SlideShare a Scribd company logo
Introduction Governing equations Numerical methodology Results Conclusions
Large strain computational solid dynamics:
An upwind cell centred Finite Volume Method
Jibran Haider a, b
, Chun Hean Lee a
, Antonio J. Gil a
, Javier Bonet c
& Antonio Huerta b
a
Zienkiewicz Centre for Computational Engineering (ZCCE),
College of Engineering, Swansea University, UK
b
Laboratory of Computational Methods and Numerical Analysis (LaCàN),
Universitat Politèchnica de Catalunya (UPC BarcelonaTech), Spain
c
University of Greenwich, London, UK
World Congress in Computational Mechanics (24th
- 29th
July 2016)
MS 703: Advances in Finite Element Methods for Tetrahedral Mesh Computations
http://www.jibranhaider.weebly.com
Funded by the Erasmus Mundus Programme and International Association for Computational Mechanics
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 1
Introduction Governing equations Numerical methodology Results Conclusions
Scheme of presentation
1. Introduction
2. Governing equations
3. Numerical methodology
4. Results
5. Conclusions
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 2
Introduction Governing equations Numerical methodology Results Conclusions
Fast transient solid dynamics
Displacement based FEM/FVM formulations
• Linear tetrahedral elements suffer from:
× Locking in nearly incompressible materials.
× First order for stresses and strains.
× Poor performance in shock scenarios.
Proposed mixed formulation [Haider et al., 2016]
• First order conservation laws similar to the one
used in CFD community.
• Entitled TOtal Lagrangian Upwind Cell-centred
FVM for Hyperbolic conservation laws (TOUCH).
Programmed in the open-source CFD software
OpenFOAM.
0 0.5 1
0
0.5
1
1.5
X-Coordinate
Y-Coordinate
t=0.03s
-1
-0.5
0
0.5
1x 10
7
-0.5 0 0.5 1 1.5
0
0.5
1
1.5
X-Coordinate
Y-Coordinate
t=0.0006s
Q1-P0 FEM
0 0.5 1
0
0.5
1
1.5
X-Coordinate
Y-Coordinate
t=0.03s
-1
-0.5
0
0.5
1x 10
7
-0.5 0 0.5 1 1.5
0
0.5
1
1.5
X-Coordinate
Y-Coordinate
t=0.0006s
Upwind FVM
Aim is to bridge the gap between CFD and computational solid dynamics.
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 3
Introduction Governing equations Numerical methodology Results Conclusions
Scheme of presentation
1. Introduction
2. Governing equations
3. Numerical methodology
4. Results
5. Conclusions
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 4
Introduction Governing equations Numerical methodology Results Conclusions
Total Lagrangian formulation
Conservation laws
• Linear momentum
∂p
∂t
= 0 · P(F) + ρ0b; p = ρ0v
• Deformation gradient
∂F
∂t
= 0 ·
1
ρ0
p ⊗ I ; CURL F = 0
Additional equations
• Total energy
∂E
∂t
= 0 ·
1
ρ0
PT
p − Q + s
An appropriate constitutive model is required to close the system.
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 5
Introduction Governing equations Numerical methodology Results Conclusions
Hyperbolic system
First order conservation laws
∂U
∂t
= 0 · F(U) + S
U =




p
F
E



 ; F =




P(F)
1
ρ0
p ⊗ I
1
ρ0
PT p − Q



 ; S =




ρ0b
0
s




• Geometry update
∂x
∂t
=
1
ρ0
p; x = X + u
Adapt CFD technology to the proposed formulation.
Develop an efficient low order numerical scheme for transient solid dynamics.
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 6
Introduction Governing equations Numerical methodology Results Conclusions
Scheme of presentation
1. Introduction
2. Governing equations
3. Numerical methodology
Spatial discretisation
Flux computation
Involutions
Evolution
4. Results
5. Conclusions
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 7
Introduction Governing equations Numerical methodology Results Conclusions
Scheme of presentation
1. Introduction
2. Governing equations
3. Numerical methodology
Spatial discretisation
Flux computation
Involutions
Evolution
4. Results
5. Conclusions
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 8
Introduction Governing equations Numerical methodology Results Conclusions
Spatial discretisation
Conservation equations for an arbitrary element
dUe
dt
=
1
Ωe
0 Ωe
0
∂FI
∂XI
dΩ0 −→ ∀ I = 1, 2, 3;
=
1
Ωe
0 ∂Ωe
0
FINI
FN
dA (Gauss Divergence theorem)
≈
1
Ωe
0 f∈Λf
e
FC
Nef
Cef
e FC
Ne f
Ce f Ωe
0
Traditional cell centred Finite Volume Method
dUe
dt
=
1
Ωe
0



