International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 2, March – April (2013), © IAEME
403
LEVEL BASED NORMAL- ABNORMAL CLASSIFICATION OF MRI
BRAIN IMAGES
Sumesh M. S.1
, GopakumarC.2
, RejiRajan Varghese3
, Abraham Varghese4
1
(Computer Engineering, College of Engineering, Chengannur, Kerala, India,)
2
(Dept. of Electronics & Communication Engineering, College of Engineering, Chengannur,
India)
3
(Senior Resident, Radio diagnosis, Cochin Medical College, Cochin, India)
4
(Dept. of Computer science and Engg, Adi- SankaraInsitute of Engineering and Technology,
Kalady, India)
ABSTRACT
This work proposes a new concept for the normal- abnormal classification of MRI
brain images, a level based approach, and compare the result with the existing methods. The
existing works does not consider the anatomical structure of the brain slices for the
classification of MRI brain images. In the aspect of image processing, the anatomically
similarity of the brain slices can be treated as the similarity of brain slices in the viewing
aspect along with the actual anatomical structure. This work aimed to prove that the
consideration of the anatomical structure for the normal– abnormal classification will
improve the result of the classification.
The existing work shows that the feature vector, statistical features along with gray
level co-occurrence matrix (GLCM) features with support vector machine (SVM) classifier
produce better results than other methods. It uses statistical features along with GLCM
features as feature vector and SVM classifier. Related works in current literatures for the
normal/abnormal classification of MRI images does not consider the anatomical structure of
the brain slices. Because of the dissimilarity in the anatomical structure, it may produce
undesirable results. In this proposed work, the anatomical structure of the brain slices is
considered for the classification. To accompany this level based concept is introduced here.
In the level based concept, the brain slices are classified into four levels depending on the
similarity in the anatomical structure to implement the normal/abnormal classification at that
particular level.
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING
& TECHNOLOGY (IJCET)
ISSN 0976 – 6367(Print)
ISSN 0976 – 6375(Online)
Volume 4, Issue 2, March – April (2013), pp. 403-409
© IAEME: www.iaeme.com/ijcet.asp
Journal Impact Factor (2013): 6.1302 (Calculated by GISI)
www.jifactor.com
IJCET
© I A E M E
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 2, March – April (2013), © IAEME
404
Keywords: Brain tumour, Level based classification, Magnetic resonance imaging, Medical
imaging, Support vector machine.
1. INTRODUCTION
Medical imaging is widely used for disease diagnosis and treatment evaluation.
Medical imaging techniques and analysis tools enable both doctors and radiologists to
identify and diagnose various disorders [1, 2]. The medical image data obtained from bio-
medical devices have important roles in disease diagnosis. MRI is a non-hazardous method
which detects signals emitted from normal and abnormal tissue, providing clear images of
most tumours [3, 4]. The radiologist or doctor can identify abnormal tissues by examining the
MRI slices based on the visual interpretation. The shortage of radiologists and the large
volume of MRI to be analysed make such readings laborious and cost expensive. Also the
manual classification by mere visual interpretation of the radiologists may cause bad results
due to vision problems. This leads to automated system to aid the doctors and radiologists in
the identification of abnormal brain slices.
To develop an accurate and sensitive automated system for the normal- abnormal
classification of MRI brain slices, it has to identify a good set of feature vectors that can be
substituted instead of the original image without losing its actual meaning and a good
classifier. The related works suggests several feature vectors and classifiers which are shown
in Table 1. This works shows that the combination of statistical features and GLCM features
[6, 7] along with SVM classifier [8, 9] provides better results than the other methods.
Table 1: Related woks for the classification of MRI brain slices
Pre-processing Feature Extraction Feature Reduction Classification
WAVELET
TRANSFORM [10, 1
],
HISTOGRAM
EQUALISATION
[15].
DWT [1, 8,14,16],
GLCM [11,12 ],
SLANTLET
TRANSFORM
[13].
PCA [14,15 ],
GA [16].
SVM [11,12,13,16],
ANN [14,15 ],
K-NN [11,14,15],
MLP [11].
The proposed method also use the combination of statistical features along with
GLCM features as feature vector and is used as the input to the SVM classifier. The related
works for the normal/abnormal classification of MRI images does not consider the
anatomical structure of the brain slices. Because of the dissimilarity in the anatomical
structure, it may produce undesirable results. So in this proposed work, the anatomical
structure of the brain slices is considered for the classification. In the aspect of image
processing, the anatomical similarity of the brain slices can be treated as the similarity of
brain slices in the viewing aspect along with the actual anatomical structure. To accompany
this level based concept is introduced here. In the level based concept, the brain slices are
classified into four levels depending on the similarity in the anatomical structure of the brain
slices [17]. That is, classify the brain slices into one of the four levels and implement the
normal/abnormal classification at that particular level.
