SlideShare a Scribd company logo
ECE2030
Introduction to Computer Engineering
Lecture 8: Quine-McCluskey Method
Prof. Hsien-Hsin Sean LeeProf. Hsien-Hsin Sean Lee
School of Electrical and Computer EngineeringSchool of Electrical and Computer Engineering
Georgia TechGeorgia Tech
Quine-McCluskey Method
• A systematic solution to K-Map when more
complex function with more literals is given
• In principle, can be applied to an arbitrary
large number of inputs, i.e. works for BBnn
where
nn can be arbitrarily large
• One can translate Quine-McCluskey method
into a computer program to perform
minimization
Quine-McCluskey Method
• Two basic steps
– Finding all prime implicants of a given Boolean
function
– Select a minimal set of prime implicants that
cover this function
Q-M Method (I)
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
• Transform the given Boolean function into a canonical
SOP function
• Convert each Minterm into binary format
• Arrange each binary minterm in groups
– All the minterms in one group contain the same number of “1”
Q-M Method: Grouping minterms
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
(29) 1 1 1 0 1
(30) 1 1 1 1 0
(2) 0 0 0 1 0
(4) 0 0 1 0 0
(8) 0 1 0 0 0
(16) 1 0 0 0 0
A B C D E
(0) 0 0 0 0 0
(6) 0 0 1 1 0
(10) 0 1 0 1 0
(12) 0 1 1 0 0
(18) 1 0 0 1 0
(7) 0 0 1 1 1
(11) 0 1 0 1 1
(13) 0 1 1 0 1
(14) 0 1 1 1 0
(19) 1 0 0 1 1
Q-M Method (II)
• Combine terms with Hamming distance=1
from adjacent groups
• Check (√√) the terms being combined
– The checked terms are “covered” by the
combined new term
• Keep doing this till no combination is
possible between adjacent groups
Q-M Method: Grouping minterms
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
(29) 1 1 1 0 1
(30) 1 1 1 1 0
(2) 0 0 0 1 0
(4) 0 0 1 0 0
(8) 0 1 0 0 0
(16) 1 0 0 0 0
A B C D E
(0) 0 0 0 0 0
(6) 0 0 1 1 0
(10) 0 1 0 1 0
(12) 0 1 1 0 0
(18) 1 0 0 1 0
(7) 0 0 1 1 1
(11) 0 1 0 1 1
(13) 0 1 1 0 1
(14) 0 1 1 1 0
(19) 1 0 0 1 1
A B C D E
√
√
(0,2) 0 0 0 – 0
√
(0,4) 0 0 - 0 0
√
(0,8) 0 - 0 0 0
√
(0,16) - 0 0 0 0
√
(2,6) 0 0 - 1 0
√
(2,10) 0 - 0 1 0
√
(2,18) - 0 0 1 0
√
(4,6) 0 0 1 - 0
(4,12) 0 - 1 0 0
(8,10) 0 1 0 - 0
(8,12) 0 1 - 0 0
(16,18) 1 0 0 - 0
(6,7) 0 0 1 1 -
√
(6,14) 0 - 1 1 0√
(10,11) 0 1 0 1 -
√
(10,14) 0 1 - 1 0
(12,13) 0 1 1 0 -
√
(12,14) 0 1 1 - 0
(18,19) 1 0 0 1 -
√
A B C D E
(13,29) - 1 1 0 1
√
(14,30) - 1 1 1 0
√
Q-M Method: Grouping minterms
A B C D E
√
√
(0,2) 0 0 0 – 0
√
(0,4) 0 0 - 0 0
(0,8) 0 - 0 0 0
√
(0,16) - 0 0 0 0
√
(2,6) 0 0 - 1 0 √
(2,10) 0 - 0 1 0
√
(2,18) - 0 0 1 0
(4,6) 0 0 1 - 0
(4,12) 0 - 1 0 0
(8,10) 0 1 0 - 0
(8,12) 0 1 - 0 0
(16,18) 1 0 0 - 0
(6,7) 0 0 1 1 -
(6,14) 0 - 1 1 0
(10,11) 0 1 0 1 -
(10,14) 0 1 - 1 0
(12,13) 0 1 1 0 -
(12,14) 0 1 1 - 0
(18,19) 1 0 0 1 -
(13,29) - 1 1 0 1
(14,30) - 1 1 1 0
A B C D E
(0,2,4,6) 0 0 - – 0
√
(0,2,8,10) 0 - 0 – 0
√
(0,2,16,18) - 0 0 – 0
√
(0,4,8,12) 0 - - 0 0
√
√
(2,6,10,14) 0 - - 1 0
√
(4,6,12,14) 0 - 1 - 0
√
(8,10,12,14) 0 1 - - 0
√
A B C D E
(0,2,4,6 0 - - - 0
8,10,12,14)
√
√
√
√
√
√
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
Prime Implicants
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
(6,7) 0 0 1 1 -
(10,11) 0 1 0 1 -
(12,13) 0 1 1 0 -
(18,19) 1 0 0 1 -
(13,29) - 1 1 0 1
(14,30) - 1 1 1 0
(0,2,16,18) - 0 0 – 0
(0,2,4,6 0 - - - 0
8,10,12,14)
A B C D E
• Unchecked terms are prime implicants
Prime Implicants
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
CDBA=
DCBA=
(6,7) 0 0 1 1 -
(10,11) 0 1 0 1 -
(12,13) 0 1 1 0 -
(18,19) 1 0 0 1 -
(13,29) - 1 1 0 1
(14,30) - 1 1 1 0
(0,2,16,18) - 0 0 – 0
(0,2,4,6 0 - - - 0
8,10,12,14)
A B C D E
• Unchecked terms are prime implicants
DBCA=
DCBA=
EDBC=
EBCD=
ECB=
EA=
Q-M Method (III)
• Form a Prime Implicant Table
– X-axis: the minterm
– Y-axis: prime implicants
• An ×× is placed at the intersection of a row
and column if the corresponding prime
implicant includes the corresponding product
(term)
Q-M Method: Prime Implicant Table
0 2 4 6 7 8 1
0
1
1
1
2
1
3
1
4
1
6
1
8
1
9
2
9
30
(6,7) XX XX
(10,11) XX XX
(12,13) XX XX
(18,19) XX XX
(13,29) XX XX
(14,30) XX XX
(0,2,16,18) XX XX XX XX
(0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
Q-M Method (IV)
• Locate the essential row from the table
– These are essential prime implicants
– The row consists of minterms covered by a single “×”
• Mark all minterms covered by the essential
prime implicants
• Find non-essential prime implicants to cover