f∈Λf
e
FC
Nef
Cef


 ; FC
Nef
=





tC
1
ρ0
pC ⊗ N
1
ρ0
tC · pC





Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 9
Introduction Governing equations Numerical methodology Results Conclusions
Scheme of presentation
1. Introduction
2. Governing equations
3. Numerical methodology
Spatial discretisation
Flux computation
Involutions
Evolution
4. Results
5. Conclusions
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 10
Introduction Governing equations Numerical methodology Results Conclusions
Lagrangian contact dynamics
Rankine-Hugoniot jump conditions
c U = F N
where = + − −
c p = t
c F =
1
ρ0
p ⊗ N
c E =
1
ρ0
PT
p · N
X, x
Y, y
Z, z
Ω+
0
Ω−
0
N+
N−
n−
n+
Ω+(t)
Ω−(t)
φ+
φ−
n−
n+
c−
s
c+
s
c+
pc−
p
Time t = 0
Time t
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 11
Introduction Governing equations Numerical methodology Results Conclusions
Acoustic Riemann solver
Jump condition for linear momentum
c p = t
Normal jump → cp pn = tn
Tangential jump → cs pt = tt
p+
n , t+
np−
n , t−
n
c+
pc−
p
pC
n , tC
n
x
t
Normal jump
p+
t , t+
tp−
t , t−
t
c+
sc−
s
pC
t , tC
t
x
t
Tangential jump
Upwinding numerical stabilisation
p
C
=
c−
p p−
n + c+
p p+
n
c−
p + c+
p
+
c−
s p−
t + c+
s p+
t
c−
s + c+
s
pC
Ave
+
t+
n − t−
n
c−
p + c+
p
+
t+
t − t−
t
c−
s + c+
s
pC
Stab
t
C
=
c+
p t−
n + c−
p t+
n
c−
p + c+
p
+
c+
s t−
t + c−
s t+
t
c−
s + c+
s
tC
Ave
+
c−
p c+
p (p+
n − p−
n )
c−
p + c+
p
+
c−
s c+
s (p+
t − p−
t )
c−
s + c+
s
tC
Stab
Linear reconstruction procedure + limiter (monotonicity) for U−,+
.
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 12
Introduction Governing equations Numerical methodology Results Conclusions
Scheme of presentation
1. Introduction
2. Governing equations
3. Numerical methodology
Spatial discretisation
Flux computation
Involutions
Evolution
4. Results
5. Conclusions
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 13
Introduction Governing equations Numerical methodology Results Conclusions
Godunov-type FVM
Standard FV update (CURL F = 0)
dFe
dt
=
1
Ωe
0
f∈Λ
f
e
pC
f
ρ0
⊗ Cef X
Constrained FV update (CURL F = 0)
[Dedner et al., 2002; Lee et al., 2013]
dFe
dt
=
1
Ωe
0
f∈Λ
f
e
˜pC
f
ρ0
⊗ Cef
• Algorithm is entitled ’C-TOUCH’.
pe
pC
f −→
˜pe
Ge

˜pC
f
←−
pa
Constrained transport schemes are widely used in Magnetohydrodynamics (MHD).
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 14
Introduction Governing equations Numerical methodology Results Conclusions
Scheme of presentation
1. Introduction
2. Governing equations
3. Numerical methodology
Spatial discretisation
Flux computation
Involutions
Evolution
4. Results
5. Conclusions
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 15
Introduction Governing equations Numerical methodology Results Conclusions
Time integration
Two stage Runge-Kutta time integration
1st
RK stage −→ U∗
e = Un
e + ∆t ˙U
n
e(Un
e, tn
)
2nd
RK stage −→ U∗∗
e = U∗
e + ∆t ˙U
∗
e (U∗
e , tn+1
)
Un+1
e =
1
2
(Un
e + U∗∗
e )
with stability constraint:
∆t = αCFL
hmin
cp,max
; cp,max = max
a
(ca
p)
An explicit Total Variation Diminishing Runge-Kutta time integration scheme.
Monolithic time update for geometry.
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 16
Introduction Governing equations Numerical methodology Results Conclusions
Scheme of presentation
1. Introduction
2. Governing equations
3. Numerical methodology
4. Results
Mesh convergence
Highly non-linear problem
Von-Mises plasticity
Contact problems
5. Conclusions
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 17
Introduction Governing equations Numerical methodology Results Conclusions
Scheme of presentation
1. Introduction
2. Governing equations
3. Numerical methodology
4. Results
Mesh convergence
Highly non-linear problem
Von-Mises plasticity
Contact problems
5. Conclusions
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 18
Introduction Governing equations Numerical methodology Results Conclusions
Low dispersion cube
X, x
Y, y
Z, z
(0, 0, 0)
(1, 1, 1)
Displacements scaled 300 times
t = 0 s t = 2 ms t = 4 ms t = 6 ms
Pressure (Pa)
Boundary conditions
1. Symmetric at:
X = 0, Y = 0, Z = 0
2. Skew-symmetric at:
X = 1, Y = 1, Z = 1
Analytical solution
u(X, t) = U0 cos
√
3
2
cdπt





A sin
πX1
2 cos
πX2
2 cos
πX3
2
B cos
πX1
2 sin
πX2
2 cos
πX3
2
C cos
πX1
2 cos
πX2
2 sin
πX3
2





Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 19
Problem description: Unit side cube, linear elastic material, ρ0 = 1100 kg/m3
, E = 17 MPa, ν = 0.3
and αCFL = 0.3.
Introduction Governing equations Numerical methodology Results Conclusions
Low dispersion cube: Mesh convergence
Velocity at t = 0.004 s
10
−2
10
−1
10
0
10
−7
10
−6
10
−5
10
−4
Grid Size (m)
L2NormError
vx
vy
vZ
Slope = 2
Stress at t = 0.004 s
10
−2
10
−1
10
0
10
−7
10
−6
10
−5
10
−4
Grid Size (m)
L2NormError
Pxx
Pyy
Pzz
Slope = 2
Demonstrates second order convergence for velocities and stresses.
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 20
Problem description: Unit side cube, linear elastic material, ρ0 = 1100 kg/m3
, E = 17 MPa, ν = 0.3
and αCFL = 0.3.
Introduction Governing equations Numerical methodology Results Conclusions
Scheme of presentation
1. Introduction
2. Governing equations
3. Numerical methodology
4. Results
Mesh convergence
Highly non-linear problem
Von-Mises plasticity
Contact problems
5. Conclusions
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 21
Introduction Governing equations Numerical methodology Results Conclusions
Twisting column
X, x
Y, y
(−0.5, 0, 0.5)
(0.5, 6, −0.5)
Z, z
ω0 = [0, Ω sin(πY/2L), 0]T
L
[Twisting column]
Mesh refinement at t = 0.1 s
(a) 4 × 24 × 4 (b) 8 × 48 × 8 (c) 40 × 240 × 40
(a) 4 × 24 × 4
(b) 8 × 48 × 8
(c) 40 × 240 × 40
Pressure (Pa)
Demonstrates the robustness of the numerical scheme
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 22
Problem description: Nearly incompressible neo-Hookean material, ρ0 = 1100 kg/m3
, E = 17 MPa,
ν = 0.45, αCFL = 0.3 and Ω = 105 rad/s.
Introduction Governing equations Numerical methodology Results Conclusions
Comparison of various alternative numerical schemes
t = 0.1 s
C-TOUCH P-TOUCH B-bar Taylor Hood PG-FEM Hu-Washizu JST-SPH SUPG-SPH
Pressure (Pa)
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 23
Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3
,
E = 17 MPa, ν = 0.495, αCFL = 0.3 and Ω = 105 rad/s.
Introduction Governing equations Numerical methodology Results Conclusions
Scheme of presentation
1. Introduction
2. Governing equations
3. Numerical methodology
4. Results
Mesh convergence
Highly non-linear problem
Von-Mises plasticity
Contact problems
5. Conclusions
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 24
Introduction Governing equations Numerical methodology Results Conclusions
Taylor impact
X, x
Y, y
v0
(−0.0032, 0, 0)
(0.0032, 0.0324, 0)
Z, z
r0
[Taylor impact]
Evolution of pressure wave
t = 0.1 µs t = 0.2 µs t = 0.3 µs t = 0.4 µs t = 0.5 µs t = 0.6 µs
Pressure (Pa)
Demonstrates the ability of the algorithm to simulate plastic behaviour.
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 25
Problem description: Hyperelastic-plastic material, ρ0 = 8930 kg/m3
, E = 117 GPa, ν = 0.35,
αCFL = 0.3, ¯τ0
y = 0.4 GPa, H = 0.1 GPa and v0 = −227 m/s.
Introduction Governing equations Numerical methodology Results Conclusions
Scheme of presentation
1. Introduction
2. Governing equations
3. Numerical methodology
4. Results
Mesh convergence
Highly non-linear problem
Von-Mises plasticity
Contact problems
5. Conclusions
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 26
Introduction Governing equations Numerical methodology Results Conclusions
Bar rebound
X, x
Y, y
v0
(−0.0032, 0, 0)
(0.0032, 0.0324, 0)
Z, z
r0
0.004
[Bar rebound]
t = 3 ms t = 6 ms t = 12 ms t = 18 ms t = 27 ms
Pressure (Pa)
Demonstrates the ability of the algorithm to simulate contact problems.
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 27
Problem description: Nearly incompressible neo-Hookean material, ρ0 = 8930 kg/m3
, E = 585 MPa,
[Lahiri et al., 2010] ν = 0.45, αCFL = 0.3 and v0 = −150 m/s.
Introduction Governing equations Numerical methodology Results Conclusions
Bar rebound
X, x
Y, y
v0
(−0.0032, 0, 0)
(0.0032, 0.0324, 0)
Z, z
r0
0.004
y Displacement of the points X = [0, 0.0324, 0]T
and X = [0, 0, 0]T
0 0.5 1 1.5 2 2.5 3
x 10
−4
−20
−16
−12
−8
−4
0
4
8
x 10
−3
Time (sec)
yDispacement(m)
Top (2880 cells)
Top (23040 cells)
Bottom (2880 cells)
Bottom (23040 cells)
Demonstrates the ability of the algorithm to simulate contact problems.
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 28
Problem description: Nearly incompressible neo-Hookean material, ρ0 = 8930 kg/m3
, E = 585 MPa,
[Lahiri et al., 2010] ν = 0.45, αCFL = 0.3 and v0 = −150 m/s.
Introduction Governing equations Numerical methodology Results Conclusions
Torus impact
[Torus impact]
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 29
Problem description: Neo-Hookean material, ρ0 = 1000 kg/m3
, E = 1 MPa, ν = 0.4, αCFL = 0.3 and
v0 = −3 m/s.
Introduction Governing equations Numerical methodology Results Conclusions
Scheme of presentation
1. Introduction
2. Governing equations
3. Numerical methodology
4. Results
5. Conclusions
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 30
Introduction Governing equations Numerical methodology Results Conclusions
Conclusions and further research
Conclusions
• Upwind CC-FVM is presented for fast solid dynamic simulations within the OpenFOAM
environment.
• Linear elements can be used without usual locking.
• Velocities and stresses display the same rate of convergence.
On-going work
• Investigation into an advanced Roe’s Riemann solver with robust shock capturing algorithm.
• Extension to multiple body and self contact.
• Ability to handle tetrahedral elements.
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 31
Introduction Governing equations Numerical methodology Results Conclusions
References
Published / accepted
• J. Haider, C. H. Lee, A. J. Gil and J. Bonet. "A first order hyperbolic framework for large strain computational solid
dynamics: An upwind cell centred Total Lagrangian scheme", IJNME (2016), DOI: 10.1002/nme.5293.
• A. J. Gil, C. H. Lee, J. Bonet and R. Ortigosa. "A first order hyperbolic framework for large strain computational solid
dynamics. Part II: Total Lagrangian compressible, nearly incompressible and truly incompressible elasticity",
CMAME (2016); 300: 146-181.
• J. Bonet, A. J. Gil, C. H. Lee, M. Aguirre and R. Ortigosa. "A first order hyperbolic framework for large strain
computational solid dynamics. Part I: Total Lagrangian isothermal elasticity", CMAME (2015); 283: 689-732.
• M. Aguirre, A. J. Gil, J. Bonet and C. H. Lee. "An upwind vertex centred Finite Volume solver for Lagrangian solid
dynamics", JCP (2015); 300: 387-422.
• C. H. Lee, A. J. Gil and J. Bonet. "Development of a cell centred upwind finite volume algorithm for a new
conservation law formulation in structural dynamics", Computers and Structures (2013); 118: 13-38.
Under review
• C. H. Lee, A. J. Gil, G. Greto, S. Kulasegaram and J. Bonet. "A new Jameson-Schmidt-Turkel Smooth Particle
Hydrodynamics algorithm for large strain explicit fast dynamics, CMAME.
• C. H. Lee, A. J. Gil, J. Bonet and S. Kulasegaram. "An efficient Streamline Upwind Petrov-Galerkin Smooth Particle
Hydrodynamics algorithm for large strain explicit fast dynamics, CMAME.
In preparation
• J. Haider, C. H. Lee, A. J. Gil, A. Huerta and J. Bonet. "Contact dynamics in OpenFOAM, JCP.
• J. Bonet, A. J. Gil, C. H. Lee, A. Huerta and J. Haider. "Adapted Roe’s Riemann solver in explicit fast solid
dynamics, JCP.
http://www.jibranhaider.weebly.com/research
Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 32

