SlideShare a Scribd company logo
Digital Signal & Image Processing
Lecture-4
Overview
• Filters
• Common Filter Types
• Analog vs. Digital Filters
• Difference Equation
• Difference Equation Diagram Elements
• Nonrecursive Difference Equation Diagrams
• Recursive Difference Equation Diagrams
• Impulse Response
• Step Response
Filters
• Filters change a signal’s characteristics by selectively removing
some of its frequency elements.
• A low pass filter, for example, removes the high frequency
components of a signal, but passes low frequency
components.
• It does this because the filter’s gain, the amplification factor it
applies to an input, varies with frequency.
3
Filters
• For a low pass filter, the gains are highest at low frequency
and much lower at high frequency.
• A high pass filter has exactly the opposite shape: its gains are
highest at high frequency and lowest at low frequency.
• The pass band of a filter determines the range of frequencies
that are passed.
• The stop band of the filter determines the range of
frequencies that are strongly attenuated.
4
Filters
Cutoff Frequency
• A filter is considered to pass signals at frequencies where the filter’s
gain exceeds 0.707 of its maximum gain.
• The frequency or frequencies where the gain equals 0.707 of the
maximum gain are called the cut-off frequencies of the filter.
• Since 20log0.707 = -3 dB, they are also called –3 dB frequencies.
5
Filters
Bandwidth
• The bandwidth of a low pass filter is the range of frequencies from
0 to the –3 dB frequency.
• For a high pass filter, the bandwidth is the range of frequencies
from the –3 dB frequency to half the sampling frequency.
• For band pass filters, the bandwidth is the distance in Hz between
the cut-off frequencies.
6
Common Filter Types
Low Pass Filter
7
_____ Real Filter
….... Ideal Filter
Common Filter Types
High Pass Filter
8
_____ Real Filter
….... Ideal Filter
Common Filter Types
Band Pass Filter
9
_____ Real Filter
….... Ideal Filter
Common Filter Types
Band Stop or Notch Filter
10
_____ Real Filter
….... Ideal Filter
Filters
Roll-Off
• Another important feature of a filter is its roll-off.
• This characteristic determines how quickly the gain drops
outside the pass band.
• The higher the order of a digital filter, defined by the number
of coefficients needed to specify it, the steeper the slope, and
the higher the quality of the filter is said to be.
11
Filters
Gain
• A filter’s gain at a certain frequency determines the
amplification factor that the filter applies to an input at this
frequency.
• A gain may have any value.
• In the pass band region, filter’s gain is high.
• In the stop band region, filter’s gain is low.
12
Filters
Gain
• The cutoff frequency of the filter occurs when the gain is
1
2
~0.707 𝑜𝑟 70.7%
• A gain in dB is calculated as 𝐺𝑎𝑖𝑛 𝑑𝐵 = 20𝑙𝑜𝑔 𝐺𝑎𝑖𝑛
13
Filters
Bandwidth
Example-1: Find the bandwidth of the band pass filter.
The edges of the pass
Band occur where the
Gain equals 0.707.
The bandwidth of the
Filter is
BW = FH - FL
BW = 4000 - 2000
BW = 2000 Hz
14
Square Wave
• A square wave can be constructed from multiple sine waves at different
frequencies.
• The sine waves added in addition to the fundamental frequency are
called harmonics.
• A square wave has harmonics at odd multiples of the fundamental
frequency.
15
Square Wave
• As higher harmonics are added, the result gets closer to an ideal square
wave, which contains infinite harmonics.
• sin(angle) + sin(3*angle)/3 + sin(5*angle)/5 + sin(7*angle)/7 + ...
16
Effects of Low Pass Filters
17
• Each filter type has a unique effect on an input signal.
• Low pass filters tend to smooth signals by averaging out sudden changes.
Effects of High Pass Filters
18
• Each filter type has a unique effect on an input signal.
• High pass filters tend emphasize sharp transition.
Antialiasing Filter
19
Analog vs. Digital Filters
• Filters may be implemented in either analog or digital form.
• Analog filters are defined in hardware, while digital filters are
defined in software.
• In general, digital filters are much less susceptible to noise
and component variation than are analog filters.
• Furthermore, digital filter re-design is simply a matter of
editing a list of coefficients, while analog re-design requires
building an entirely new circuit.
20
Difference Equation
• A difference equation is one way to specify a filter or system.
• It may be presented in equation or diagram form.
