Dr. A. S. Sayyad
Professor & Head
Department of Structural Engineering
Sanjivani College of Engineering, Kopargaon 423603.
(An Autonomous Institute, Affiliated to Savitribai Phule Pune University, Pune)
Finite Element Method In Civil Engineering
Natural Coordinates for CST Element
or
Area coordinates of CST Element
3
1 2
1 2 3
A
A A
L L L
A A A
  
Natural Coordinates for CST Element
Or
Area coordinates of CST Element
Let us consider three nodded triangular element as shown in figure. (x1, y1), (x2,
y2), (x3, y3) are the Cartesian coordinates of nodes 1, 2, 3 respectively. (u1, v1), (u2,
v2), (u3, v3) are the displacements of nodes 1, 2, 3 respectively.
Let ‘P’ be the any point on the element
having Cartesian coordinates (x, y) and
natural coordinates (L1, L2, L3)
According to definition of natural coordinates
1 2 3
1 1 2 2 3 3
1 1 2 2 3 3
1
L L L
L x L x L x x
L y L y L y y
  
  
  
In matrix form
1
2 1 2 3
3 1 2 3
1
1
2 1 2 3
3 1 2 3
1 1 1 1
1 1 1 1
L
L x x x x
L y y y y
L
L x x x x
L y y y y

    
   
  
   
 
   
   
  
     
   
 

   
 
   
   
   
1 1 1 1
2 2 2 2
3 3 3 3
1
1
L a b c
L a b c x
D
L a b c y
    
   
 

   
 
   
  
   
where
     
2 3 3 2 3 1 1 3 1 2 2 1
1 2 3 3 2 1 3 1 1 3 1 1 2 2 1
2 3 2 2 3 1 2 1 2
3 3 1 3 1 3 3 2 1
D x y x y x y x y x y x y
a x y x y b x y x y c x y x y
a y y b y y c y y
a x x b x x c x x
     
     
     
     
1 1 1 1
2 2 2 2
3 3 3 3
1
1
2
L a b c
L a b c x
A
L a b c y
    
   
 

   
 
   
  
   
3 3 3
1 1 1 2 2 2
1 2 3
; and
2 2 2
a b x c y
a b x c y a b x c y
L L L
A A A
 
   
  
Let divide the total area of triangle into three parts (A1, A2, A3). Now, let us
consider any point P shifted to node 1:
1
2 3 0
A A
A A

 
     
2 3
2 3
2 3 3 2 3 3 2 2 1
1 1 1 1
1 1 1
2
2
D x x x
y y y
D x y x y xy x y xy x y A
a b x c y A

      
   
Similarly, if any point P is shifted to node 2 and 3, we get
2 2 2 2 3 3 3 3
2 and 2
a b x c y A a b x c y A
     
Therefore, natural coordinates are written as
3 3
1 1 2 2
1 2 3
2
2 2
and
2 2 2
A A
A A A A
L L L
A A A A A A
       
The variation of natural coordinates at each node is represented as

More Related Content

PPTX
Lect20
PPTX
Lect15
PPTX
Lect19
PPTX
Lect16
PPTX
Lect21
PPTX
APLICACIONES DE ESPACIO VECTORIALES
PPTX
LU decomposition
PDF
Lect20
Lect15
Lect19
Lect16
Lect21
APLICACIONES DE ESPACIO VECTORIALES
LU decomposition

What's hot (20)

PDF
3 handouts section3-5
PDF
534 hw2
PPTX
system of linear equations
PPTX
linear equation and gaussian elimination
PPTX
Crout s method for solving system of linear equations
PPTX
System of linear equation - SLE
PDF
Matlab cheatsheet
PDF
V2 i2 2013_paper10
PDF
Notions of equivalence for linear multivariable systems
DOCX
Gauss elimination method
PPTX
Gaussian elimination method & homogeneous linear equation
PPTX
Convolution&Correlation
PPTX
C 9 Coordinate Geometry Graphs
PPTX
Directs Methods
 