the rest of minterms
• Form the SOP function with the prime
implicants selected, which is the minimal
representation
Q-M Method
0 2 4 6 7 8 1
0
1
1
1
2
1
3
1
4
1
6
1
8
1
9
2
9
30
(6,7) XX XX
(10,11) XX XX
(12,13) XX XX
(18,19) XX XX
(13,29) XX XX
(14,30) XX XX
(0,2,16,18) XX XX XX XX
(0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
Q-M Method
0 2 4 6 7 8 1
0
1
1
1
2
1
3
1
4
1
6
1
8
1
9
2
9
30
(6,7) XX XX
(10,11) XX XX
(12,13) XX XX
(18,19) XX XX
(13,29) XX XX
(14,30) XX XX
(0,2,16,18) XX XX XX XX
(0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
• Select (0,2,4,6,8,10,12,14)
Q-M Method
0 2 4 6 7 8 1
0
1
1
1
2
1
3
1
4
1
6
1
8
1
9
2
9
30
(6,7) XX XX
(10,11) XX XX
(12,13) XX XX
(18,19) XX XX
(13,29) XX XX
(14,30) XX XX
(0,2,16,18) XX XX XX XX
(0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
• Select (0,2,4,6,8,10,12,14)
Q-M Method
0 2 4 6 7 8 1
0
1
1
1
2
1
3
1
4
1
6
1
8
1
9
2
9
30
(6,7) XX XX
(10,11) XX XX
(12,13) XX XX
(18,19) XX XX
(13,29) XX XX
(14,30) XX XX
(0,2,16,18) XX XX XX XX
(0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
• Select (0,2,4,6,8,10,12,14), (6,7)
Q-M Method
0 2 4 6 7 8 1
0
1
1
1
2
1
3
1
4
1
6
1
8
1
9
2
9
30
(6,7) XX XX
(10,11) XX XX
(12,13) XX XX
(18,19) XX XX
(13,29) XX XX
(14,30) XX XX
(0,2,16,18) XX XX XX XX
(0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
• Select (0,2,4,6,8,10,12,14), (6,7)
Q-M Method
0 2 4 6 7 8 1
0
1
1
1
2
1
3
1
4
1
6
1
8
1
9
2
9
30
(6,7) XX XX
(10,11) XX XX
(12,13) XX XX
(18,19) XX XX
(13,29) XX XX
(14,30) XX XX
(0,2,16,18) XX XX XX XX
(0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
• Select (0,2,4,6,8,10,12,14), (6,7), (10,11)
Q-M Method
0 2 4 6 7 8 1
0
1
1
1
2
1
3
1
4
1
6
1
8
1
9
2
9
30
(6,7) XX XX
(10,11) XX XX
(12,13) XX XX
(18,19) XX XX
(13,29) XX XX
(14,30) XX XX
(0,2,16,18) XX XX XX XX
(0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
• Select (0,2,4,6,8,10,12,14), (6,7), (10,11)
Q-M Method
0 2 4 6 7 8 1
0
1
1
1
2
1
3
1
4
1
6
1
8
1
9
2
9
30
(6,7) XX XX
(10,11) XX XX
(12,13) XX XX
(18,19) XX XX
(13,29) XX XX
(14,30) XX XX
(0,2,16,18) XX XX XX XX
(0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
• Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18)
Q-M Method
0 2 4 6 7 8 1
0
1
1
1
2
1
3
1
4
1
6
1
8
1
9
2
9
30
(6,7) XX XX
(10,11) XX XX
(12,13) XX XX
(18,19) XX XX
(13,29) XX XX
(14,30) XX XX
(0,2,16,18) XX XX XX XX
(0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
• Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18)
Q-M Method
0 2 4 6 7 8 1
0
1
1
1
2
1
3
1
4
1
6
1
8
1
9
2
9
30
(6,7) XX XX
(10,11) XX XX
(12,13) XX XX
(18,19) XX XX
(13,29) XX XX
(14,30) XX XX
(0,2,16,18) XX XX XX XX
(0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
• Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19)
Q-M Method
0 2 4 6 7 8 1
0
1
1
1
2
1
3
1
4
1
6
1
8
1
9
2
9
30
(6,7) XX XX
(10,11) XX XX
(12,13) XX XX
(18,19) XX XX
(13,29) XX XX
(14,30) XX XX
(0,2,16,18) XX XX XX XX
(0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
• Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19)
Q-M Method
0 2 4 6 7 8 1
0
1
1
1
2
1
3
1
4
1
6
1
8
1
9
2
9
30
(6,7) XX XX
(10,11) XX XX
(12,13) XX XX
(18,19) XX XX
(13,29) XX XX
(14,30) XX XX
(0,2,16,18) XX XX XX XX
(0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
• Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29)
Q-M Method
0 2 4 6 7 8 1
0
1
1
1
2
1
3
1
4
1
6
1
8
1
9
2
9
30
(6,7) XX XX
(10,11) XX XX
(12,13) XX XX
(18,19) XX XX
(13,29) XX XX
(14,30) XX XX
(0,2,16,18) XX XX XX XX
(0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
• Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29)
Q-M Method
0 2 4 6 7 8 1
0
1
1
1
2
1
3
1
4
1
6
1
8
1
9
2
9
30
(6,7) XX XX
(10,11) XX XX
(12,13) XX XX
(18,19) XX XX
(13,29) XX XX
(14,30) XX XX
(0,2,16,18) XX XX XX XX
(0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
• Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29), (14,30)
• Now all the minterms are covered by selected prime implicants !
Q-M Method
0 2 4 6 7 8 1
0
1
1
1
2
1
3
1
4
1
6
1
8
1
9
2
9
30
(6,7) XX XX
(10,11) XX XX
(12,13) XX XX
(18,19) XX XX
(13,29) XX XX
(14,30) XX XX
(0,2,16,18) XX XX XX XX
(0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX
∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
• Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29), (14,30)
• Now all the minterms are covered by selected prime implicants !
