCH CHEMISTRY
• Top electrode:
NO SHORT-CIRCUITS
(La,Sr)MnO3 (LSMO)
NANOCONTACTS
OUR Approach
SAMs as Sintronic Barriers
Co, Ni...
(La,Sr)MnO3
The FUNCTIONALIZATION of LSMO
Epitaxially grown
(La2/3Sr1/3)MnO3 (LSMO) is a
inorganic oxide of the perovskite
family (ABO3)
Surfactant
Z
OLa/Sr Mn
Substrate
SrTiO3 (STO)
27
n = 1 to 4
Alkylphosphonic acid
Dodecylphosphonic acid (C12P)
Octadecylphosphonic acid (C18P)
Dilute solutions of alkylphosphonic
acid in polar solvents
Anchoring: Phosphonic acid (PO3H2)
Body: Alkyl chain (CH2)
Head: Methyl group (CH3)
CHARACTERIZATION (I)
CONTACT ANGLE
28
Water Contact
Angle
CA < 80
90 < CA < 100
CA > 100
Contact
Angle
Contact Angle (Adv/Rec/Hist)
C18PO3H2 = 112/99/13
C12PO3H2 = 108/82/26
C12P
C18P
•  Good coverage
CHARACTERIZATION (II)
AFM
▪ Roughness comparable to that of the bare substrate
▪ No island or multilayer growth was observed
C12P
1 µm
29
XPS
▪ All the expected elements
▪P-O-H peak not present in O(1s). BI/TRI-DENTATE
C12P
CHARACTERIZATION (III)
ATR-IRRAS
THICKNESS
C18PO3H2 = 2.3 nm (27º)
C12PO3H2 = 1.3 nm (43º)
▪ Peak position corresponding to good quality layers
30
ELLIPSOMETRY
C12P
C18P
C12PO3H2
▪ Chains are tilted
CHARACTERIZATION (IV)
UPS (col. Kaiserslautern.)
▪ Magnetism is kept after deposition process
▪ Manganese gets sligthly reduced
31
XAS/XMCD (col. SOLEIL France)
LSMO
0.50eV
-6.53eV -9.51eV
C12P
LSMO
0.62eV
-6.58eV -9.51eV
C18P
4.9eV 4.9eV
HOMO
HOMO-1
HOMO
HOMO-1
EF EF
Surface
dipole
Surface
dipole
▪ Small surface dipole
C12P
3.50 eV
LUMO
3.50 eV
LUMO
10 eV 10 eV
TRANSPORT MEAS.
▪ Similar to other
well know systems
CHARACTERIZATION (V)
SUMMARIZING
32
C12P= 1.3 nm
C18P= 2.3 nm
41o
28o
Tatay et al. ACS Nano 6 (2012) 8753 (CNRS Thales, UVEG)
But, How to MAKE electrical DEVICES?
Spintronics requires metallic electrodes. Thus SHORT-CIRCUITS
are a big issue
33
(La,Sr)MnO3
Co, Ni...
(La,Sr)MnO3
Co, Ni…
(La,Sr)MnO3
NANOCONTACS
AFM-NANO LITHOGRAPHY
34
An AFM tip is used to notch a hole into a previously deposited
mask
AFM-NANO LITHOGRAPHY
35
An AFM tip is used to notch a hole into a previously deposited
mask
AFM-NANO LITHOGRAPHY
36
An AFM tip is used to notch a hole into a previously deposited
mask
AFM-NANO LITHOGRAPHY
37
An AFM tip is used to notch a hole into a previously deposited
mask
AFM-NANO LITHOGRAPHY
38
An AFM tip is used to notch a hole into a previously deposited
mask
AFM-NANO LITHOGRAPHY
39
30 µm
1 µm
10 nm
30 nm
An AFM tip is used to notch a hole into a previously deposited
mask
AFM-NANO LITHOGRAPHY
40
30 µm
1 µm
10 nm
30 nm
An AFM tip is used to notch a hole into a previously deposited
mask
10 nm
LSMO
Co
ELECTRICAL CHARACTERIZATION
Our devices are not short-circuited
R(Co//LSMO) = 1 kΩ
R(Co/SAM//LSMO) = 10 MΩ
LSMO
Co
1.3 nm
41
10 nm
●Short-Circuited
●C12P
C12P
Tatay et al. ACS Nano 6 (2012) 8753 (CNRS Thales, UVEG)
MAGNETO-ELECTRONIC CHARACTERIZATION (I)
LSMO
Co
42
C12P
Clear TMR signals
Galbiati, Tatay et al. Adv. Mater. 24 (2012) 6429 (CNRS Thales)
MAGNETO-ELECTRONIC CHARACTERIZATION (I)
LSMO
Co
43
C12P
Park et al. Phys. Rev. Lett. 81 (1998) 1953
Temperature dependence of TMR mainly
driven by LSMO surface polarization
MAGNETO-ELECTRONIC CHARACTERIZATION (II)
LSMO
Co
44
C12P
TMR signal is maintained at high voltage
Galbiati, Tatay et al. Adv. Mater. 24 (2012) 6429 (CNRS Thales)
INFLUENCE of the CHAIN LENGTH
45
MR dependence on chain length
(first results…)
Exponential increase of the resistance
with the chain length
LSMO
Co
Galbiati, Tatay et al. Unpublished Results (CNRS Thales)
46
CONCLUSION
but most of the materials with potential for
spintronics applications are not compatible with
the standard ultrahigh vacuum techniques
and this can be a PROBLEM
A doubtful or difficult matter requiring a
solution
The Concise Oxford Dictionary (1995)
MOLECULES (and specially SAMs) have a
great POTENTIAL for spintronics