• The general form of a difference equation is
a0y[n] + a1y[n-1] + a2y[n-2] + … + aNy[n-N]
= b0x[n] + b1x[n-1] + b2x[n-2] + … + bMx[n-M]
• The ak and bk weightings are called filter coefficients.
• Generally difference equation has N+1 ak coefficients and M+1 bk
coefficients.
• N is the past output required, also referred as a filter order.
• M is the number of past input required.
• The equation defines how each new output y[n] is obtained.
• In general, a0 is assumed to be one.
21
Difference Equation
• The general form of a difference equation is
a0y[n] + a1y[n-1] + a2y[n-2] + … + aNy[n-N]
= b0x[n] + b1x[n-1] + b2x[n-2] + … + bMx[n-M]
The compact form of the recursive difference equation is
• In the above equation, both inputs and outputs are needed to
compute a new output, so the difference equation is said to
be recursive.
22
Difference Equation
• When only inputs are needed to compute a new output, the
difference equation is said to be non-recursive, that is,
y[n] = b0x[n] + b1x[n-1] + b2x[n-2] + … + bMx[n-M]
The compact form of the non-recursive difference equation is
23
Difference Equation
Example-2: A filter has a difference equation y[n] = 0.5y[n-1] + x[n]
a. Is this a recursive or non-recursive difference equation?
b. Identify all ak and bk coefficients.
c. If the input x[n] is u[n], find 5 samples of the output y[n].
Solution
a. The equation is recursive as it depends on a past output y[n-1]
b. Since y[n] – 0.5y[n-1] = x[n], therefore a0 = 1, a1 = -0.5, b0 = 1
c. y[n] = 0.5y[n-1] + x[n]
When n = 0, y[0] = 0.5y[0-1] + x[0] = 0.5(0) + 1 = 1
When n = 1, y[1] = 0.5y[1-1] + x[1] = 0.5(1) + 1 = 1.5
When n = 2, y[2] = 0.5y[2-1] + x[2] = 0.5(1.5) + 1 = 1.75
When n = 3, y[3] = 0.5y[3-1] + x[3] = 0.5(1.75) + 1 = 1.875
When n = 4, y[4] = 0.5y[4-1] + x[4] = 0.5(1.875) + 1 = 1.9375
24
Y[n] = {1, 1.5, 1.75, 1.875, 1.9375}
Difference Equation
25
Y[n] = {1, 1.5, 1.75, 1.875, 1.9375}
Difference Equation Diagram Elements
Delay Element
26
Difference Equation Diagram Elements
Coefficient Multiplier Element
27
Difference Equation Diagram Elements
Summer Element
28
Nonrecursive Difference Equation Diagram
• The general form of the nonrecursive difference equation is
y[n] = b0x[n] + b1x[n-1] + b2x[n-2] + … + bMx[n-M]
• It can be schematically presented as
29
Finite Word Length Effects
• When difference equations are implemented by a computer,
quantization means that filter coefficients cannot be represented
perfectly.
• This means that filter behavior will not match the design exactly.
• Furthermore, computer arithmetic is always subject to rounding
and truncation errors, again due to the limited number of bits
available.
• All of these effects are called finite word length effects.
30
Nonrecursive Difference Equation Diagram
• In order to reduce quantization error of filter’s coefficient one
strategy is to break higher order filter into second order chunks
31
Figure: Cascaded second order nonrecursive filter sections
Nonrecursive Difference Equation Diagram
Example-3: Draw a diagram for the difference equation
y[n] = 0.5x[n] + 0.4x[n-1] - 0.2x[n-2]
Solution
32
Nonrecursive Difference Equation Diagram
Example-4: Write the difference equation of the following diagram.
Solution
y[n] = x[n] - 0.3x[n-2] + 0.7x[n-3] 33
Recursive Difference Equation Diagram
• The general form of a recursive difference equation is
a0y[n] + a1y[n-1] + a2y[n-2] + … + aNy[n-N]
= b0x[n] + b1x[n-1] + b2x[n-2] + … + bMx[n-M]
34
Recursive Difference Equation Diagram
Example-5: Draw a direct form I diagram for the following
recursive difference equation
y[n] + 0.5y[n-2] = 0.8x[n] + 0.1x[n-1] - 0.3x[n-2]
Solution
35
Recursive Difference Equation Diagram
Example-6: Write the difference equation of the following diagram.