• Note that (12,13), a non-essential prime implicant, is not needed
Q-M Method Result
0 2 4 6 7 8 1
0
1
1
1
2
1
3
1
4
1
6
1
8
1
9
2
9
30
(6,7) XX XX
(10,11) XX XX
(12,13) XX XX
(18,19) XX XX
(13,29) XX XX
(14,30) XX XX
(0,2,16,18) XX XX XX XX
(0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX
EAECBEBCDEDBCDCBADCBACDBA
,10,12,14)(0,2,4,6,8
)(0,2,16,18(14,30)(13,29)(18,19)(10,11)(6,7)
30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
++++++=
+
+++++=
= ∑
Q-M Method Example 2
• Sometimes,
simplification by K-map
method could be less
than optimal due to
human error
• Quine-McCluskey
method can guarantee
an optimal answer
d(5,7,14)12)10,9,8,6,4,1,m(0,F += ∑
00 01 11 10
00 1 1 0 0
01 1 X X 1
11 1 0 0 X
10 1 1 0 1
AB
CD
Grouping minterms
(1) 0 0 0 1
(4) 0 1 0 0
(8) 1 0 0 0
A B C D
(0) 0 0 0 0
(5) 0 1 0 1
(6) 0 1 1 0
(9) 1 0 0 1
(10) 1 0 1 0
(12) 1 1 0 0
(7) 0 1 1 1
(14) 1 1 1 0
d(5,7,14)12)10,9,8,6,4,1,m(0,F += ∑
A B C D
(0,1) 0 0 0 -
(0,4) 0 - 0 0
(0,8) - 0 0 0√
√
√
√
(1,5) 0 - 0 1
(1,9) - 0 0 1
(4,5) 0 1 0 –
(4,6) 0 1 – 0
(4,12) – 1 0 0
(8,9) 1 0 0 –
(8,10) 1 0 – 0
(8,12) 1 – 0 0
√
√
√
√
√
(5,7) 0 1 - 1
(6,7) 0 1 1 -
(6,14) - 1 1 0
(10,14) 1 – 1 0
(12,14) 1 1 - 0
√
√
A B C D
(4,5,6,7) 0 1 - -
(4,6,12,14) - 1 - 0
(8,10,12,14) 1 - - 0
√
√
√
√
√
√
√
(0,1,4,5) 0 - 0 -
(0,1,8,9) - 0 0 –
(0,4,8,12) - - 0 0
√
√
√
√
√
√
√
√
√
Prime Implicants
d(5,7,14)12)10,9,8,6,4,1,m(0,F += ∑
A B C D
(4,5,6,7) 0 1 - -
(4,6,12,14) - 1 - 0
(8,10,12,14) 1 - - 0
(0,1,4,5) 0 - 0 -
(0,1,8,9) - 0 0 –
(0,4,8,12) - - 0 0
0 1 4 6 8 9 10 12 5 7 14
(0,1,4,5) XX XX XX XX
(0,1,8,9) XX XX XX XX
(0,4,8,12) XX XX XX XX
(4,5,6,7) XX XX XX XX
(4,6,12,14) XX XX XX XX
(8,10,12,14) XX XX XX XX
Don’t Care
Prime Implicants
d(5,7,14)12)10,9,8,6,4,1,m(0,F += ∑
A B C D
(4,5,6,7) 0 1 - -
(4,6,12,14) - 1 - 0
(8,10,12,14) 1 - - 0
(0,1,4,5) 0 - 0 -
(0,1,8,9) - 0 0 –
(0,4,8,12) - - 0 0
0 1 4 6 8 9 10 12 5 7 14
(0,1,4,5) XX XX XX XX
(0,1,8,9) XX XX XX XX
(0,4,8,12) XX XX XX XX
(4,5,6,7) XX XX XX XX
(4,6,12,14) XX XX XX XX
(8,10,12,14) XX XX XX XX
Don’t Care
Prime Implicants
d(5,7,14)12)10,9,8,6,4,1,m(0,F += ∑
A B C D
(4,5,6,7) 0 1 - -
(4,6,12,14) - 1 - 0
(8,10,12,14) 1 - - 0
(0,1,4,5) 0 - 0 -
(0,1,8,9) - 0 0 –(0,1,8,9) - 0 0 –
(0,4,8,12) - - 0 0
0 1 4 6 8 9 10 12 5 7 14
(0,1,4,5) XX XX XX XX
(0,1,8,9) XX XX XX XX
(0,4,8,12) XX XX XX XX
(4,5,6,7) XX XX XX XX
(4,6,12,14) XX XX XX XX
(8,10,12,14) XX XX XX XX
Don’t Care
Prime Implicants
d(5,7,14)12)10,9,8,6,4,1,m(0,F += ∑
A B C D
(4,5,6,7) 0 1 - -
(4,6,12,14) - 1 - 0
(8,10,12,14) 1 - - 0
(0,1,4,5) 0 - 0 -
(0,1,8,9) - 0 0 –(0,1,8,9) - 0 0 –
(0,4,8,12) - - 0 0
0 1 4 6 8 9 10 12 5 7 14
(0,1,4,5) XX XX XX XX
(0,1,8,9) XX XX XX XX
(0,4,8,12) XX XX XX XX
(4,5,6,7) XX XX XX XX
(4,6,12,14) XX XX XX XX
(8,10,12,14) XX XX XX XX
Don’t Care
Prime Implicants
d(5,7,14)12)10,9,8,6,4,1,m(0,F += ∑
A B C D
(4,5,6,7) 0 1 - -
(4,6,12,14) - 1 - 0
(8,10,12,14) 1 - - 0(8,10,12,14) 1 - - 0
(0,1,4,5) 0 - 0 -
(0,1,8,9) - 0 0 –(0,1,8,9) - 0 0 –
(0,4,8,12) - - 0 0
0 1 4 6 8 9 10 12 5 7 14
(0,1,4,5) XX XX XX XX
(0,1,8,9) XX XX XX XX
(0,4,8,12) XX XX XX XX
(4,5,6,7) XX XX XX XX
(4,6,12,14) XX XX XX XX
(8,10,12,14) XX XX XX XX
Don’t Care
Prime Implicants
d(5,7,14)12)10,9,8,6,4,1,m(0,F += ∑
A B C D
(4,5,6,7) 0 1 - -(4,5,6,7) 0 1 - -
(4,6,12,14) - 1 - 0
(8,10,12,14) 1 - - 0(8,10,12,14) 1 - - 0
(0,1,4,5) 0 - 0 -
(0,1,8,9) - 0 0 –(0,1,8,9) - 0 0 –
(0,4,8,12) - - 0 0
0 1 4 6 8 9 10 12 5 7 14
(0,1,4,5) XX XX XX XX
(0,1,8,9) XX XX XX XX
(0,4,8,12) XX XX XX XX
(4,5,6,7) XX XX XX XX
(4,6,12,14) XX XX XX XX
(8,10,12,14) XX XX XX XX
Don’t Care
Essential PI
Essential PI
Non-Essential PI
Q-M Method Solution
0 1 4 6 8 9 1
0
1
2
5 7 1
4
(0,1,4,5) XX XX XX XX
(0,1,8,9) XX XX XX XX
(0,4,8,12) XX XX XX XX
(4,5,6,7) XX XX XX XX
(4,6,12,14) XX XX XX XX
(8,10,12,14) XX XX XX XX
A B C D
(4,5,6,7) 0 1 - -(4,5,6,7) 0 1 - -
(4,6,12,14) - 1 - 0
(8,10,12,14) 1 - - 0(8,10,12,14) 1 - - 0
(0,1,4,5) 0 - 0 -
(0,1,8,9) - 0 0 –(0,1,8,9) - 0 0 –
(0,4,8,12) - - 0 0
Don’t Care
BADACB
d(5,7,14)12)10,9,8,6,4,1,m(0,F
++=
+= ∑
Yet Another Q-M Method Solution
0 1 4 6 8 9 1
0
1
2
5 7 1
4
(0,1,4,5) XX XX XX XX
(0,1,8,9) XX XX XX XX
(0,4,8,12) XX XX XX XX
(4,5,6,7) XX XX XX XX
(4,6,12,14) XX XX XX XX
(8,10,12,14) XX XX XX XX
A B C D
(4,5,6,7) 0 1 - -(4,5,6,7) 0 1 - -
(4,6,12,14) - 1 - 0(4,6,12,14) - 1 - 0
(8,10,12,14) 1 - - 0(8,10,12,14) 1 - - 0
(0,1,4,5) 0 - 0 -
(0,1,8,9) - 0 0 –(0,1,8,9) - 0 0 –
(0,4,8,12) - - 0 0
Don’t Care
DBDACB
d(5,7,14)12)10,9,8,6,4,1,m(0,F
++=
+= ∑
To Get the Same Answer w/ K-Map
BADACB
d(5,7,14)12)10,9,8,6,4,1,m(0,F
++=
+= ∑
00 01 11 10
00 1 1 0 0
01 1 X X 1
11 1 0 0 X
10 1 1 0 1
AB
CD
00 01 11 10
00 1 1 0 0
01 1 X X 1
11 1 0 0 X
10 1 1 0 1
AB
CD
DBDACB
d(5,7,14)12)10,9,8,6,4,1,m(0,F
++=
+= ∑

More Related Content

PDF
bayesImageS: an R package for Bayesian image analysis
PDF