More Related Content

PDF
Hints elfos for_slide_sahre
PPTX
Optical properties of natural topaz
PPTX
ยูเรเนียม
PPTX
PDF
LinkedIn_Phd thesis presentation
PDF
My oral presentation at JCS spring meeting-2012, Tokyo.
PDF
Fei sun chemical presentation 070114 2c [compatibility mode]
PDF
Charge, spin and orbitals in oxides
Hints elfos for_slide_sahre
Optical properties of natural topaz
ยูเรเนียม
LinkedIn_Phd thesis presentation
My oral presentation at JCS spring meeting-2012, Tokyo.
Fei sun chemical presentation 070114 2c [compatibility mode]
Charge, spin and orbitals in oxides

What's hot (13)

PPT
L10 datta lecture on industrial radiation sources
PPT
Basic(nuclear ms4)
PDF
Electrochemistry perovskites defects
PPTX
Understanding ionic structure and dynamics in novel electrolytes; Paving the ...
PDF
Generation of dsa for security application
PDF
"Evaluation of the Hilbert Huang transformation of transient signals for brid...
PPTX
Coulomb drag between graphene and LaAlO3/SrTiO3 heterostructures
PPTX
EBuitrago Vertically Stacked SiNW Sensor
PPTX
Uranium Enrichment Technology
PDF
Synthesis and Characterization of Mechanoluminescent NaAlSiO4:Eu,Nd Phosphor ...
PPTX
Symmetries and multiferroic properties of novel room-temperature
PDF
"Vibration-based, output-only damage identification of bridge under vehicle i...
PPTX
High manganese steel conference trip maraging steels short version
L10 datta lecture on industrial radiation sources
Basic(nuclear ms4)
Electrochemistry perovskites defects
Understanding ionic structure and dynamics in novel electrolytes; Paving the ...
Generation of dsa for security application
"Evaluation of the Hilbert Huang transformation of transient signals for brid...
Coulomb drag between graphene and LaAlO3/SrTiO3 heterostructures
EBuitrago Vertically Stacked SiNW Sensor
Uranium Enrichment Technology
Synthesis and Characterization of Mechanoluminescent NaAlSiO4:Eu,Nd Phosphor ...
Symmetries and multiferroic properties of novel room-temperature
"Vibration-based, output-only damage identification of bridge under vehicle i...
High manganese steel conference trip maraging steels short version
Ad

Viewers also liked (20)

PDF
Tailoring Magnetic Anisotropies in Ferromagnetic Semiconductors
PPTX
Flipchip bonding.
PPT
Organic Spintronics
PPTX
Magnetic reel tape
PPT
Nanotechnology.Opport.Dev
PDF
Master Thesis
PPT
Secondary storage devices and
PPTX
Spintronics
PPT
Magnetic recording By Diks
PPTX
Magnetic media
PPTX
MRAM & Its Applications
PPTX
presentation on spintronics by prince kushwaha
PPTX
Nanophysics lec (1)
PPTX
Spintronics-where the spin around happens
PPTX
Spintronics
PDF
Julia ponce thesis Part1
PPT
Spintronics
PPTX
mems and nems
PPTX
Introduction to Spintronics by Ch.Ravikumar
PPTX
Magnetic tape and recording formats
Tailoring Magnetic Anisotropies in Ferromagnetic Semiconductors
Flipchip bonding.
Organic Spintronics
Magnetic reel tape
Nanotechnology.Opport.Dev
Master Thesis
Secondary storage devices and
Spintronics
Magnetic recording By Diks
Magnetic media
MRAM & Its Applications
presentation on spintronics by prince kushwaha
Nanophysics lec (1)
Spintronics-where the spin around happens
Spintronics
Julia ponce thesis Part1
Spintronics
mems and nems
Introduction to Spintronics by Ch.Ravikumar
Magnetic tape and recording formats
Ad