Solution
y[n] + 0.5y[n-2] = 0.8x[n] + 0.1x[n-1] - 0.3x[n-2]
36
Recursive Difference Equation Diagram
• In direct form I realization, calculation for output y[n] require
M + 1 input states
N output states
M + N + 1 coefficient multiplications
M + N additions
• When more than 2 or 3 delays are needed, this realization is
very sensitive to the finite word length effects.
37
Recursive Difference Equation Diagram
• Recursive filters have an alternative representation, called direct form 2,
that has certain advantages for implementation.
• This representation is defined by the pair of equations
w[n] = x[n] – a1w[n-1] – a2w[n-2] – … – aNw[n-N]
y[n] = b0w[n] + b1w[n-1] + b2w[n-2] + … + bMw[n-M]
38
Recursive Difference Equation Diagram
• Transpose of the direct form 2 realization is an another
popular implementation model.
39
Recursive Difference Equation Diagram
Example-7: Write the difference equation of the following diagram.
• The output of the bottom summer is 0.1x[n] – 0.3y[n]
• The output of the middle summer is 0.1x[n-1] – 0.3y[n-1] + 0.2x[n] – 0.2y[n]
• The final out top summer is y[n] = 0.1x[n-2] – 0.3y[n-2] + 0.2x[n-1] – 0.2y[n-1] + 0.8x[n]
40
Impulse Response
• The impulse response h[n] is an important way of characterizing a
filter or system.
• By definition, it is the system’s response to an impulse function
input δ[n].
41
Impulse Response
• For a musical instrument like a piano, an impulse response
corresponds to the note obtained by striking a single key.
42
Impulse Response
• The impulse response may be calculated from a system’s
difference equation.
• The impulse function δ[n] substitutes for the input x[n]
• The impulse response h[n] substitutes for the output y[n]
43
Impulse Response
• For a non-recursive system, the impulse response is
h[n] = b0δ[n] + b1δ[n-1] + b2δ[n-2] + … + bMδ[n-M]
• For a recursive system, the impulse response is
h[n] = – a1h[n-1] – a2h[n-2] – … – aNh[n-N]
+ b0δ[n] + b1δ[n-1] + b2δ[n-2] + … + bMδ[n-M]
44
Impulse Response
• Because non-recursive systems do not rely on past outputs,
they have finite impulse responses, which return to zero after
a finite number of samples have elapsed.
• Recursive systems, on the other hand, have infinite impulse
responses, because each new output depends on past
outputs as well as inputs.
• For causal systems, both non-recursive and recursive, the
impulse response h[n] is zero for n < 0.
45
Impulse Response
Example-8: Find the first six samples of the impulse response
h[n] for the difference equation
Y[n] – 0.4y[n-1] = x[n] – x[n-1]
Solution
The impulse response of the difference equation is
h[n] – 0.4h[n-1] = δ[n] – δ[n-1]
So the first six samples of the impulse response are
h[0] = 1 h[3] = -0.096
h[1] = -0.6 h[4] = -0.0384
h[2] = -0.24 h[5] = -0.01536
46
Impulse Response
So the first six samples of the impulse response are
h[0] = 1 h[3] = -0.096
h[1] = -0.6 h[4] = -0.0384
h[2] = -0.24 h[5] = -0.01536
h[n] = [1, 0.6, -0.24, -0.096, -0.0384, -0.01536]
47
Impulse Response
Example-9: write the difference equation whose impulse
response is shown in the figure.
Solution
The impulse response can be written as a sum of impulse
functions.
h[n] = δ[n] + 0.8δ[n-1] + 0.2δ[n-2]
The difference equation is y[n] = x[n] + 0.8x[n-1] + 0.2x[n-2]
48
Impulse Response
Example-10: The input signal x[n] and impulse response h[n] are
shown in the figures. Find the output y[n] by breaking the input
signal into impulse functions and finding the response to each.
49
Impulse Response
50
Y[n] = 3h[n] + 2h[n-1] + h[n-2]
Step Response
• The step response s[n] for a filter is its response to a step
input u[n].
• It records the response of the system to a change in level, and
may be calculated in two ways.
• The first way mimics that for the impulse response, but with
s[n] replacing y[n] and u[n] replacing x[n].