Solution Manual : Chapter - 01 Functions
PDF
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
PDF
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
PDF
Examens math
PDF
Solution Manual : Chapter - 05 Integration
PDF
MUMS Undergraduate Workshop - Quantifying Uncertainty in Hazard Forecasting -...
PDF
Iceaa07 Foils
bayesImageS: an R package for Bayesian image analysis
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Examens math
Solution Manual : Chapter - 05 Integration
MUMS Undergraduate Workshop - Quantifying Uncertainty in Hazard Forecasting -...
Iceaa07 Foils

What's hot (20)

PDF
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
PDF
Hand book of Howard Anton calculus exercises 8th edition
PDF
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Mexico city ta...
PDF
Solution Manual : Chapter - 02 Limits and Continuity
PDF
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
PDF
Data Smashing
PDF
Capitulo 5 Soluciones Purcell 9na Edicion
PDF
Applied mathematics for complex engineering
PDF
Classical inference in/for physics
PDF
Pc12 sol c08_8-6
PDF
Universal Prediction without assuming either Discrete or Continuous
PDF
Applied mathematics for CBE assignment
PPT
Who wants to pass this course
DOC
Statistics assignment 7
PDF
Math06reviewsheet (3)
PDF
31350052 introductory-mathematical-analysis-textbook-solution-manual
PDF
Measures of different reliability parameters for a complex redundant system u...
PDF
Tetsunao Matsuta
PDF
Geometry Transformation
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
Hand book of Howard Anton calculus exercises 8th edition
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Mexico city ta...
Solution Manual : Chapter - 02 Limits and Continuity
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
Data Smashing
Capitulo 5 Soluciones Purcell 9na Edicion
Applied mathematics for complex engineering
Classical inference in/for physics
Pc12 sol c08_8-6
Universal Prediction without assuming either Discrete or Continuous
Applied mathematics for CBE assignment
Who wants to pass this course
Statistics assignment 7
Math06reviewsheet (3)
31350052 introductory-mathematical-analysis-textbook-solution-manual
Measures of different reliability parameters for a complex redundant system u...
Tetsunao Matsuta
Geometry Transformation
Ad

Viewers also liked (20)

PPT
Lec8 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Dynamic Sch...
PPT
Lec6 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Can...
PPT
Lec20 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Da...
PPT
Lec10 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Mu...
PPT
Lec7 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Dynamic Sch...
PPT
Lec7 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Kar...
PPT
Lec14 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Se...
PPT
Lec4 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- ISA
PPT
Lec1 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Intro
PPT
Lec5 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Branch Pred...
PPT
Lec2 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Num...
PPT
Lec6 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Instruction...
PPT
Lec3 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Performance
PPT
Lec18 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- In...
PPT
Lec19 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Pr...
PPT
Lec3 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMO...
PPT
Lec9 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Com...
PPT
Lec1 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Pipelining
PPT
Lec17 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Me...
PPT
Lec13 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Sh...
Lec8 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Dynamic Sch...
Lec6 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Can...
Lec20 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Da...
Lec10 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Mu...
Lec7 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Dynamic Sch...
Lec7 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Kar...
Lec14 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Se...
Lec4 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- ISA
Lec1 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Intro
Lec5 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Branch Pred...
Lec2 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Num...
Lec6 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Instruction...
Lec3 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Performance
Lec18 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- In...
Lec19 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Pr...
Lec3 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMO...