Similar to Molecular Spintronics with SAMs (20)

PPTX
Introduction to nanoscience and nanotechnology
PPSX
S.S. NMR Presentation
PDF
Nanoscale cascaded plasmonic logic gates for non-boolean wave computation
PPT
Scanning Probe Microscopy Engineering and Technology
PPTX
Department of chemistry institute of basic sciences
PPTX
ETE444-lec2-atomic_scale_characterization_techniques.pptx
PPTX
ETE444-lec2-atomic_scale_characterization_techniques.pptx
PDF
First results from the full-scale prototype for the Fluorescence detector Arr...
PPTX
Presentation-Vacuum.pptx
PDF
Maidana - Modification of particle accelerators for cargo inspection applicat...
PDF
IRJET- Design of a Slow Light Propagating Waveguide based on Electromagnetica...
PPT
Trends in Future CommunicationsInternational Workshop - Renato Rabelo
PDF
PDF
EMC. Wurth Electronics (UK) Ltd.
PPT
Research Summary 20090111
PPTX
10 nanosensors
PDF
Laser drivenplasma
PPTX
AFM and STM (Scanning probe microscopy)
PPTX
PhD Defense
PPTX
AFM talk ASAS 10dec2015 Jenny to publish.pptx
Introduction to nanoscience and nanotechnology
S.S. NMR Presentation
Nanoscale cascaded plasmonic logic gates for non-boolean wave computation
Scanning Probe Microscopy Engineering and Technology
Department of chemistry institute of basic sciences
ETE444-lec2-atomic_scale_characterization_techniques.pptx
ETE444-lec2-atomic_scale_characterization_techniques.pptx
First results from the full-scale prototype for the Fluorescence detector Arr...
Presentation-Vacuum.pptx
Maidana - Modification of particle accelerators for cargo inspection applicat...
IRJET- Design of a Slow Light Propagating Waveguide based on Electromagnetica...
Trends in Future CommunicationsInternational Workshop - Renato Rabelo
EMC. Wurth Electronics (UK) Ltd.
Research Summary 20090111
10 nanosensors
Laser drivenplasma
AFM and STM (Scanning probe microscopy)
PhD Defense
AFM talk ASAS 10dec2015 Jenny to publish.pptx

Recently uploaded (20)

PPTX
Fluid dynamics vivavoce presentation of prakash
PPTX
perinatal infections 2-171220190027.pptx
PDF
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PDF
The scientific heritage No 166 (166) (2025)
PDF
lecture 2026 of Sjogren's syndrome l .pdf
PPTX
Microbes in human welfare class 12 .pptx
PPTX
Hypertension_Training_materials_English_2024[1] (1).pptx
PDF
GROUP 2 ORIGINAL PPT. pdf Hhfiwhwifhww0ojuwoadwsfjofjwsofjw
PDF
Lymphatic System MCQs & Practice Quiz – Functions, Organs, Nodes, Ducts
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PPTX
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PDF
Placing the Near-Earth Object Impact Probability in Context
PPT
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
PDF
An interstellar mission to test astrophysical black holes
PDF
The Land of Punt — A research by Dhani Irwanto
PPTX
BODY FLUIDS AND CIRCULATION class 11 .pptx
Fluid dynamics vivavoce presentation of prakash
perinatal infections 2-171220190027.pptx
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
The scientific heritage No 166 (166) (2025)
lecture 2026 of Sjogren's syndrome l .pdf
Microbes in human welfare class 12 .pptx
Hypertension_Training_materials_English_2024[1] (1).pptx
GROUP 2 ORIGINAL PPT. pdf Hhfiwhwifhww0ojuwoadwsfjofjwsofjw
Lymphatic System MCQs & Practice Quiz – Functions, Organs, Nodes, Ducts
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
Placing the Near-Earth Object Impact Probability in Context
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
An interstellar mission to test astrophysical black holes
The Land of Punt — A research by Dhani Irwanto
BODY FLUIDS AND CIRCULATION class 11 .pptx