PPTX
Sytems of linear equation
PDF
G031201040042
PPT
Gauss elimination
PPTX
Gauss jordan
PPTX
System of linear equations
PPTX
system linear equations and matrices
3 handouts section3-5
534 hw2
system of linear equations
linear equation and gaussian elimination
Crout s method for solving system of linear equations
System of linear equation - SLE
Matlab cheatsheet
V2 i2 2013_paper10
Notions of equivalence for linear multivariable systems
Gauss elimination method
Gaussian elimination method & homogeneous linear equation
Convolution&Correlation
C 9 Coordinate Geometry Graphs
Directs Methods
 
Sytems of linear equation
G031201040042
Gauss elimination
Gauss jordan
System of linear equations
system linear equations and matrices
Ad

Similar to Lect17 (20)

PDF
D41024030
PDF
Effect of orientation angle of elliptical hole in thermoplastic composite pla...
PDF
On Some Double Integrals of H -Function of Two Variables and Their Applications
PDF
E024033041
PPT
Cpt 5 synthesis of linkages
PPTX
3D Geometry Theory 3
PDF
D028036046
PDF
Directional Derivative.pdf
PPTX
Balancing-Chemical-Equations-1.pptx
PDF
On Some Integrals of Products of H -Functions
PDF
Finite difference & interpolation
PDF
End sem solution
PDF
The scaling invariant spaces for fractional Navier- Stokes equations
PPTX
Gradient , Directional Derivative , Divergence , Curl
PDF
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
PDF
About testing the hypothesis of equality of two bernoulli
PDF
Ch02 se
PDF
Linear equations in two variables
PDF
The Study of the Wiener Processes Base on Haar Wavelet
D41024030
Effect of orientation angle of elliptical hole in thermoplastic composite pla...
On Some Double Integrals of H -Function of Two Variables and Their Applications
E024033041
Cpt 5 synthesis of linkages
3D Geometry Theory 3
D028036046
Directional Derivative.pdf
Balancing-Chemical-Equations-1.pptx
On Some Integrals of Products of H -Functions
Finite difference & interpolation
End sem solution
The scaling invariant spaces for fractional Navier- Stokes equations
Gradient , Directional Derivative , Divergence , Curl
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
About testing the hypothesis of equality of two bernoulli
Ch02 se
Linear equations in two variables
The Study of the Wiener Processes Base on Haar Wavelet
Ad

More from DrASSayyad (18)

PDF
Matrix Methods of Structural Analysis
PDF
Theory of Plates and Shells
PDF
Fem class notes
PPTX
Lect18
PPTX
Lect14
PPTX
Lect13
PPTX
Lect12
PPTX
Lect11
PPTX
Lect10
PPTX
Lect09
PPTX
Lect08
PPTX
Lect07
PPTX
Lect06
PPTX
Lect05
PPTX
Lect04
PPTX
Lect03
PPTX
Lect02
PPTX
Lect01
Matrix Methods of Structural Analysis
Theory of Plates and Shells
Fem class notes
Lect18
Lect14
Lect13
Lect12
Lect11
Lect10
Lect09
Lect08
Lect07
Lect06
Lect05
Lect04
Lect03
Lect02
Lect01

Recently uploaded (20)