51
Step Response
• For non-recursive systems,
s[n] = b0u[n] + b1u[n-1] + b2u[n-2] + … + bMu[n-M]
• For recursive systems,
s[n] = – a1s[n-1] – a2s[n-2] – … – aNs[n-N]
+ b0u[n] + b1u[n-1] + b2u[n-2] + … + bMu[n-M]
52
Step Response
• The step function u[n] is equivalent to a sum of impulse
functions:
u[n] = δ[n] + δ[n-1] + δ[n-2] + …
• The step response s[n] is the same sum of impulse responses:
s[n] = h[n] + h[n-1] + h[n-2] + …
53
Step Response
• The second way to compute the step response s[n] relies on
the impulse response.
• each step response sample is a cumulative sum of the impulse
response samples.
• For example
s[4] = h[4] + h[3] + h[2] + h[1] + h[0]
54
Step Response
Example-11: Find the first eight samples of the step response
s[n] for the difference equation
Y[n] – 0.2y[n-1] = 0.5x[n] + 0.3x[n-1]
Solution
The step response s[n] of the difference equation is
s[n] – 0.4s[n-1] = u[n] – u[n-1]
So the first eight samples of the step response are
s[0] = 0.5 s[3] = 0.96 s[6] = 0.996
s[1] = 0.8 s[4] = 0.98 s[7] = 0.9984
s[2] = 0.9 s[5] = 0.992
55
Step Response
So the first eight samples of the step response are
s[0] = 0.5 s[3] = 0.96 s[6] = 0.996
s[1] = 0.8 s[4] = 0.98 s[7] = 0.9984
s[2] = 0.9 s[5] = 0.992
S[n] = [0.5, 0.8, 0.9, 0.96, 0.98, 0.992, 0.996, 0.9984]
56

More Related Content

PPT
Spatial filtering
PPTX
K nearest neighbor
PDF
Lti system
PPTX
digital signal processing
PPTX
Decision Tree Learning
PPTX
Convolutional Error Control Coding
PDF
filters for noise in image processing
Spatial filtering
K nearest neighbor
Lti system
digital signal processing
Decision Tree Learning
Convolutional Error Control Coding
filters for noise in image processing

What's hot (20)

PPT
Chapter 03 cyclic codes
PDF
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
PPTX
Image Enhancement using Frequency Domain Filters
PPT
Machine Learning 3 - Decision Tree Learning
PPT
K mean-clustering
PDF
03 image transform
PPTX
Lect 02 second portion
PPSX
Image Enhancement in Spatial Domain
PPTX
Vector Quantization Vs Scalar Quantization
PPTX
mean_filter
PPTX
Baseband Digital Data Transmission
PPTX
Color fundamentals and color models - Digital Image Processing
DOCX
digital filter design
PPT
Source coding
PPTX
Dbscan algorithom
PDF
Computer Vision: Correlation, Convolution, and Gradient
PPTX
KNN Algorithm - How KNN Algorithm Works With Example | Data Science For Begin...
PPT
Huffman Coding
PPT
Image segmentation
PPTX
Convolution sum using graphical and matrix method
Chapter 03 cyclic codes
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
Image Enhancement using Frequency Domain Filters
Machine Learning 3 - Decision Tree Learning
K mean-clustering
03 image transform
Lect 02 second portion
Image Enhancement in Spatial Domain
Vector Quantization Vs Scalar Quantization
mean_filter
Baseband Digital Data Transmission
Color fundamentals and color models - Digital Image Processing
digital filter design
Source coding
Dbscan algorithom
Computer Vision: Correlation, Convolution, and Gradient
KNN Algorithm - How KNN Algorithm Works With Example | Data Science For Begin...
Huffman Coding
Image segmentation
Convolution sum using graphical and matrix method
Ad

Similar to Lecture-2.pptx (20)

PDF
DSP_FOEHU - Lec 07 - Digital Filters
PDF
Solution Manual for Introduction to Digital Signal Processing Dick Blandford,...
PPTX
Dss
PDF
P9_Intro_Digital_Filters_comparison_ IIR
PPT
Discrete-time singnal system lecture.ppt
PDF
Solution Manual for Introduction to Digital Signal Processing Dick Blandford,...
PDF
DSP_2018_FOEHU - Lec 05 - Digital Filters
PDF
Solution Manual for Introduction to Digital Signal Processing Dick Blandford,...
PDF
Solution Manual for Introduction to Digital Signal Processing Dick Blandford,...