Lec9 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Com...
Lec1 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Pipelining
Lec17 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Me...
Lec13 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Sh...
Ad

Similar to Lec8 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Quinn-McCluskey Method (20)

PPTX
quine mc cluskey method
PPTX
3aquine-mccluskeymethod-191016140548 (2)[1].pptx
PPT
Karnaugh
PPTX
PRINCIPLES OF COMBINATIONAL LOGIC-2
PDF
Quine mccluskey method
PDF
Lecture6 Chapter3- Function Simplification using Quine-MacCluskey Method.pdf
PDF
tabulation method.pdf
PPTX
session 5 -quinemcclusky-Tabulation method.pptx
PPTX
chapter3-Tacghmgc fu ftubular method DELETED.pptx
PPTX
Simplification of switching functions
PPTX
Operations Research - The Big M Method
PPTX
MATRICES-36-100.pptx King namaste namaste namaste
PPT
Unit 1(stld)
PDF
Quine Mc Clusky (Tabular) method
PPT
STLD- Switching functions
PPTX
Linear Algebra- Gauss Elim-converted.pptx
PPTX
Quine Mc Cluskey Method
PPTX
Simplex Method
PPTX
Operations Research - The Two Phase Method
PPTX
The Big M Method - Operation Research
quine mc cluskey method
3aquine-mccluskeymethod-191016140548 (2)[1].pptx
Karnaugh
PRINCIPLES OF COMBINATIONAL LOGIC-2
Quine mccluskey method
Lecture6 Chapter3- Function Simplification using Quine-MacCluskey Method.pdf
tabulation method.pdf
session 5 -quinemcclusky-Tabulation method.pptx
chapter3-Tacghmgc fu ftubular method DELETED.pptx
Simplification of switching functions
Operations Research - The Big M Method
MATRICES-36-100.pptx King namaste namaste namaste
Unit 1(stld)
Quine Mc Clusky (Tabular) method
STLD- Switching functions
Linear Algebra- Gauss Elim-converted.pptx
Quine Mc Cluskey Method
Simplex Method
Operations Research - The Two Phase Method
The Big M Method - Operation Research

More from Hsien-Hsin Sean Lee, Ph.D. (14)

PPT
Lec16 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Fi...
PPT
Lec15 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Re...
PPT
Lec12 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Ad...
PPT
Lec11 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- De...
PPT
Lec5 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Boo...
PPT
Lec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOS
PPT
Lec15 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- EPIC VLIW
PPT
Lec14 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech --- Coherence
PPT
Lec13 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- SMP
PPT
Lec13 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Multicore
PPT
Lec12 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- P6, Netbur...
PPT
Lec11 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Memory part3
PPT
Lec10 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Memory part2
PPT
Lec9 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Memory part 1
Lec16 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Fi...
Lec15 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Re...
Lec12 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Ad...
Lec11 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- De...
Lec5 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Boo...
Lec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOS
Lec15 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- EPIC VLIW
Lec14 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech --- Coherence
Lec13 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- SMP
Lec13 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Multicore
Lec12 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- P6, Netbur...
Lec11 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Memory part3
Lec10 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Memory part2
Lec9 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Memory part 1

Recently uploaded (20)

PPTX
ATL_Arduino_Complete_Presentation_AI_Visuals.pptx
PPTX
ERP good ERP good ERP good ERP good good ERP good ERP good
PDF
Prescription1 which to be used for periodo
PPTX
5. MEASURE OF INTERIOR AND EXTERIOR- MATATAG CURRICULUM.pptx
PPTX
figurative-languagepowerpoint-150309132252-conversion-gate01.pptx
PPTX
title _yeOPC_Poisoning_Presentation.pptx
PPTX
executive branch_no record.pptxsvvsgsggs
PDF
Core Components of IoT, The elements need for IOT
PDF
Cableado de Controladores Logicos Programables
PPTX
Embedded for Artificial Intelligence 1.pptx
PPTX
Nanokeyer nano keyekr kano ketkker nano keyer
PPTX
PROGRAMMING-QUARTER-2-PYTHON.pptxnsnsndn
PPTX
KVL KCL ppt electrical electronics eee tiet
PDF
Lifting Equipment Inspection Checklist with eAuditor Audits & Inspections
PPT
FABRICATION OF MOS FET BJT DEVICES IN NANOMETER
PPTX
dhcp concept.pptxfeegrvewfegrgerhtrhtrhredew
PPTX
Embeded System for Artificial intelligence 2.pptx
PDF
Layer23-Switch.com The Cisco Catalyst 9300 Series is Cisco’s flagship stackab...
PDF
Colorful Illustrative Digital Education For Children Presentation.pdf
PPTX
1.pptxsadafqefeqfeqfeffeqfqeqfeqefqfeqfqeffqe
ATL_Arduino_Complete_Presentation_AI_Visuals.pptx
ERP good ERP good ERP good ERP good good ERP good ERP good
Prescription1 which to be used for periodo
5. MEASURE OF INTERIOR AND EXTERIOR- MATATAG CURRICULUM.pptx
figurative-languagepowerpoint-150309132252-conversion-gate01.pptx
title _yeOPC_Poisoning_Presentation.pptx
executive branch_no record.pptxsvvsgsggs
Core Components of IoT, The elements need for IOT
Cableado de Controladores Logicos Programables
Embedded for Artificial Intelligence 1.pptx
Nanokeyer nano keyekr kano ketkker nano keyer
PROGRAMMING-QUARTER-2-PYTHON.pptxnsnsndn
KVL KCL ppt electrical electronics eee tiet
Lifting Equipment Inspection Checklist with eAuditor Audits & Inspections
FABRICATION OF MOS FET BJT DEVICES IN NANOMETER
dhcp concept.pptxfeegrvewfegrgerhtrhtrhredew
Embeded System for Artificial intelligence 2.pptx
Layer23-Switch.com The Cisco Catalyst 9300 Series is Cisco’s flagship stackab...
