This document contains notes from a calculus class section on continuity. Key points include:
- The definition of continuity requires that the limit of a function as x approaches a value exists and is equal to the value of the function at that point.
- Many common functions like polynomials, rational functions, trigonometric functions, exponentials and logarithms are continuous based on properties of limits.
- Functions can fail to be continuous if the limit does not exist or the function is not defined at a point. An example function is given that is not continuous at x=1.