PPTX
Discrete time signal processing unit-2
DOCX
PPTX
Difference equation for btech ece engeneering
PDF
signals and systems lec 12 filtering.pdf
PDF
Solution Manual for Introduction to Digital Signal Processing Dick Blandford,...
PPT
BUTTERWORTH FILTER AND CHEBYSHEW FILTERS
PDF
Filter Theory In Electronic Engineering 1st Marya Troutman
PDF
Lectures in signals and systems
PDF
Filter design techniques ch7 iir
PPTX
Butterworth filter design
PPTX
SignalDecompositionTheory.pptx
DSP_FOEHU - Lec 07 - Digital Filters
Solution Manual for Introduction to Digital Signal Processing Dick Blandford,...
Dss
P9_Intro_Digital_Filters_comparison_ IIR
Discrete-time singnal system lecture.ppt
Solution Manual for Introduction to Digital Signal Processing Dick Blandford,...
DSP_2018_FOEHU - Lec 05 - Digital Filters
Solution Manual for Introduction to Digital Signal Processing Dick Blandford,...
Solution Manual for Introduction to Digital Signal Processing Dick Blandford,...
Discrete time signal processing unit-2
Difference equation for btech ece engeneering
signals and systems lec 12 filtering.pdf
Solution Manual for Introduction to Digital Signal Processing Dick Blandford,...
BUTTERWORTH FILTER AND CHEBYSHEW FILTERS
Filter Theory In Electronic Engineering 1st Marya Troutman
Lectures in signals and systems
Filter design techniques ch7 iir
Butterworth filter design
SignalDecompositionTheory.pptx
Ad

Recently uploaded (20)

PPTX
Safety Seminar civil to be ensured for safe working.
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PDF
composite construction of structures.pdf
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
DOCX
573137875-Attendance-Management-System-original
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
web development for engineering and engineering
PPTX
CH1 Production IntroductoryConcepts.pptx
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PDF
Digital Logic Computer Design lecture notes
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
Construction Project Organization Group 2.pptx
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PPTX
additive manufacturing of ss316l using mig welding
PDF
Well-logging-methods_new................
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
Safety Seminar civil to be ensured for safe working.
UNIT 4 Total Quality Management .pptx
Foundation to blockchain - A guide to Blockchain Tech
composite construction of structures.pdf
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
573137875-Attendance-Management-System-original
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
web development for engineering and engineering
CH1 Production IntroductoryConcepts.pptx
Operating System & Kernel Study Guide-1 - converted.pdf
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Digital Logic Computer Design lecture notes
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Construction Project Organization Group 2.pptx
Embodied AI: Ushering in the Next Era of Intelligent Systems
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
additive manufacturing of ss316l using mig welding
Well-logging-methods_new................
Model Code of Practice - Construction Work - 21102022 .pdf

Lecture-2.pptx

  • 1. Digital Signal & Image Processing Lecture-4
  • 2. Overview • Filters • Common Filter Types • Analog vs. Digital Filters • Difference Equation • Difference Equation Diagram Elements • Nonrecursive Difference Equation Diagrams • Recursive Difference Equation Diagrams • Impulse Response • Step Response
  • 3. Filters • Filters change a signal’s characteristics by selectively removing some of its frequency elements. • A low pass filter, for example, removes the high frequency components of a signal, but passes low frequency components. • It does this because the filter’s gain, the amplification factor it applies to an input, varies with frequency. 3
  • 4. Filters • For a low pass filter, the gains are highest at low frequency and much lower at high frequency. • A high pass filter has exactly the opposite shape: its gains are highest at high frequency and lowest at low frequency. • The pass band of a filter determines the range of frequencies that are passed. • The stop band of the filter determines the range of frequencies that are strongly attenuated. 4