Colorful Illustrative Digital Education For Children Presentation.pdf
1.pptxsadafqefeqfeqfeffeqfqeqfeqefqfeqfqeffqe

Lec8 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- Quinn-McCluskey Method

  • 1. ECE2030 Introduction to Computer Engineering Lecture 8: Quine-McCluskey Method Prof. Hsien-Hsin Sean LeeProf. Hsien-Hsin Sean Lee School of Electrical and Computer EngineeringSchool of Electrical and Computer Engineering Georgia TechGeorgia Tech
  • 2. Quine-McCluskey Method • A systematic solution to K-Map when more complex function with more literals is given • In principle, can be applied to an arbitrary large number of inputs, i.e. works for BBnn where nn can be arbitrarily large • One can translate Quine-McCluskey method into a computer program to perform minimization
  • 3. Quine-McCluskey Method • Two basic steps – Finding all prime implicants of a given Boolean function – Select a minimal set of prime implicants that cover this function
  • 4. Q-M Method (I) ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, • Transform the given Boolean function into a canonical SOP function • Convert each Minterm into binary format • Arrange each binary minterm in groups – All the minterms in one group contain the same number of “1”
  • 5. Q-M Method: Grouping minterms ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, (29) 1 1 1 0 1 (30) 1 1 1 1 0 (2) 0 0 0 1 0 (4) 0 0 1 0 0 (8) 0 1 0 0 0 (16) 1 0 0 0 0 A B C D E (0) 0 0 0 0 0 (6) 0 0 1 1 0 (10) 0 1 0 1 0 (12) 0 1 1 0 0 (18) 1 0 0 1 0 (7) 0 0 1 1 1 (11) 0 1 0 1 1 (13) 0 1 1 0 1 (14) 0 1 1 1 0 (19) 1 0 0 1 1
  • 6. Q-M Method (II) • Combine terms with Hamming distance=1 from adjacent groups • Check (√√) the terms being combined – The checked terms are “covered” by the combined new term • Keep doing this till no combination is possible between adjacent groups
  • 7. Q-M Method: Grouping minterms ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, (29) 1 1 1 0 1 (30) 1 1 1 1 0 (2) 0 0 0 1 0 (4) 0 0 1 0 0 (8) 0 1 0 0 0 (16) 1 0 0 0 0 A B C D E (0) 0 0 0 0 0 (6) 0 0 1 1 0 (10) 0 1 0 1 0 (12) 0 1 1 0 0 (18) 1 0 0 1 0 (7) 0 0 1 1 1 (11) 0 1 0 1 1 (13) 0 1 1 0 1 (14) 0 1 1 1 0 (19) 1 0 0 1 1 A B C D E √ √ (0,2) 0 0 0 – 0 √ (0,4) 0 0 - 0 0 √ (0,8) 0 - 0 0 0 √ (0,16) - 0 0 0 0 √ (2,6) 0 0 - 1 0 √ (2,10) 0 - 0 1 0 √ (2,18) - 0 0 1 0 √ (4,6) 0 0 1 - 0 (4,12) 0 - 1 0 0 (8,10) 0 1 0 - 0 (8,12) 0 1 - 0 0 (16,18) 1 0 0 - 0 (6,7) 0 0 1 1 - √ (6,14) 0 - 1 1 0√ (10,11) 0 1 0 1 - √ (10,14) 0 1 - 1 0 (12,13) 0 1 1 0 - √ (12,14) 0 1 1 - 0 (18,19) 1 0 0 1 - √ A B C D E (13,29) - 1 1 0 1 √ (14,30) - 1 1 1 0 √
  • 8. Q-M Method: Grouping minterms A B C D E √ √ (0,2) 0 0 0 – 0 √ (0,4) 0 0 - 0 0 (0,8) 0 - 0 0 0 √ (0,16) - 0 0 0 0 √ (2,6) 0 0 - 1 0 √ (2,10) 0 - 0 1 0 √ (2,18) - 0 0 1 0 (4,6) 0 0 1 - 0 (4,12) 0 - 1 0 0 (8,10) 0 1 0 - 0 (8,12) 0 1 - 0 0 (16,18) 1 0 0 - 0 (6,7) 0 0 1 1 - (6,14) 0 - 1 1 0 (10,11) 0 1 0 1 - (10,14) 0 1 - 1 0 (12,13) 0 1 1 0 - (12,14) 0 1 1 - 0 (18,19) 1 0 0 1 - (13,29) - 1 1 0 1 (14,30) - 1 1 1 0 A B C D E (0,2,4,6) 0 0 - – 0 √ (0,2,8,10) 0 - 0 – 0 √ (0,2,16,18) - 0 0 – 0 √ (0,4,8,12) 0 - - 0 0 √ √ (2,6,10,14) 0 - - 1 0 √ (4,6,12,14) 0 - 1 - 0 √ (8,10,12,14) 0 1 - - 0 √ A B C D E (0,2,4,6 0 - - - 0 8,10,12,14) √ √ √ √ √ √ ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
  • 9. Prime Implicants ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, (6,7) 0 0 1 1 - (10,11) 0 1 0 1 - (12,13) 0 1 1 0 - (18,19) 1 0 0 1 - (13,29) - 1 1 0 1 (14,30) - 1 1 1 0 (0,2,16,18) - 0 0 – 0 (0,2,4,6 0 - - - 0 8,10,12,14) A B C D E • Unchecked terms are prime implicants
  • 10. Prime Implicants ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, CDBA= DCBA= (6,7) 0 0 1 1 - (10,11) 0 1 0 1 - (12,13) 0 1 1 0 - (18,19) 1 0 0 1 - (13,29) - 1 1 0 1 (14,30) - 1 1 1 0 (0,2,16,18) - 0 0 – 0 (0,2,4,6 0 - - - 0 8,10,12,14) A B C D E • Unchecked terms are prime implicants DBCA= DCBA= EDBC= EBCD= ECB= EA=
  • 11. Q-M Method (III) • Form a Prime Implicant Table – X-axis: the minterm – Y-axis: prime implicants • An ×× is placed at the intersection of a row and column if the corresponding prime implicant includes the corresponding product (term)
  • 12. Q-M Method: Prime Implicant Table 0 2 4 6 7 8 1 0 1 1 1 2 1 3 1 4 1 6 1 8 1 9 2 9 30 (6,7) XX XX (10,11) XX XX (12,13) XX XX (18,19) XX XX (13,29) XX XX (14,30) XX XX (0,2,16,18) XX XX XX XX (0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
