SlideShare a Scribd company logo
Beginning Calculus
- Implicit Di¤erentiation and Inverse Functions -
Shahrizal Shamsuddin Norashiqin Mohd Idrus
Department of Mathematics,
FSMT - UPSI
(LECTURE SLIDES SERIES)
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 1 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Leraning Outcomes
Find the derivative of functions explicitly and Implicitly.
Compute the derivatives of Inverse Functions
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 2 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Know:
d
dx
(xn
) = nxn 1
, n 2 Z
Don’t know:
d
dx
xm/n
,
m
n
2 Q, n 6= 0
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 3 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Let y = xm/x .
y = xm/n
yn
= xm
d
dx
(yn
) =
d
dx
(xm
)
d
dy
(yn
)
dy
dx
= mxm 1
, chain rule:
dyn
dx
=
dyn
dy
dy
dx
nyn 1 dy
dx
= mxm 1
dy
dx
=
mxm 1
nyn 1
=
m
n
xm 1
xm/n n 1
= axa 1
with a =
m
n
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 4 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Let x2 + y2 = 25. This is not a function. The equation implicitly de…nes
y as several functions of x.
-2 -1 1 2
-2
-1
1
2
x
y
x2
+ y2
= 1
y =
p
1 x2
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 5 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Explicit Di¤erentiation
Take the derivatives of y =
p
1 x2 and y =
p
1 x2 :
d
dx
p
1 x2 =
d
dx
1 x2
1/2
=
1
2
1 x2
1/2
( 2x)
=
x
p
1 x2
d
dx
p
1 x2 =
d
dx
1 x2
1/2
=
1
2
1 x2
1/2
( 2x)
=
x
p
1 x2
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 6 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
But sometimes it is not easy to di¤erentiate such equations, for example
y4
+ xy2
= 2
) y2
=
x
p
x2 4 ( 2)
2
) y =
s
x
p
x2 + 8
2
for y de…ned explicitly as a function of x.
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 7 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Example
d
dx
x2 + y2 = 1 :
dy
dx
=
x
y
=
x
p
1 x2
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 8 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Example
d
dx
x3 + y3 = 6xy :
dy
dx
=
x2 2y
2x y2
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 9 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Example
d
dx
y4 + xy2 = 2 :
d
dx
y4
+ xy2
=
d
dx
2
4y3 dy
dx
+ y2
+ 2xy
dy
dx
= 0
dy
dx
=
y2
4y3 + 2xy
At x = 1, y = 1. So,
d
dx
y4
+ xy2
= 2
x=1
=
1
6
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 10 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Example
d
dx
sin (x + y) = y2 cos x :
dy
dx
=
cos (x + y) + y2 sin x
2y cos x cos (x + y)
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 11 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Example
d2
dx2
x4 + y4 = 16 :
d2y
dx2
=
48x2
y7
First, …nd
dy
dx
. Then
d
dx
dy
dx
.
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 12 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
The Inverse Function
Let y =
p
x, x > 0. Then, y2 = x. If we let f (x) =
p
x and
g (y) = x, then g (y) = y2.
-4 -2 2 4
-4
-2
2
4 g
f
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 13 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
In general, If y = f (x) and g (y) = x, then g (f (x)) = x.
g = f 1 and f = g 1.
y = f (x) , f 1
(y) = x
f f 1
(x) = x
Implicit di¤erentiation allows us to …nd the derivative of any inverse
function provided we know the derivative of the function.
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 14 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Example
Let y = sin 1 x.
d
dx
sin 1 x =
1
p
1 x2
Use: sin y = x.
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 15 / 16
Implicit Di¤erentiation Derivative of Inverse Functions
Example
Let y = tan 1 x. (Note: tan 1 x = arctan x).
d
dx
tan 1 x = cos2 y =
1
x2 + 1
Use: tan y = x.
VillaRINO DoMath, FSMT-UPSI
(D5) Implicit Di¤erentiation and Inverse Functions 16 / 16

More Related Content

PDF
Benginning Calculus Lecture notes 9 - derivative functions
PDF
Benginning Calculus Lecture notes 7 - exp, log
PDF
Benginning Calculus Lecture notes 3 - derivatives
PDF
Benginning Calculus Lecture notes 1 - functions
PDF
Benginning Calculus Lecture notes 13 - fundamental theorem of calculus 1 & 2
PDF
Benginning Calculus Lecture notes 4 - rules
PDF
Benginning Calculus Lecture notes 12 - anti derivatives indefinite and defini...
PDF
Benginning Calculus Lecture notes 10 - max, min
Benginning Calculus Lecture notes 9 - derivative functions
Benginning Calculus Lecture notes 7 - exp, log
Benginning Calculus Lecture notes 3 - derivatives
Benginning Calculus Lecture notes 1 - functions
Benginning Calculus Lecture notes 13 - fundamental theorem of calculus 1 & 2
Benginning Calculus Lecture notes 4 - rules
Benginning Calculus Lecture notes 12 - anti derivatives indefinite and defini...
Benginning Calculus Lecture notes 10 - max, min