  • 5. Filters Cutoff Frequency • A filter is considered to pass signals at frequencies where the filter’s gain exceeds 0.707 of its maximum gain. • The frequency or frequencies where the gain equals 0.707 of the maximum gain are called the cut-off frequencies of the filter. • Since 20log0.707 = -3 dB, they are also called –3 dB frequencies. 5
  • 6. Filters Bandwidth • The bandwidth of a low pass filter is the range of frequencies from 0 to the –3 dB frequency. • For a high pass filter, the bandwidth is the range of frequencies from the –3 dB frequency to half the sampling frequency. • For band pass filters, the bandwidth is the distance in Hz between the cut-off frequencies. 6
  • 7. Common Filter Types Low Pass Filter 7 _____ Real Filter ….... Ideal Filter
  • 8. Common Filter Types High Pass Filter 8 _____ Real Filter ….... Ideal Filter
  • 9. Common Filter Types Band Pass Filter 9 _____ Real Filter ….... Ideal Filter
  • 10. Common Filter Types Band Stop or Notch Filter 10 _____ Real Filter ….... Ideal Filter
  • 11. Filters Roll-Off • Another important feature of a filter is its roll-off. • This characteristic determines how quickly the gain drops outside the pass band. • The higher the order of a digital filter, defined by the number of coefficients needed to specify it, the steeper the slope, and the higher the quality of the filter is said to be. 11
  • 12. Filters Gain • A filter’s gain at a certain frequency determines the amplification factor that the filter applies to an input at this frequency. • A gain may have any value. • In the pass band region, filter’s gain is high. • In the stop band region, filter’s gain is low. 12
  • 13. Filters Gain • The cutoff frequency of the filter occurs when the gain is 1 2 ~0.707 𝑜𝑟 70.7% • A gain in dB is calculated as 𝐺𝑎𝑖𝑛 𝑑𝐵 = 20𝑙𝑜𝑔 𝐺𝑎𝑖𝑛 13
  • 14. Filters Bandwidth Example-1: Find the bandwidth of the band pass filter. The edges of the pass Band occur where the Gain equals 0.707. The bandwidth of the Filter is BW = FH - FL BW = 4000 - 2000 BW = 2000 Hz 14
  • 15. Square Wave • A square wave can be constructed from multiple sine waves at different frequencies. • The sine waves added in addition to the fundamental frequency are called harmonics. • A square wave has harmonics at odd multiples of the fundamental frequency. 15
  • 16. Square Wave • As higher harmonics are added, the result gets closer to an ideal square wave, which contains infinite harmonics. • sin(angle) + sin(3*angle)/3 + sin(5*angle)/5 + sin(7*angle)/7 + ... 16
  • 17. Effects of Low Pass Filters 17 • Each filter type has a unique effect on an input signal. • Low pass filters tend to smooth signals by averaging out sudden changes.
  • 18. Effects of High Pass Filters 18 • Each filter type has a unique effect on an input signal. • High pass filters tend emphasize sharp transition.
  • 20. Analog vs. Digital Filters • Filters may be implemented in either analog or digital form. • Analog filters are defined in hardware, while digital filters are defined in software. • In general, digital filters are much less susceptible to noise and component variation than are analog filters. • Furthermore, digital filter re-design is simply a matter of editing a list of coefficients, while analog re-design requires building an entirely new circuit. 20
  • 21. Difference Equation • A difference equation is one way to specify a filter or system. • It may be presented in equation or diagram form. • The general form of a difference equation is a0y[n] + a1y[n-1] + a2y[n-2] + … + aNy[n-N] = b0x[n] + b1x[n-1] + b2x[n-2] + … + bMx[n-M] • The ak and bk weightings are called filter coefficients. • Generally difference equation has N+1 ak coefficients and M+1 bk coefficients. • N is the past output required, also referred as a filter order. • M is the number of past input required. • The equation defines how each new output y[n] is obtained. • In general, a0 is assumed to be one. 21
  • 22. Difference Equation • The general form of a difference equation is a0y[n] + a1y[n-1] + a2y[n-2] + … + aNy[n-N] = b0x[n] + b1x[n-1] + b2x[n-2] + … + bMx[n-M] The compact form of the recursive difference equation is • In the above equation, both inputs and outputs are needed to compute a new output, so the difference equation is said to be recursive. 22