  • 13. Q-M Method (IV) • Locate the essential row from the table – These are essential prime implicants – The row consists of minterms covered by a single “×” • Mark all minterms covered by the essential prime implicants • Find non-essential prime implicants to cover the rest of minterms • Form the SOP function with the prime implicants selected, which is the minimal representation
  • 14. Q-M Method 0 2 4 6 7 8 1 0 1 1 1 2 1 3 1 4 1 6 1 8 1 9 2 9 30 (6,7) XX XX (10,11) XX XX (12,13) XX XX (18,19) XX XX (13,29) XX XX (14,30) XX XX (0,2,16,18) XX XX XX XX (0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A,
  • 15. Q-M Method 0 2 4 6 7 8 1 0 1 1 1 2 1 3 1 4 1 6 1 8 1 9 2 9 30 (6,7) XX XX (10,11) XX XX (12,13) XX XX (18,19) XX XX (13,29) XX XX (14,30) XX XX (0,2,16,18) XX XX XX XX (0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, • Select (0,2,4,6,8,10,12,14)
  • 16. Q-M Method 0 2 4 6 7 8 1 0 1 1 1 2 1 3 1 4 1 6 1 8 1 9 2 9 30 (6,7) XX XX (10,11) XX XX (12,13) XX XX (18,19) XX XX (13,29) XX XX (14,30) XX XX (0,2,16,18) XX XX XX XX (0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, • Select (0,2,4,6,8,10,12,14)
  • 17. Q-M Method 0 2 4 6 7 8 1 0 1 1 1 2 1 3 1 4 1 6 1 8 1 9 2 9 30 (6,7) XX XX (10,11) XX XX (12,13) XX XX (18,19) XX XX (13,29) XX XX (14,30) XX XX (0,2,16,18) XX XX XX XX (0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, • Select (0,2,4,6,8,10,12,14), (6,7)
  • 18. Q-M Method 0 2 4 6 7 8 1 0 1 1 1 2 1 3 1 4 1 6 1 8 1 9 2 9 30 (6,7) XX XX (10,11) XX XX (12,13) XX XX (18,19) XX XX (13,29) XX XX (14,30) XX XX (0,2,16,18) XX XX XX XX (0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, • Select (0,2,4,6,8,10,12,14), (6,7)
  • 19. Q-M Method 0 2 4 6 7 8 1 0 1 1 1 2 1 3 1 4 1 6 1 8 1 9 2 9 30 (6,7) XX XX (10,11) XX XX (12,13) XX XX (18,19) XX XX (13,29) XX XX (14,30) XX XX (0,2,16,18) XX XX XX XX (0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, • Select (0,2,4,6,8,10,12,14), (6,7), (10,11)
  • 20. Q-M Method 0 2 4 6 7 8 1 0 1 1 1 2 1 3 1 4 1 6 1 8 1 9 2 9 30 (6,7) XX XX (10,11) XX XX (12,13) XX XX (18,19) XX XX (13,29) XX XX (14,30) XX XX (0,2,16,18) XX XX XX XX (0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, • Select (0,2,4,6,8,10,12,14), (6,7), (10,11)
  • 21. Q-M Method 0 2 4 6 7 8 1 0 1 1 1 2 1 3 1 4 1 6 1 8 1 9 2 9 30 (6,7) XX XX (10,11) XX XX (12,13) XX XX (18,19) XX XX (13,29) XX XX (14,30) XX XX (0,2,16,18) XX XX XX XX (0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, • Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18)
  • 22. Q-M Method 0 2 4 6 7 8 1 0 1 1 1 2 1 3 1 4 1 6 1 8 1 9 2 9 30 (6,7) XX XX (10,11) XX XX (12,13) XX XX (18,19) XX XX (13,29) XX XX (14,30) XX XX (0,2,16,18) XX XX XX XX (0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, • Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18)
  • 23. Q-M Method 0 2 4 6 7 8 1 0 1 1 1 2 1 3 1 4 1 6 1 8 1 9 2 9 30 (6,7) XX XX (10,11) XX XX (12,13) XX XX (18,19) XX XX (13,29) XX XX (14,30) XX XX (0,2,16,18) XX XX XX XX (0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, • Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19)
  • 24. Q-M Method 0 2 4 6 7 8 1 0 1 1 1 2 1 3 1 4 1 6 1 8 1 9 2 9 30 (6,7) XX XX (10,11) XX XX (12,13) XX XX (18,19) XX XX (13,29) XX XX (14,30) XX XX (0,2,16,18) XX XX XX XX (0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, • Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19)
  • 25. Q-M Method 0 2 4 6 7 8 1 0 1 1 1 2 1 3 1 4 1 6 1 8 1 9 2 9 30 (6,7) XX XX (10,11) XX XX (12,13) XX XX (18,19) XX XX (13,29) XX XX (14,30) XX XX (0,2,16,18) XX XX XX XX (0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, • Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29)
  • 26. Q-M Method 0 2 4 6 7 8 1 0 1 1 1 2 1 3 1 4 1 6 1 8 1 9 2 9 30 (6,7) XX XX (10,11) XX XX (12,13) XX XX (18,19) XX XX (13,29) XX XX (14,30) XX XX (0,2,16,18) XX XX XX XX (0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, • Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29)
  • 27. Q-M Method 0 2 4 6 7 8 1 0 1 1 1 2 1 3 1 4 1 6 1 8 1 9 2 9 30 (6,7) XX XX (10,11) XX XX (12,13) XX XX (18,19) XX XX (13,29) XX XX (14,30) XX XX (0,2,16,18) XX XX XX XX (0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, • Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29), (14,30) • Now all the minterms are covered by selected prime implicants !