More Related Content

PDF
An upwind cell centred Finite Volume Method for nearly incompressible explici...
PDF
Large strain solid dynamics in OpenFOAM
PDF
A first order hyperbolic framework for large strain computational computation...
PDF
Slides: Simplifying Gaussian Mixture Models Via Entropic Quantization (EUSIPC...
PDF
OpenFOAM Training v5-1-en
PDF
Sampling Spectrahedra: Volume Approximation and Optimization
PDF
Final presentation
PDF
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
An upwind cell centred Finite Volume Method for nearly incompressible explici...
Large strain solid dynamics in OpenFOAM
A first order hyperbolic framework for large strain computational computation...
Slides: Simplifying Gaussian Mixture Models Via Entropic Quantization (EUSIPC...
OpenFOAM Training v5-1-en
Sampling Spectrahedra: Volume Approximation and Optimization
Final presentation
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem

What's hot (18)

PDF
Representation formula for traffic flow estimation on a network
PDF
Practical Volume Estimation of Zonotopes by a new Annealing Schedule for Cool...
PDF
Comparison of-techniques-for
PDF
Practical volume estimation of polytopes by billiard trajectories and a new a...
PDF
Bagging-Clustering Methods to Forecast Time Series
PDF
Gibbs flow transport for Bayesian inference
PDF
Approximation Algorithms for the Directed k-Tour and k-Stroll Problems
PDF
Numerical approach for Hamilton-Jacobi equations on a network: application to...
PDF
Ilya Shkredov – Subsets of Z/pZ with small Wiener norm and arithmetic progres...
PPT
An Introduction to Discrete Choice Modelling
PDF
PDF
Thiele
PDF
Improving initial generations in pso algorithm for transportation network des...
PDF
p-adic integration and elliptic curves over number fields
PDF
My PhD defence
PDF
Time distatnce
Representation formula for traffic flow estimation on a network
Practical Volume Estimation of Zonotopes by a new Annealing Schedule for Cool...
Comparison of-techniques-for
Practical volume estimation of polytopes by billiard trajectories and a new a...
Bagging-Clustering Methods to Forecast Time Series
Gibbs flow transport for Bayesian inference
Approximation Algorithms for the Directed k-Tour and k-Stroll Problems
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Ilya Shkredov – Subsets of Z/pZ with small Wiener norm and arithmetic progres...
An Introduction to Discrete Choice Modelling
Thiele
Improving initial generations in pso algorithm for transportation network des...
p-adic integration and elliptic curves over number fields
My PhD defence
Time distatnce
Ad