Molecular Spintronics with SAMs

  • 1. MOLECULAR SPINTRONICS with SAMs e- Instituto de Ciencia Molecular · Universitat de València (Spain) Unité Mixte de Physique CNRS/Thales · Palaiseau (France) Sergio.Tatay@uv.es 1
  • 2. A MULTIDISCIPLINAR AREA 2 MOLECULAR Science Institute University of Valencia Paterna (SPAIN) Unité Mixte de PHYSIQUE CNRS/Thales Palaiseau (France) PhD Michele Mattera PhD Clément Barraud Marta Galbiati Sophie Delprat
  • 3. e e e e e e e e The BASIC ELECTRONIC DEVICE V e e e e e e e e CONDUCTING CONDUCTING 3
  • 4. e e e e e e e e The BASIC SPINTRONIC DEVICE (I) Ferromagnetic electrode = spin polarizer Spintronic devices = spin polarizer-analizer V CONDUCTING MAGNETIC CONDUCTING MAGNETIC e e e e e e e e 4 The BASIC SPINTRONIC DEVICE (I)
  • 5. The BASIC SPINTRONIC DEVICE (II) Spintronic devices = spin polarizer-analizer Two configurations are possible V e V e e e e 5
  • 6. The BASIC SPINTRONIC DEVICE (III) Two configurations are possible We can switch between them using and external magnetic field Magnetic Field Resistance Magnetic Field 6 V e e e e V e
  • 7. The BASIC SPINTRONIC DEVICE (IV) Two configurations are possible We can switch between them Magnetic Field MR 7 MAGNETORESISTANCE MR is proportional to de spin polarization of the electrodes 0
  • 8. SPINTRONICS WHAT FOR? 8 + NVEMag.Sensor APPLICATIONS GMR effect (2007 Nobel prize) already in all your hard drives… FreescaleMRAM ToshibaHD ToshibaHD Thales, IBM, Intel, Seagate … SPIN DEPENDENT TRANSPORT NANOSTRUCTURATION
  • 10. 10 MOLECULES as SPINTRONIC BARRIERS • Long spin life-time • Plastic compatibility and low price Barraud et al. Appl. Phys. Lett. 96 (2010) 072502 (CNRS Thales) Is that all? MAIN ADVANTAGES B. Dlubak et al. Nat. Phys. (2012) 587 (CNRS Thales) lsf ≈ 300 µm
  • 12. 12 MOLECULAR HIBRIDIZTION ϵ0 EF Γ ϵeff At the interface Isolated/bulk LUMO HOMO MoleculeMetal
  • 13. Molecule ΔE↓ ΔE↑ Γ↑ LUMO 2nd Molecular layer1rst molecular layer Isolated / bulk Γ↓ 13 SPIN DEPENDENT HYBRIDIZATION (I) FM Metal Spinterface EF ϵ0 Galbiati, Tatay et al. MRS Bull. (2014) In Press (CNRS Thales) Spinterface “effective” electrode = metal + 1st interfacial molecular state
  • 14. FM metal Molecule discrete level EF SPIN DEPENDENT HYBRIDIZATION (III) 14 Spinterface “effective” electrode = metal + 1st interfacial molecular state Γ >> ΔE (Strong Interaction) Γ << ΔE (Weak Interaction) Pint = - PFM FM metal EF Molecule discrete level Pint > PFM Spin polarization inversion Spin polarization enhancement The spin polarization at the new interface depends on the strength of the coupling
  • 15. 15 MOLECULES as SPINTRONIC BARRIERS • Long spin life-time • Plastic compatibility and low price MAIN ADVANTAGES BEYOND INORGANICS Interface plays a key role in spin injection It can be tailored by molecules • Chemically engineered spintronic properties