  • 28. Q-M Method 0 2 4 6 7 8 1 0 1 1 1 2 1 3 1 4 1 6 1 8 1 9 2 9 30 (6,7) XX XX (10,11) XX XX (12,13) XX XX (18,19) XX XX (13,29) XX XX (14,30) XX XX (0,2,16,18) XX XX XX XX (0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX ∑= 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, • Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29), (14,30) • Now all the minterms are covered by selected prime implicants ! • Note that (12,13), a non-essential prime implicant, is not needed
  • 29. Q-M Method Result 0 2 4 6 7 8 1 0 1 1 1 2 1 3 1 4 1 6 1 8 1 9 2 9 30 (6,7) XX XX (10,11) XX XX (12,13) XX XX (18,19) XX XX (13,29) XX XX (14,30) XX XX (0,2,16,18) XX XX XX XX (0,2,4,6,8,10,12,14) XX XX XX XX XX XX XX XX EAECBEBCDEDBCDCBADCBACDBA ,10,12,14)(0,2,4,6,8 )(0,2,16,18(14,30)(13,29)(18,19)(10,11)(6,7) 30)29,19,18,16,14,13,12,11,10,8,7,6,4,2,m(0,E)D,C,B,F(A, ++++++= + +++++= = ∑
  • 30. Q-M Method Example 2 • Sometimes, simplification by K-map method could be less than optimal due to human error • Quine-McCluskey method can guarantee an optimal answer d(5,7,14)12)10,9,8,6,4,1,m(0,F += ∑ 00 01 11 10 00 1 1 0 0 01 1 X X 1 11 1 0 0 X 10 1 1 0 1 AB CD
  • 31. Grouping minterms (1) 0 0 0 1 (4) 0 1 0 0 (8) 1 0 0 0 A B C D (0) 0 0 0 0 (5) 0 1 0 1 (6) 0 1 1 0 (9) 1 0 0 1 (10) 1 0 1 0 (12) 1 1 0 0 (7) 0 1 1 1 (14) 1 1 1 0 d(5,7,14)12)10,9,8,6,4,1,m(0,F += ∑ A B C D (0,1) 0 0 0 - (0,4) 0 - 0 0 (0,8) - 0 0 0√ √ √ √ (1,5) 0 - 0 1 (1,9) - 0 0 1 (4,5) 0 1 0 – (4,6) 0 1 – 0 (4,12) – 1 0 0 (8,9) 1 0 0 – (8,10) 1 0 – 0 (8,12) 1 – 0 0 √ √ √ √ √ (5,7) 0 1 - 1 (6,7) 0 1 1 - (6,14) - 1 1 0 (10,14) 1 – 1 0 (12,14) 1 1 - 0 √ √ A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 √ √ √ √ √ √ √ (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 √ √ √ √ √ √ √ √ √
  • 32. Prime Implicants d(5,7,14)12)10,9,8,6,4,1,m(0,F += ∑ A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 0 1 4 6 8 9 10 12 5 7 14 (0,1,4,5) XX XX XX XX (0,1,8,9) XX XX XX XX (0,4,8,12) XX XX XX XX (4,5,6,7) XX XX XX XX (4,6,12,14) XX XX XX XX (8,10,12,14) XX XX XX XX Don’t Care
  • 33. Prime Implicants d(5,7,14)12)10,9,8,6,4,1,m(0,F += ∑ A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 0 1 4 6 8 9 10 12 5 7 14 (0,1,4,5) XX XX XX XX (0,1,8,9) XX XX XX XX (0,4,8,12) XX XX XX XX (4,5,6,7) XX XX XX XX (4,6,12,14) XX XX XX XX (8,10,12,14) XX XX XX XX Don’t Care
  • 34. Prime Implicants d(5,7,14)12)10,9,8,6,4,1,m(0,F += ∑ A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 –(0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 0 1 4 6 8 9 10 12 5 7 14 (0,1,4,5) XX XX XX XX (0,1,8,9) XX XX XX XX (0,4,8,12) XX XX XX XX (4,5,6,7) XX XX XX XX (4,6,12,14) XX XX XX XX (8,10,12,14) XX XX XX XX Don’t Care
  • 35. Prime Implicants d(5,7,14)12)10,9,8,6,4,1,m(0,F += ∑ A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 –(0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 0 1 4 6 8 9 10 12 5 7 14 (0,1,4,5) XX XX XX XX (0,1,8,9) XX XX XX XX (0,4,8,12) XX XX XX XX (4,5,6,7) XX XX XX XX (4,6,12,14) XX XX XX XX (8,10,12,14) XX XX XX XX Don’t Care
  • 36. Prime Implicants d(5,7,14)12)10,9,8,6,4,1,m(0,F += ∑ A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0(8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 –(0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 0 1 4 6 8 9 10 12 5 7 14 (0,1,4,5) XX XX XX XX (0,1,8,9) XX XX XX XX (0,4,8,12) XX XX XX XX (4,5,6,7) XX XX XX XX (4,6,12,14) XX XX XX XX (8,10,12,14) XX XX XX XX Don’t Care
  • 37. Prime Implicants d(5,7,14)12)10,9,8,6,4,1,m(0,F += ∑ A B C D (4,5,6,7) 0 1 - -(4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0(8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 –(0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 0 1 4 6 8 9 10 12 5 7 14 (0,1,4,5) XX XX XX XX (0,1,8,9) XX XX XX XX (0,4,8,12) XX XX XX XX (4,5,6,7) XX XX XX XX (4,6,12,14) XX XX XX XX (8,10,12,14) XX XX XX XX Don’t Care Essential PI Essential PI Non-Essential PI
  • 38. Q-M Method Solution 0 1 4 6 8 9 1 0 1 2 5 7 1 4 (0,1,4,5) XX XX XX XX (0,1,8,9) XX XX XX XX (0,4,8,12) XX XX XX XX (4,5,6,7) XX XX XX XX (4,6,12,14) XX XX XX XX (8,10,12,14) XX XX XX XX A B C D (4,5,6,7) 0 1 - -(4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0(8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 –(0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 Don’t Care BADACB d(5,7,14)12)10,9,8,6,4,1,m(0,F ++= += ∑
  • 39. Yet Another Q-M Method Solution 0 1 4 6 8 9 1 0 1 2 5 7 1 4 (0,1,4,5) XX XX XX XX (0,1,8,9) XX XX XX XX (0,4,8,12) XX XX XX XX (4,5,6,7) XX XX XX XX (4,6,12,14) XX XX XX XX (8,10,12,14) XX XX XX XX A B C D (4,5,6,7) 0 1 - -(4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0(4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0(8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 –(0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 Don’t Care DBDACB d(5,7,14)12)10,9,8,6,4,1,m(0,F ++= += ∑
  • 40. To Get the Same Answer w/ K-Map BADACB d(5,7,14)12)10,9,8,6,4,1,m(0,F ++= += ∑ 00 01 11 10 00 1 1 0 0 01 1 X X 1 11 1 0 0 X 10 1 1 0 1 AB CD 00 01 11 10 00 1 1 0 0 01 1 X X 1 11 1 0 0 X 10 1 1 0 1 AB CD DBDACB d(5,7,14)12)10,9,8,6,4,1,m(0,F ++= += ∑