  • 23. Difference Equation • When only inputs are needed to compute a new output, the difference equation is said to be non-recursive, that is, y[n] = b0x[n] + b1x[n-1] + b2x[n-2] + … + bMx[n-M] The compact form of the non-recursive difference equation is 23
  • 24. Difference Equation Example-2: A filter has a difference equation y[n] = 0.5y[n-1] + x[n] a. Is this a recursive or non-recursive difference equation? b. Identify all ak and bk coefficients. c. If the input x[n] is u[n], find 5 samples of the output y[n]. Solution a. The equation is recursive as it depends on a past output y[n-1] b. Since y[n] – 0.5y[n-1] = x[n], therefore a0 = 1, a1 = -0.5, b0 = 1 c. y[n] = 0.5y[n-1] + x[n] When n = 0, y[0] = 0.5y[0-1] + x[0] = 0.5(0) + 1 = 1 When n = 1, y[1] = 0.5y[1-1] + x[1] = 0.5(1) + 1 = 1.5 When n = 2, y[2] = 0.5y[2-1] + x[2] = 0.5(1.5) + 1 = 1.75 When n = 3, y[3] = 0.5y[3-1] + x[3] = 0.5(1.75) + 1 = 1.875 When n = 4, y[4] = 0.5y[4-1] + x[4] = 0.5(1.875) + 1 = 1.9375 24 Y[n] = {1, 1.5, 1.75, 1.875, 1.9375}
  • 25. Difference Equation 25 Y[n] = {1, 1.5, 1.75, 1.875, 1.9375}
  • 26. Difference Equation Diagram Elements Delay Element 26
  • 27. Difference Equation Diagram Elements Coefficient Multiplier Element 27
  • 28. Difference Equation Diagram Elements Summer Element 28
  • 29. Nonrecursive Difference Equation Diagram • The general form of the nonrecursive difference equation is y[n] = b0x[n] + b1x[n-1] + b2x[n-2] + … + bMx[n-M] • It can be schematically presented as 29
  • 30. Finite Word Length Effects • When difference equations are implemented by a computer, quantization means that filter coefficients cannot be represented perfectly. • This means that filter behavior will not match the design exactly. • Furthermore, computer arithmetic is always subject to rounding and truncation errors, again due to the limited number of bits available. • All of these effects are called finite word length effects. 30
  • 31. Nonrecursive Difference Equation Diagram • In order to reduce quantization error of filter’s coefficient one strategy is to break higher order filter into second order chunks 31 Figure: Cascaded second order nonrecursive filter sections
  • 32. Nonrecursive Difference Equation Diagram Example-3: Draw a diagram for the difference equation y[n] = 0.5x[n] + 0.4x[n-1] - 0.2x[n-2] Solution 32
  • 33. Nonrecursive Difference Equation Diagram Example-4: Write the difference equation of the following diagram. Solution y[n] = x[n] - 0.3x[n-2] + 0.7x[n-3] 33
  • 34. Recursive Difference Equation Diagram • The general form of a recursive difference equation is a0y[n] + a1y[n-1] + a2y[n-2] + … + aNy[n-N] = b0x[n] + b1x[n-1] + b2x[n-2] + … + bMx[n-M] 34
  • 35. Recursive Difference Equation Diagram Example-5: Draw a direct form I diagram for the following recursive difference equation y[n] + 0.5y[n-2] = 0.8x[n] + 0.1x[n-1] - 0.3x[n-2] Solution 35
  • 36. Recursive Difference Equation Diagram Example-6: Write the difference equation of the following diagram. Solution y[n] + 0.5y[n-2] = 0.8x[n] + 0.1x[n-1] - 0.3x[n-2] 36
  • 37. Recursive Difference Equation Diagram • In direct form I realization, calculation for output y[n] require M + 1 input states N output states M + N + 1 coefficient multiplications M + N additions • When more than 2 or 3 delays are needed, this realization is very sensitive to the finite word length effects. 37
  • 38. Recursive Difference Equation Diagram • Recursive filters have an alternative representation, called direct form 2, that has certain advantages for implementation. • This representation is defined by the pair of equations w[n] = x[n] – a1w[n-1] – a2w[n-2] – … – aNw[n-N] y[n] = b0w[n] + b1w[n-1] + b2w[n-2] + … + bMw[n-M] 38
  • 39. Recursive Difference Equation Diagram • Transpose of the direct form 2 realization is an another popular implementation model. 39
  • 40. Recursive Difference Equation Diagram Example-7: Write the difference equation of the following diagram. • The output of the bottom summer is 0.1x[n] – 0.3y[n] • The output of the middle summer is 0.1x[n-1] – 0.3y[n-1] + 0.2x[n] – 0.2y[n] • The final out top summer is y[n] = 0.1x[n-2] – 0.3y[n-2] + 0.2x[n-1] – 0.2y[n-1] + 0.8x[n] 40