Similar to Large strain computational solid dynamics: An upwind cell centred Finite Volume Method (20)

PDF
Updated Lagrangian SPH
PDF
COZYME_0523.pdf
PDF
Nonnegative Matrix Factorization with Side Information for Time Series Recove...
PDF
Slides econometrics-2018-graduate-2
PDF
QMC: Transition Workshop - Selected Highlights from the Probabilistic Numeric...
PDF
A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in c...
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
Wavelet-based Reflection Symmetry Detection via Textural and Color Histograms
PPTX
Ab experiments of fluid flow in polymer microchannel
PDF
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...
PPTX
Episode 50 : Simulation Problem Solution Approaches Convergence Techniques S...
PDF
2002 santiago et al
PDF
USNCCM13
PDF
A Class of Continuous Implicit Seventh-eight method for solving y’ = f(x, y) ...
PDF
Scalable Dynamic Graph Summarization
PPT
FINITE ELEMENT FORMULATION FOR CONVECTIVE-DIFFUSIVE PROBLEMS WITH SHARP GRADI...
PDF
PDF
Vertex Centric Asynchronous Belief Propagation Algorithm for Large-Scale Graphs
PDF
nte.pdf
PDF
Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density ...
Updated Lagrangian SPH
COZYME_0523.pdf
Nonnegative Matrix Factorization with Side Information for Time Series Recove...
Slides econometrics-2018-graduate-2
QMC: Transition Workshop - Selected Highlights from the Probabilistic Numeric...
A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in c...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Wavelet-based Reflection Symmetry Detection via Textural and Color Histograms
Ab experiments of fluid flow in polymer microchannel
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...
Episode 50 : Simulation Problem Solution Approaches Convergence Techniques S...
2002 santiago et al
USNCCM13
A Class of Continuous Implicit Seventh-eight method for solving y’ = f(x, y) ...
Scalable Dynamic Graph Summarization
FINITE ELEMENT FORMULATION FOR CONVECTIVE-DIFFUSIVE PROBLEMS WITH SHARP GRADI...
Vertex Centric Asynchronous Belief Propagation Algorithm for Large-Scale Graphs
nte.pdf
Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density ...
Ad

Recently uploaded (20)

PDF
Digital Logic Computer Design lecture notes
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPT
Project quality management in manufacturing
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
PPT on Performance Review to get promotions
PPTX
Lecture Notes Electrical Wiring System Components
DOCX
573137875-Attendance-Management-System-original
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PDF
composite construction of structures.pdf
PPTX
bas. eng. economics group 4 presentation 1.pptx
Digital Logic Computer Design lecture notes
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
CH1 Production IntroductoryConcepts.pptx
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Project quality management in manufacturing
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
OOP with Java - Java Introduction (Basics)
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPT on Performance Review to get promotions
Lecture Notes Electrical Wiring System Components
573137875-Attendance-Management-System-original
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
composite construction of structures.pdf
bas. eng. economics group 4 presentation 1.pptx

Large strain computational solid dynamics: An upwind cell centred Finite Volume Method