What's hot (20)

PDF
Benginning Calculus Lecture notes 11 - related rates
PDF
Benginning Calculus Lecture notes 14 - areas & volumes
PDF
The Magic of Auto Differentiation
PPT
Derivative power point
PPTX
Extreme values of a function & applications of derivative
PPTX
Application of differentiation
PDF
Lesson03 The Concept Of Limit 027 Slides
PPTX
Application of Derivatives
PDF
C programming
PPT
Application of derivatives
PPT
Line drawing algorithm and antialiasing techniques
PPT
The Application of Derivatives
PPT
Lecture 7(b) derivative as a function
PPTX
Mid point line Algorithm - Computer Graphics
PPT
3.1 Extreme Values of Functions
PPT
PPTX
Limit presentation pptx
PPT
5.2 first and second derivative test
PPT
Edited Per4 Analytic Geometry
PPT
Lesson 4.3 First and Second Derivative Theory
Benginning Calculus Lecture notes 11 - related rates
Benginning Calculus Lecture notes 14 - areas & volumes
The Magic of Auto Differentiation
Derivative power point
Extreme values of a function & applications of derivative
Application of differentiation
Lesson03 The Concept Of Limit 027 Slides
Application of Derivatives
C programming
Application of derivatives
Line drawing algorithm and antialiasing techniques
The Application of Derivatives
Lecture 7(b) derivative as a function
Mid point line Algorithm - Computer Graphics
3.1 Extreme Values of Functions
Limit presentation pptx
5.2 first and second derivative test
Edited Per4 Analytic Geometry
Lesson 4.3 First and Second Derivative Theory
Ad

Viewers also liked (12)

PDF
Math Lecture 11 (Cartesian Coordinates)
PDF
Math lecture 7 (Arithmetic Sequence)
PDF
Math lecture 8 (Introduction to Trigonometry)
PDF
Benginning Calculus Lecture notes 5 - chain rule
PDF
Math lecture 6 (System of Linear Equations)
PDF
Math lecture 9 (Absolute Value in Algebra)
PPTX
A presentation on differencial calculus
PDF
Math lecture 10 (Introduction to Integration)
PDF
Benginning Calculus Lecture notes 8 - linear, quadratic approximation
PDF
Benginning Calculus Lecture notes 15 - techniques of integration
PDF
Benginning Calculus Lecture notes 2 - limits and continuity
PPT
Integral Calculus
Math Lecture 11 (Cartesian Coordinates)
Math lecture 7 (Arithmetic Sequence)
Math lecture 8 (Introduction to Trigonometry)
Benginning Calculus Lecture notes 5 - chain rule
Math lecture 6 (System of Linear Equations)
Math lecture 9 (Absolute Value in Algebra)
A presentation on differencial calculus
Math lecture 10 (Introduction to Integration)
Benginning Calculus Lecture notes 8 - linear, quadratic approximation
Benginning Calculus Lecture notes 15 - techniques of integration
Benginning Calculus Lecture notes 2 - limits and continuity
Integral Calculus
Ad

Similar to Benginning Calculus Lecture notes 6 - implicit differentiation (9)

PDF
CS210-slides-05-04-Functions-Inverse-and-Composition.pdf
PDF
01. Differentiation-Theory & solved example Module-3.pdf
PPTX
Derivatives
PPTX
DIFFERENTIATION
PPTX
Types of function
PDF
Difrentiation
PPTX
Concept of scoping in programming languages
PDF
metodos_abreviados de ecuciones diferenciales
PDF
metodos_abreviados.ecuaciones diferenciales
CS210-slides-05-04-Functions-Inverse-and-Composition.pdf
01. Differentiation-Theory & solved example Module-3.pdf
Derivatives
DIFFERENTIATION
Types of function
Difrentiation
Concept of scoping in programming languages
metodos_abreviados de ecuciones diferenciales
metodos_abreviados.ecuaciones diferenciales

Recently uploaded (20)

PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Insiders guide to clinical Medicine.pdf
PDF
Basic Mud Logging Guide for educational purpose
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Computing-Curriculum for Schools in Ghana
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Pharma ospi slides which help in ospi learning
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Pre independence Education in Inndia.pdf
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
human mycosis Human fungal infections are called human mycosis..pptx
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Insiders guide to clinical Medicine.pdf
Basic Mud Logging Guide for educational purpose
STATICS OF THE RIGID BODIES Hibbelers.pdf
Computing-Curriculum for Schools in Ghana
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
O5-L3 Freight Transport Ops (International) V1.pdf
Final Presentation General Medicine 03-08-2024.pptx
Pharma ospi slides which help in ospi learning
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Pre independence Education in Inndia.pdf
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
O7-L3 Supply Chain Operations - ICLT Program
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
FourierSeries-QuestionsWithAnswers(Part-A).pdf