  • 16. -­‐0,6 -­‐0,4 -­‐0,2 0,0 0,2 0,4 0,6 0 50 100 150 200 250 300 350 L S MO /A lq3 /C o   Magnetoresistance  (%) A pplied  magnetic  field  (T ) 16 Γ >> ΔE Γ << ΔE MOLECULES as SPINTRONIC BARRIERS SPIN DEPENDENT HYBRIDIZTION -­‐1,0 -­‐0,5 0,0 0,5 1,0 -­‐35 -­‐30 -­‐25 -­‐20 -­‐15 -­‐10 -­‐5 0 5   Magnetoresistance  (%) A pplied  magnetic  field  (T ) C o/C oP c/C o EF Co CoPc Bottom interface Pint = - PFM 2K 2K Alq3 LSMO Co Co Co CoPc Spin polarization inversion Spin polarization enhancement Barraud et al. Manuscript in preparation (CNRS Thales, UMR7504 (Strasbourg)) EF Co Alq3 Pint > PFM
  • 17. 300K Pint ≈ + PFM EF Co Alq3 Bottom interface EF Co CoPc Bottom interface Pint = - PFM 300K 17 Γ << ΔE Decoupled MOLECULES as SPINTRONIC BARRIERS SPIN DEPENDENT HYBRIDIZTION Spin polarization inversion Spin polarization enhancement Alq3 Co Co Galbiati, Tatay et al. Unpublished Results (CNRS Thales) Co Co Alq3 Al2O3
  • 18. 18 But, How to control SPINTERFACES? Problem dissolved problem solved
  • 19. Cy3 19 YES, WE CAN NO, WE CANNOT Alq3 MPc UHV LIMITATIONS: To Alq3 and BEYOND Mn12O12(CH3COO)16(H2O)4 Ru(bpy)3 Mn12 PEDOT:PSS CAN WE EVAPORATE?
  • 20. 20 SELF-ASSEMBLED MONOLAYERS (SAMs) THE IDEAL SYSTEM Interacts with the surface Defined structure HEAD BODY ANCHORING SOLUTION
  • 21. 21 SELF-ASSEMBLED MONOLAYERS (SAMs) THE IDEAL SYSTEM Interacts with the surface Defined structure Highly Tunable
  • 22. 22 SELF-ASSEMBLED MONOLAYERS (SAMs) THE IDEAL SYSTEM Interacts with the surface Defined structure Highly tunable Controllable thickness nm
  • 23. OBJECTIVE 23 ADVANTAGES SAMs as SPINTRONIC BARRIERS MAGNETIC MAGNETIC • Tunable interaction with the surface • Defined structure • Controlable thickness
  • 24. SAMs as SPINTRONIC BARRIERS 24 PREVIOUS RESULTS Petta, Slater and Ralph Phys. Rev. Lett. 93 (2004) 136601 Wang and Richter Appl. Phys. Lett. 89 (2006) 153105 Ni Ti Ni NANOPORE:10nm Ni Co NANOPORE:10nm ENCOURAGING Proof of Concept RESULTS Why ONLY TWO? MR(%) 0 2
  • 25. OBJECTIVE 25 MAGNETIC MAGNETIC MAGNETIC (La,Sr)MnO3 CHALLENGES • Bottom electrode: COMPATIBLE WITH SAMs WET BENCH CHEMISTRY (La,Sr)MnO3 (LSMO) OUR Approach SAMs as Sintronic Barriers Air Stable P = 100% Epitaxially grown Tc < r.t.
  • 26. OBJECTIVE 26 MAGNETIC MAGNETIC MAGNETIC (La,Sr)MnO3 CHALLENGES • Bottom electrode: COMPATIBLE WITH SAMs WET BENCH CHEMISTRY • Top electrode: NO SHORT-CIRCUITS (La,Sr)MnO3 (LSMO) NANOCONTACTS OUR Approach SAMs as Sintronic Barriers Co, Ni... (La,Sr)MnO3
  • 27. The FUNCTIONALIZATION of LSMO Epitaxially grown (La2/3Sr1/3)MnO3 (LSMO) is a inorganic oxide of the perovskite family (ABO3) Surfactant Z OLa/Sr Mn Substrate SrTiO3 (STO) 27 n = 1 to 4 Alkylphosphonic acid Dodecylphosphonic acid (C12P) Octadecylphosphonic acid (C18P) Dilute solutions of alkylphosphonic acid in polar solvents Anchoring: Phosphonic acid (PO3H2) Body: Alkyl chain (CH2) Head: Methyl group (CH3)
  • 28. CHARACTERIZATION (I) CONTACT ANGLE 28 Water Contact Angle CA < 80 90 < CA < 100 CA > 100 Contact Angle Contact Angle (Adv/Rec/Hist) C18PO3H2 = 112/99/13 C12PO3H2 = 108/82/26 C12P C18P •  Good coverage
  • 29. CHARACTERIZATION (II) AFM ▪ Roughness comparable to that of the bare substrate ▪ No island or multilayer growth was observed C12P 1 µm 29 XPS ▪ All the expected elements ▪P-O-H peak not present in O(1s). BI/TRI-DENTATE C12P