  • 41. Impulse Response • The impulse response h[n] is an important way of characterizing a filter or system. • By definition, it is the system’s response to an impulse function input δ[n]. 41
  • 42. Impulse Response • For a musical instrument like a piano, an impulse response corresponds to the note obtained by striking a single key. 42
  • 43. Impulse Response • The impulse response may be calculated from a system’s difference equation. • The impulse function δ[n] substitutes for the input x[n] • The impulse response h[n] substitutes for the output y[n] 43
  • 44. Impulse Response • For a non-recursive system, the impulse response is h[n] = b0δ[n] + b1δ[n-1] + b2δ[n-2] + … + bMδ[n-M] • For a recursive system, the impulse response is h[n] = – a1h[n-1] – a2h[n-2] – … – aNh[n-N] + b0δ[n] + b1δ[n-1] + b2δ[n-2] + … + bMδ[n-M] 44
  • 45. Impulse Response • Because non-recursive systems do not rely on past outputs, they have finite impulse responses, which return to zero after a finite number of samples have elapsed. • Recursive systems, on the other hand, have infinite impulse responses, because each new output depends on past outputs as well as inputs. • For causal systems, both non-recursive and recursive, the impulse response h[n] is zero for n < 0. 45
  • 46. Impulse Response Example-8: Find the first six samples of the impulse response h[n] for the difference equation Y[n] – 0.4y[n-1] = x[n] – x[n-1] Solution The impulse response of the difference equation is h[n] – 0.4h[n-1] = δ[n] – δ[n-1] So the first six samples of the impulse response are h[0] = 1 h[3] = -0.096 h[1] = -0.6 h[4] = -0.0384 h[2] = -0.24 h[5] = -0.01536 46
  • 47. Impulse Response So the first six samples of the impulse response are h[0] = 1 h[3] = -0.096 h[1] = -0.6 h[4] = -0.0384 h[2] = -0.24 h[5] = -0.01536 h[n] = [1, 0.6, -0.24, -0.096, -0.0384, -0.01536] 47
  • 48. Impulse Response Example-9: write the difference equation whose impulse response is shown in the figure. Solution The impulse response can be written as a sum of impulse functions. h[n] = δ[n] + 0.8δ[n-1] + 0.2δ[n-2] The difference equation is y[n] = x[n] + 0.8x[n-1] + 0.2x[n-2] 48
  • 49. Impulse Response Example-10: The input signal x[n] and impulse response h[n] are shown in the figures. Find the output y[n] by breaking the input signal into impulse functions and finding the response to each. 49
  • 50. Impulse Response 50 Y[n] = 3h[n] + 2h[n-1] + h[n-2]
  • 51. Step Response • The step response s[n] for a filter is its response to a step input u[n]. • It records the response of the system to a change in level, and may be calculated in two ways. • The first way mimics that for the impulse response, but with s[n] replacing y[n] and u[n] replacing x[n]. 51
  • 52. Step Response • For non-recursive systems, s[n] = b0u[n] + b1u[n-1] + b2u[n-2] + … + bMu[n-M] • For recursive systems, s[n] = – a1s[n-1] – a2s[n-2] – … – aNs[n-N] + b0u[n] + b1u[n-1] + b2u[n-2] + … + bMu[n-M] 52
  • 53. Step Response • The step function u[n] is equivalent to a sum of impulse functions: u[n] = δ[n] + δ[n-1] + δ[n-2] + … • The step response s[n] is the same sum of impulse responses: s[n] = h[n] + h[n-1] + h[n-2] + … 53
  • 54. Step Response • The second way to compute the step response s[n] relies on the impulse response. • each step response sample is a cumulative sum of the impulse response samples. • For example s[4] = h[4] + h[3] + h[2] + h[1] + h[0] 54
  • 55. Step Response Example-11: Find the first eight samples of the step response s[n] for the difference equation Y[n] – 0.2y[n-1] = 0.5x[n] + 0.3x[n-1] Solution The step response s[n] of the difference equation is s[n] – 0.4s[n-1] = u[n] – u[n-1] So the first eight samples of the step response are s[0] = 0.5 s[3] = 0.96 s[6] = 0.996 s[1] = 0.8 s[4] = 0.98 s[7] = 0.9984 s[2] = 0.9 s[5] = 0.992 55
  • 56. Step Response So the first eight samples of the step response are s[0] = 0.5 s[3] = 0.96 s[6] = 0.996 s[1] = 0.8 s[4] = 0.98 s[7] = 0.9984 s[2] = 0.9 s[5] = 0.992 S[n] = [0.5, 0.8, 0.9, 0.96, 0.98, 0.992, 0.996, 0.9984] 56