PPT
Chapter 1 - Introduction to Manufacturing Technology_2.ppt
PDF
MLpara ingenieira CIVIL, meca Y AMBIENTAL
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PDF
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PPTX
ai_satellite_crop_management_20250815030350.pptx
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PDF
Cryptography and Network Security-Module-I.pdf
PPTX
CyberSecurity Mobile and Wireless Devices
PPTX
Software Engineering and software moduleing
PPTX
Module 8- Technological and Communication Skills.pptx
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PDF
Prof. Dr. KAYIHURA A. SILAS MUNYANEZA, PhD..pdf
PPTX
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
PDF
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
PDF
Computer System Architecture 3rd Edition-M Morris Mano.pdf
PPTX
Principal presentation for NAAC (1).pptx
PPTX
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
PDF
Applications of Equal_Area_Criterion.pdf
PDF
Computer organization and architecuture Digital Notes....pdf
Chapter 1 - Introduction to Manufacturing Technology_2.ppt
MLpara ingenieira CIVIL, meca Y AMBIENTAL
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
ai_satellite_crop_management_20250815030350.pptx
"Array and Linked List in Data Structures with Types, Operations, Implementat...
Cryptography and Network Security-Module-I.pdf
CyberSecurity Mobile and Wireless Devices
Software Engineering and software moduleing
Module 8- Technological and Communication Skills.pptx
August 2025 - Top 10 Read Articles in Network Security & Its Applications
Prof. Dr. KAYIHURA A. SILAS MUNYANEZA, PhD..pdf
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
Computer System Architecture 3rd Edition-M Morris Mano.pdf
Principal presentation for NAAC (1).pptx
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
Applications of Equal_Area_Criterion.pdf
Computer organization and architecuture Digital Notes....pdf

Lect17

  • 1. Dr. A. S. Sayyad Professor & Head Department of Structural Engineering Sanjivani College of Engineering, Kopargaon 423603. (An Autonomous Institute, Affiliated to Savitribai Phule Pune University, Pune) Finite Element Method In Civil Engineering Natural Coordinates for CST Element or Area coordinates of CST Element 3 1 2 1 2 3 A A A L L L A A A   
  • 2. Natural Coordinates for CST Element Or Area coordinates of CST Element Let us consider three nodded triangular element as shown in figure. (x1, y1), (x2, y2), (x3, y3) are the Cartesian coordinates of nodes 1, 2, 3 respectively. (u1, v1), (u2, v2), (u3, v3) are the displacements of nodes 1, 2, 3 respectively. Let ‘P’ be the any point on the element having Cartesian coordinates (x, y) and natural coordinates (L1, L2, L3)
  • 3. According to definition of natural coordinates 1 2 3 1 1 2 2 3 3 1 1 2 2 3 3 1 L L L L x L x L x x L y L y L y y          In matrix form 1 2 1 2 3 3 1 2 3 1 1 2 1 2 3 3 1 2 3 1 1 1 1 1 1 1 1 L L x x x x L y y y y L L x x x x L y y y y                                                             
  • 4. 1 1 1 1 2 2 2 2 3 3 3 3 1 1 L a b c L a b c x D L a b c y                              where       2 3 3 2 3 1 1 3 1 2 2 1 1 2 3 3 2 1 3 1 1 3 1 1 2 2 1 2 3 2 2 3 1 2 1 2 3 3 1 3 1 3 3 2 1 D x y x y x y x y x y x y a x y x y b x y x y c x y x y a y y b y y c y y a x x b x x c x x                         1 1 1 1 2 2 2 2 3 3 3 3 1 1 2 L a b c L a b c x A L a b c y                              3 3 3 1 1 1 2 2 2 1 2 3 ; and 2 2 2 a b x c y a b x c y a b x c y L L L A A A         
  • 5. Let divide the total area of triangle into three parts (A1, A2, A3). Now, let us consider any point P shifted to node 1: 1 2 3 0 A A A A          2 3 2 3 2 3 3 2 3 3 2 2 1 1 1 1 1 1 1 1 2 2 D x x x y y y D x y x y xy x y xy x y A a b x c y A            
  • 6. Similarly, if any point P is shifted to node 2 and 3, we get 2 2 2 2 3 3 3 3 2 and 2 a b x c y A a b x c y A       Therefore, natural coordinates are written as 3 3 1 1 2 2 1 2 3 2 2 2 and 2 2 2 A A A A A A L L L A A A A A A         The variation of natural coordinates at each node is represented as