  • 30. CHARACTERIZATION (III) ATR-IRRAS THICKNESS C18PO3H2 = 2.3 nm (27º) C12PO3H2 = 1.3 nm (43º) ▪ Peak position corresponding to good quality layers 30 ELLIPSOMETRY C12P C18P C12PO3H2 ▪ Chains are tilted
  • 31. CHARACTERIZATION (IV) UPS (col. Kaiserslautern.) ▪ Magnetism is kept after deposition process ▪ Manganese gets sligthly reduced 31 XAS/XMCD (col. SOLEIL France) LSMO 0.50eV -6.53eV -9.51eV C12P LSMO 0.62eV -6.58eV -9.51eV C18P 4.9eV 4.9eV HOMO HOMO-1 HOMO HOMO-1 EF EF Surface dipole Surface dipole ▪ Small surface dipole C12P 3.50 eV LUMO 3.50 eV LUMO 10 eV 10 eV TRANSPORT MEAS. ▪ Similar to other well know systems
  • 32. CHARACTERIZATION (V) SUMMARIZING 32 C12P= 1.3 nm C18P= 2.3 nm 41o 28o Tatay et al. ACS Nano 6 (2012) 8753 (CNRS Thales, UVEG)
  • 33. But, How to MAKE electrical DEVICES? Spintronics requires metallic electrodes. Thus SHORT-CIRCUITS are a big issue 33 (La,Sr)MnO3 Co, Ni... (La,Sr)MnO3 Co, Ni… (La,Sr)MnO3 NANOCONTACS
  • 34. AFM-NANO LITHOGRAPHY 34 An AFM tip is used to notch a hole into a previously deposited mask
  • 35. AFM-NANO LITHOGRAPHY 35 An AFM tip is used to notch a hole into a previously deposited mask
  • 36. AFM-NANO LITHOGRAPHY 36 An AFM tip is used to notch a hole into a previously deposited mask
  • 37. AFM-NANO LITHOGRAPHY 37 An AFM tip is used to notch a hole into a previously deposited mask
  • 38. AFM-NANO LITHOGRAPHY 38 An AFM tip is used to notch a hole into a previously deposited mask
  • 39. AFM-NANO LITHOGRAPHY 39 30 µm 1 µm 10 nm 30 nm An AFM tip is used to notch a hole into a previously deposited mask
  • 40. AFM-NANO LITHOGRAPHY 40 30 µm 1 µm 10 nm 30 nm An AFM tip is used to notch a hole into a previously deposited mask 10 nm LSMO Co
  • 41. ELECTRICAL CHARACTERIZATION Our devices are not short-circuited R(Co//LSMO) = 1 kΩ R(Co/SAM//LSMO) = 10 MΩ LSMO Co 1.3 nm 41 10 nm ●Short-Circuited ●C12P C12P Tatay et al. ACS Nano 6 (2012) 8753 (CNRS Thales, UVEG)
  • 42. MAGNETO-ELECTRONIC CHARACTERIZATION (I) LSMO Co 42 C12P Clear TMR signals Galbiati, Tatay et al. Adv. Mater. 24 (2012) 6429 (CNRS Thales)
  • 43. MAGNETO-ELECTRONIC CHARACTERIZATION (I) LSMO Co 43 C12P Park et al. Phys. Rev. Lett. 81 (1998) 1953 Temperature dependence of TMR mainly driven by LSMO surface polarization
  • 44. MAGNETO-ELECTRONIC CHARACTERIZATION (II) LSMO Co 44 C12P TMR signal is maintained at high voltage Galbiati, Tatay et al. Adv. Mater. 24 (2012) 6429 (CNRS Thales)
  • 45. INFLUENCE of the CHAIN LENGTH 45 MR dependence on chain length (first results…) Exponential increase of the resistance with the chain length LSMO Co Galbiati, Tatay et al. Unpublished Results (CNRS Thales)
  • 46. 46 CONCLUSION but most of the materials with potential for spintronics applications are not compatible with the standard ultrahigh vacuum techniques and this can be a PROBLEM A doubtful or difficult matter requiring a solution The Concise Oxford Dictionary (1995) MOLECULES (and specially SAMs) have a great POTENTIAL for spintronics