  • 1. Introduction Governing equations Numerical methodology Results Conclusions Large strain computational solid dynamics: An upwind cell centred Finite Volume Method Jibran Haider a, b , Chun Hean Lee a , Antonio J. Gil a , Javier Bonet c & Antonio Huerta b a Zienkiewicz Centre for Computational Engineering (ZCCE), College of Engineering, Swansea University, UK b Laboratory of Computational Methods and Numerical Analysis (LaCàN), Universitat Politèchnica de Catalunya (UPC BarcelonaTech), Spain c University of Greenwich, London, UK World Congress in Computational Mechanics (24th - 29th July 2016) MS 703: Advances in Finite Element Methods for Tetrahedral Mesh Computations http://www.jibranhaider.weebly.com Funded by the Erasmus Mundus Programme and International Association for Computational Mechanics Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 1
  • 2. Introduction Governing equations Numerical methodology Results Conclusions Scheme of presentation 1. Introduction 2. Governing equations 3. Numerical methodology 4. Results 5. Conclusions Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 2
  • 3. Introduction Governing equations Numerical methodology Results Conclusions Fast transient solid dynamics Displacement based FEM/FVM formulations • Linear tetrahedral elements suffer from: × Locking in nearly incompressible materials. × First order for stresses and strains. × Poor performance in shock scenarios. Proposed mixed formulation [Haider et al., 2016] • First order conservation laws similar to the one used in CFD community. • Entitled TOtal Lagrangian Upwind Cell-centred FVM for Hyperbolic conservation laws (TOUCH). Programmed in the open-source CFD software OpenFOAM. 0 0.5 1 0 0.5 1 1.5 X-Coordinate Y-Coordinate t=0.03s -1 -0.5 0 0.5 1x 10 7 -0.5 0 0.5 1 1.5 0 0.5 1 1.5 X-Coordinate Y-Coordinate t=0.0006s Q1-P0 FEM 0 0.5 1 0 0.5 1 1.5 X-Coordinate Y-Coordinate t=0.03s -1 -0.5 0 0.5 1x 10 7 -0.5 0 0.5 1 1.5 0 0.5 1 1.5 X-Coordinate Y-Coordinate t=0.0006s Upwind FVM Aim is to bridge the gap between CFD and computational solid dynamics. Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 3
  • 4. Introduction Governing equations Numerical methodology Results Conclusions Scheme of presentation 1. Introduction 2. Governing equations 3. Numerical methodology 4. Results 5. Conclusions Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 4
  • 5. Introduction Governing equations Numerical methodology Results Conclusions Total Lagrangian formulation Conservation laws • Linear momentum ∂p ∂t = 0 · P(F) + ρ0b; p = ρ0v • Deformation gradient ∂F ∂t = 0 · 1 ρ0 p ⊗ I ; CURL F = 0 Additional equations • Total energy ∂E ∂t = 0 · 1 ρ0 PT p − Q + s An appropriate constitutive model is required to close the system. Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 5
  • 6. Introduction Governing equations Numerical methodology Results Conclusions Hyperbolic system First order conservation laws ∂U ∂t = 0 · F(U) + S U =     p F E     ; F =     P(F) 1 ρ0 p ⊗ I 1 ρ0 PT p − Q     ; S =     ρ0b 0 s     • Geometry update ∂x ∂t = 1 ρ0 p; x = X + u Adapt CFD technology to the proposed formulation. Develop an efficient low order numerical scheme for transient solid dynamics. Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 6
  • 7. Introduction Governing equations Numerical methodology Results Conclusions Scheme of presentation 1. Introduction 2. Governing equations 3. Numerical methodology Spatial discretisation Flux computation Involutions Evolution 4. Results 5. Conclusions Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 7
  • 8. Introduction Governing equations Numerical methodology Results Conclusions Scheme of presentation 1. Introduction 2. Governing equations 3. Numerical methodology Spatial discretisation Flux computation Involutions Evolution 4. Results 5. Conclusions Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 8
  • 9. Introduction Governing equations Numerical methodology Results Conclusions Spatial discretisation Conservation equations for an arbitrary element dUe dt = 1 Ωe 0 Ωe 0 ∂FI ∂XI dΩ0 −→ ∀ I = 1, 2, 3; = 1 Ωe 0 ∂Ωe 0 FINI FN dA (Gauss Divergence theorem) ≈ 1 Ωe 0 f∈Λf e FC Nef Cef e FC Ne f Ce f Ωe 0 Traditional cell centred Finite Volume Method dUe dt = 1 Ωe 0    f∈Λf e FC Nef Cef    ; FC Nef =      tC 1 ρ0 pC ⊗ N 1 ρ0 tC · pC      Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 9
  • 10. Introduction Governing equations Numerical methodology Results Conclusions Scheme of presentation 1. Introduction 2. Governing equations 3. Numerical methodology Spatial discretisation Flux computation Involutions Evolution 4. Results 5. Conclusions Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 10
  • 11. Introduction Governing equations Numerical methodology Results Conclusions Lagrangian contact dynamics Rankine-Hugoniot jump conditions c U = F N where = + − − c p = t c F = 1 ρ0 p ⊗ N c E = 1 ρ0 PT p · N X, x Y, y Z, z Ω+ 0 Ω− 0 N+ N− n− n+ Ω+(t) Ω−(t) φ+ φ− n− n+ c− s c+ s c+ pc− p Time t = 0 Time t Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 11