Benginning Calculus Lecture notes 6 - implicit differentiation

  • 1. Beginning Calculus - Implicit Di¤erentiation and Inverse Functions - Shahrizal Shamsuddin Norashiqin Mohd Idrus Department of Mathematics, FSMT - UPSI (LECTURE SLIDES SERIES) VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 1 / 16
  • 2. Implicit Di¤erentiation Derivative of Inverse Functions Leraning Outcomes Find the derivative of functions explicitly and Implicitly. Compute the derivatives of Inverse Functions VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 2 / 16
  • 3. Implicit Di¤erentiation Derivative of Inverse Functions Know: d dx (xn ) = nxn 1 , n 2 Z Don’t know: d dx xm/n , m n 2 Q, n 6= 0 VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 3 / 16
  • 4. Implicit Di¤erentiation Derivative of Inverse Functions Let y = xm/x . y = xm/n yn = xm d dx (yn ) = d dx (xm ) d dy (yn ) dy dx = mxm 1 , chain rule: dyn dx = dyn dy dy dx nyn 1 dy dx = mxm 1 dy dx = mxm 1 nyn 1 = m n xm 1 xm/n n 1 = axa 1 with a = m n VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 4 / 16
  • 5. Implicit Di¤erentiation Derivative of Inverse Functions Let x2 + y2 = 25. This is not a function. The equation implicitly de…nes y as several functions of x. -2 -1 1 2 -2 -1 1 2 x y x2 + y2 = 1 y = p 1 x2 VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 5 / 16
  • 6. Implicit Di¤erentiation Derivative of Inverse Functions Explicit Di¤erentiation Take the derivatives of y = p 1 x2 and y = p 1 x2 : d dx p 1 x2 = d dx 1 x2 1/2 = 1 2 1 x2 1/2 ( 2x) = x p 1 x2 d dx p 1 x2 = d dx 1 x2 1/2 = 1 2 1 x2 1/2 ( 2x) = x p 1 x2 VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 6 / 16
  • 7. Implicit Di¤erentiation Derivative of Inverse Functions But sometimes it is not easy to di¤erentiate such equations, for example y4 + xy2 = 2 ) y2 = x p x2 4 ( 2) 2 ) y = s x p x2 + 8 2 for y de…ned explicitly as a function of x. VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 7 / 16
  • 8. Implicit Di¤erentiation Derivative of Inverse Functions Example d dx x2 + y2 = 1 : dy dx = x y = x p 1 x2 VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 8 / 16
  • 9. Implicit Di¤erentiation Derivative of Inverse Functions Example d dx x3 + y3 = 6xy : dy dx = x2 2y 2x y2 VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 9 / 16
  • 10. Implicit Di¤erentiation Derivative of Inverse Functions Example d dx y4 + xy2 = 2 : d dx y4 + xy2 = d dx 2 4y3 dy dx + y2 + 2xy dy dx = 0 dy dx = y2 4y3 + 2xy At x = 1, y = 1. So, d dx y4 + xy2 = 2 x=1 = 1 6 VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 10 / 16
  • 11. Implicit Di¤erentiation Derivative of Inverse Functions Example d dx sin (x + y) = y2 cos x : dy dx = cos (x + y) + y2 sin x 2y cos x cos (x + y) VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 11 / 16
  • 12. Implicit Di¤erentiation Derivative of Inverse Functions Example d2 dx2 x4 + y4 = 16 : d2y dx2 = 48x2 y7 First, …nd dy dx . Then d dx dy dx . VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 12 / 16
  • 13. Implicit Di¤erentiation Derivative of Inverse Functions The Inverse Function Let y = p x, x > 0. Then, y2 = x. If we let f (x) = p x and g (y) = x, then g (y) = y2. -4 -2 2 4 -4 -2 2 4 g f VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 13 / 16
  • 14. Implicit Di¤erentiation Derivative of Inverse Functions In general, If y = f (x) and g (y) = x, then g (f (x)) = x. g = f 1 and f = g 1. y = f (x) , f 1 (y) = x f f 1 (x) = x Implicit di¤erentiation allows us to …nd the derivative of any inverse function provided we know the derivative of the function. VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 14 / 16
  • 15. Implicit Di¤erentiation Derivative of Inverse Functions Example Let y = sin 1 x. d dx sin 1 x = 1 p 1 x2 Use: sin y = x. VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 15 / 16
  • 16. Implicit Di¤erentiation Derivative of Inverse Functions Example Let y = tan 1 x. (Note: tan 1 x = arctan x). d dx tan 1 x = cos2 y = 1 x2 + 1 Use: tan y = x. VillaRINO DoMath, FSMT-UPSI (D5) Implicit Di¤erentiation and Inverse Functions 16 / 16