  • 12. Introduction Governing equations Numerical methodology Results Conclusions Acoustic Riemann solver Jump condition for linear momentum c p = t Normal jump → cp pn = tn Tangential jump → cs pt = tt p+ n , t+ np− n , t− n c+ pc− p pC n , tC n x t Normal jump p+ t , t+ tp− t , t− t c+ sc− s pC t , tC t x t Tangential jump Upwinding numerical stabilisation p C = c− p p− n + c+ p p+ n c− p + c+ p + c− s p− t + c+ s p+ t c− s + c+ s pC Ave + t+ n − t− n c− p + c+ p + t+ t − t− t c− s + c+ s pC Stab t C = c+ p t− n + c− p t+ n c− p + c+ p + c+ s t− t + c− s t+ t c− s + c+ s tC Ave + c− p c+ p (p+ n − p− n ) c− p + c+ p + c− s c+ s (p+ t − p− t ) c− s + c+ s tC Stab Linear reconstruction procedure + limiter (monotonicity) for U−,+ . Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 12
  • 13. Introduction Governing equations Numerical methodology Results Conclusions Scheme of presentation 1. Introduction 2. Governing equations 3. Numerical methodology Spatial discretisation Flux computation Involutions Evolution 4. Results 5. Conclusions Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 13
  • 14. Introduction Governing equations Numerical methodology Results Conclusions Godunov-type FVM Standard FV update (CURL F = 0) dFe dt = 1 Ωe 0 f∈Λ f e pC f ρ0 ⊗ Cef X Constrained FV update (CURL F = 0) [Dedner et al., 2002; Lee et al., 2013] dFe dt = 1 Ωe 0 f∈Λ f e ˜pC f ρ0 ⊗ Cef • Algorithm is entitled ’C-TOUCH’. pe pC f −→ ˜pe Ge  ˜pC f ←− pa Constrained transport schemes are widely used in Magnetohydrodynamics (MHD). Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 14
  • 15. Introduction Governing equations Numerical methodology Results Conclusions Scheme of presentation 1. Introduction 2. Governing equations 3. Numerical methodology Spatial discretisation Flux computation Involutions Evolution 4. Results 5. Conclusions Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 15
  • 16. Introduction Governing equations Numerical methodology Results Conclusions Time integration Two stage Runge-Kutta time integration 1st RK stage −→ U∗ e = Un e + ∆t ˙U n e(Un e, tn ) 2nd RK stage −→ U∗∗ e = U∗ e + ∆t ˙U ∗ e (U∗ e , tn+1 ) Un+1 e = 1 2 (Un e + U∗∗ e ) with stability constraint: ∆t = αCFL hmin cp,max ; cp,max = max a (ca p) An explicit Total Variation Diminishing Runge-Kutta time integration scheme. Monolithic time update for geometry. Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 16
  • 17. Introduction Governing equations Numerical methodology Results Conclusions Scheme of presentation 1. Introduction 2. Governing equations 3. Numerical methodology 4. Results Mesh convergence Highly non-linear problem Von-Mises plasticity Contact problems 5. Conclusions Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 17
  • 18. Introduction Governing equations Numerical methodology Results Conclusions Scheme of presentation 1. Introduction 2. Governing equations 3. Numerical methodology 4. Results Mesh convergence Highly non-linear problem Von-Mises plasticity Contact problems 5. Conclusions Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 18
  • 19. Introduction Governing equations Numerical methodology Results Conclusions Low dispersion cube X, x Y, y Z, z (0, 0, 0) (1, 1, 1) Displacements scaled 300 times t = 0 s t = 2 ms t = 4 ms t = 6 ms Pressure (Pa) Boundary conditions 1. Symmetric at: X = 0, Y = 0, Z = 0 2. Skew-symmetric at: X = 1, Y = 1, Z = 1 Analytical solution u(X, t) = U0 cos √ 3 2 cdπt      A sin πX1 2 cos πX2 2 cos πX3 2 B cos πX1 2 sin πX2 2 cos πX3 2 C cos πX1 2 cos πX2 2 sin πX3 2      Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 19 Problem description: Unit side cube, linear elastic material, ρ0 = 1100 kg/m3 , E = 17 MPa, ν = 0.3 and αCFL = 0.3.
  • 20. Introduction Governing equations Numerical methodology Results Conclusions Low dispersion cube: Mesh convergence Velocity at t = 0.004 s 10 −2 10 −1 10 0 10 −7 10 −6 10 −5 10 −4 Grid Size (m) L2NormError vx vy vZ Slope = 2 Stress at t = 0.004 s 10 −2 10 −1 10 0 10 −7 10 −6 10 −5 10 −4 Grid Size (m) L2NormError Pxx Pyy Pzz Slope = 2 Demonstrates second order convergence for velocities and stresses. Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 20 Problem description: Unit side cube, linear elastic material, ρ0 = 1100 kg/m3 , E = 17 MPa, ν = 0.3 and αCFL = 0.3.
  • 21. Introduction Governing equations Numerical methodology Results Conclusions Scheme of presentation 1. Introduction 2. Governing equations 3. Numerical methodology 4. Results Mesh convergence Highly non-linear problem Von-Mises plasticity Contact problems 5. Conclusions Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 21
  • 22. Introduction Governing equations Numerical methodology Results Conclusions Twisting column X, x Y, y (−0.5, 0, 0.5) (0.5, 6, −0.5) Z, z ω0 = [0, Ω sin(πY/2L), 0]T L [Twisting column] Mesh refinement at t = 0.1 s (a) 4 × 24 × 4 (b) 8 × 48 × 8 (c) 40 × 240 × 40 (a) 4 × 24 × 4 (b) 8 × 48 × 8 (c) 40 × 240 × 40 Pressure (Pa) Demonstrates the robustness of the numerical scheme Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 22 Problem description: Nearly incompressible neo-Hookean material, ρ0 = 1100 kg/m3 , E = 17 MPa, ν = 0.45, αCFL = 0.3 and Ω = 105 rad/s.
  • 23. Introduction Governing equations Numerical methodology Results Conclusions Comparison of various alternative numerical schemes t = 0.1 s C-TOUCH P-TOUCH B-bar Taylor Hood PG-FEM Hu-Washizu JST-SPH SUPG-SPH Pressure (Pa) Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 23 Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3 , E = 17 MPa, ν = 0.495, αCFL = 0.3 and Ω = 105 rad/s.
  • 24. Introduction Governing equations Numerical methodology Results Conclusions Scheme of presentation 1. Introduction 2. Governing equations 3. Numerical methodology 4. Results Mesh convergence Highly non-linear problem Von-Mises plasticity Contact problems 5. Conclusions Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 24
  • 25. Introduction Governing equations Numerical methodology Results Conclusions Taylor impact X, x Y, y v0 (−0.0032, 0, 0) (0.0032, 0.0324, 0) Z, z r0 [Taylor impact] Evolution of pressure wave t = 0.1 µs t = 0.2 µs t = 0.3 µs t = 0.4 µs t = 0.5 µs t = 0.6 µs Pressure (Pa) Demonstrates the ability of the algorithm to simulate plastic behaviour. Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 25 Problem description: Hyperelastic-plastic material, ρ0 = 8930 kg/m3 , E = 117 GPa, ν = 0.35, αCFL = 0.3, ¯τ0 y = 0.4 GPa, H = 0.1 GPa and v0 = −227 m/s.
  • 26. Introduction Governing equations Numerical methodology Results Conclusions Scheme of presentation 1. Introduction 2. Governing equations 3. Numerical methodology 4. Results Mesh convergence Highly non-linear problem Von-Mises plasticity Contact problems 5. Conclusions Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 26
  • 27. Introduction Governing equations Numerical methodology Results Conclusions Bar rebound X, x Y, y v0 (−0.0032, 0, 0) (0.0032, 0.0324, 0) Z, z r0 0.004 [Bar rebound] t = 3 ms t = 6 ms t = 12 ms t = 18 ms t = 27 ms Pressure (Pa) Demonstrates the ability of the algorithm to simulate contact problems. Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 27 Problem description: Nearly incompressible neo-Hookean material, ρ0 = 8930 kg/m3 , E = 585 MPa, [Lahiri et al., 2010] ν = 0.45, αCFL = 0.3 and v0 = −150 m/s.
  • 28. Introduction Governing equations Numerical methodology Results Conclusions Bar rebound X, x Y, y v0 (−0.0032, 0, 0) (0.0032, 0.0324, 0) Z, z r0 0.004 y Displacement of the points X = [0, 0.0324, 0]T and X = [0, 0, 0]T 0 0.5 1 1.5 2 2.5 3 x 10 −4 −20 −16 −12 −8 −4 0 4 8 x 10 −3 Time (sec) yDispacement(m) Top (2880 cells) Top (23040 cells) Bottom (2880 cells) Bottom (23040 cells) Demonstrates the ability of the algorithm to simulate contact problems. Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 28 Problem description: Nearly incompressible neo-Hookean material, ρ0 = 8930 kg/m3 , E = 585 MPa, [Lahiri et al., 2010] ν = 0.45, αCFL = 0.3 and v0 = −150 m/s.
  • 29. Introduction Governing equations Numerical methodology Results Conclusions Torus impact [Torus impact] Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 29 Problem description: Neo-Hookean material, ρ0 = 1000 kg/m3 , E = 1 MPa, ν = 0.4, αCFL = 0.3 and v0 = −3 m/s.
  • 30. Introduction Governing equations Numerical methodology Results Conclusions Scheme of presentation 1. Introduction 2. Governing equations 3. Numerical methodology 4. Results 5. Conclusions Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 30
  • 31. Introduction Governing equations Numerical methodology Results Conclusions Conclusions and further research Conclusions • Upwind CC-FVM is presented for fast solid dynamic simulations within the OpenFOAM environment. • Linear elements can be used without usual locking. • Velocities and stresses display the same rate of convergence. On-going work • Investigation into an advanced Roe’s Riemann solver with robust shock capturing algorithm. • Extension to multiple body and self contact. • Ability to handle tetrahedral elements. Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 31
  • 32. Introduction Governing equations Numerical methodology Results Conclusions References Published / accepted • J. Haider, C. H. Lee, A. J. Gil and J. Bonet. "A first order hyperbolic framework for large strain computational solid dynamics: An upwind cell centred Total Lagrangian scheme", IJNME (2016), DOI: 10.1002/nme.5293. • A. J. Gil, C. H. Lee, J. Bonet and R. Ortigosa. "A first order hyperbolic framework for large strain computational solid dynamics. Part II: Total Lagrangian compressible, nearly incompressible and truly incompressible elasticity", CMAME (2016); 300: 146-181. • J. Bonet, A. J. Gil, C. H. Lee, M. Aguirre and R. Ortigosa. "A first order hyperbolic framework for large strain computational solid dynamics. Part I: Total Lagrangian isothermal elasticity", CMAME (2015); 283: 689-732. • M. Aguirre, A. J. Gil, J. Bonet and C. H. Lee. "An upwind vertex centred Finite Volume solver for Lagrangian solid dynamics", JCP (2015); 300: 387-422. • C. H. Lee, A. J. Gil and J. Bonet. "Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics", Computers and Structures (2013); 118: 13-38. Under review • C. H. Lee, A. J. Gil, G. Greto, S. Kulasegaram and J. Bonet. "A new Jameson-Schmidt-Turkel Smooth Particle Hydrodynamics algorithm for large strain explicit fast dynamics, CMAME. • C. H. Lee, A. J. Gil, J. Bonet and S. Kulasegaram. "An efficient Streamline Upwind Petrov-Galerkin Smooth Particle Hydrodynamics algorithm for large strain explicit fast dynamics, CMAME. In preparation • J. Haider, C. H. Lee, A. J. Gil, A. Huerta and J. Bonet. "Contact dynamics in OpenFOAM, JCP. • J. Bonet, A. J. Gil, C. H. Lee, A. Huerta and J. Haider. "Adapted Roe’s Riemann solver in explicit fast solid dynamics, JCP. http://www.jibranhaider.weebly.com/research Jibran Haider (Swansea University, UK & UPC, Spain) WCCM XII & APCOM VI (Seoul, Korea) 32