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 2, March – April (2013), © IAEME
405
2. METHODOLOGY
The proposed methodology for the normal- abnormal classification of MRI brain
slices has 2 steps, feature extraction and classification. Significant difference in tissue types,
observed in variety of texture measures of MRI, is used for this classification. The classifier
has 2 phases, training and testing phases. In training phase the statistical and GLCM texture
features of MRI brain slices along with its label and normality or abnormality details, are
given as input to the classifier. In testing phase, if the feature vector of a new slice is given as
input to the classifier, a well-trained classifier can accurately classify it according to the
parameters formed in the training phase. In the level based approach, the brain slices are
grouped into four classes according to the similarity of anatomical structure in visual aspect
of the image and the above texture extraction, training and testing processes are done at each
level independently.
2.1 FEATURE EXTRACTION
The purpose of feature extraction is to reduce the original data set by measuring
certain properties, or features, that distinguish one input pattern from another [18]. The
extracted features provide the characteristics of the input type to the classifier by considering
the description of the relevant properties of the image into a feature space. Most of the
tumour is heterogeneous tissues and the mean values of relaxation times are not at all
sufficient to characterize the heterogeneity of the different tumour types [3]. An alternative
approach, which is being investigated within the framework of this study, is to apply texture
analysis to the T2 FLAIR images to describe quantitatively the brightness and texture of the
images. Texture analysis covers a wide range of techniques based on first- and second order
image texture parameters. In the present study the statistical features based on image intensity
like mean & variance and features from gray level co-occurrence matrices (GLCMs) such as
entropy, contrast, energy, inverse difference moment and correlation [ 6,7 ,11] are used to
investigate the adequacy for the discrimination of normal and abnormal patient.
The gray level co- occurrence matrix (GLCM) calculates how often a pixel with gray
level value occurs either horizontally, vertically, or diagonally to adjacent pixels with the
value j, where i and j are the gray level values in the image. Haralick features [6, 7] based on
GLCM is a proven technique to analyse the object with irregular outlines [6, 7]. Haralick
introduced fourteen textural features from the GLCM and out of these fourteen features five
of the textural features are considered to be the most relevant. Those textural features are
Energy, Entropy, Contrast, Correlation and Inverse Difference Moment. Energy is also called
Angular Second Moment (ASM) where it measures textural uniformity [19]. If an image is
completely homogeneous, its energy will be maximum. Entropy is a measure, which is
inversely correlated to energy. It measures the disorder or randomness of an image [19].
Next, contrast is a measure of local gray level variation of an image. This parameter takes
low value for a smooth image and high value for a coarse image. On the other hand, inverse
difference moment is a measure that takes a high value for a low contrast image. Thus, the
parameter is more sensitive to the presence of the GLCM elements, which are nearer to the
symmetry line x (i, i) [19]. The last feature, correlation, measures the linear dependency
among neighbouring pixels. It gives a measure of abrupt pixel transitions in the image [20].
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 2, March – April (2013), © IAEME
406
2.2.1 FEATURES USED
Statistical Features
Meanܺത ൌ
1
X ‫כ‬ Y
෍
୶
୧ୀଵ
෍ xሺi. jሻ
୷
୨ୀଵ
VarianceV ൌ
ଵ
ଡ଼‫כ‬ଢ଼
∑୶
୧ୀଵ ∑ ሺxሺi. jሻ
୷
୨ୀଵ െ xതሻ
GLCM Features
Entropyൌ െ ∑୒
୧ୀଵ ∑ ቀ
ሺ୔ሺ୧.୨ሻ
ୖ
ቁ୒
୨ୀଵ ݈‫݃݋‬ሺ
ሺ୔ሺ୧.୨ሻ
ୖ
ሻ Energyൌ െ ∑୒
୧ୀଵ ∑ ቀ
ሺ୔ሺ୧.୨ሻ
ୖ
ቁ
ଶ
୒
୨ୀଵ
Contrastൌ െ ∑୒
୧ୀଵ ∑ ሺi െ jሻ ቀ
ሺ୔ሺ୧.୨ሻ
ୖ
ቁ୒
୨ୀଵ
Correlationൌ
െ ∑୒
୧ୀଵ ∑
ቀ
౟ౠሺౌሺ౟.ౠሻ
౎
ቁିµ౮µ౯
σ౮σ౯
୒
୨ୀଵ
Inverse Difference Momentൌ ∑୒
୧ୀଵ ∑
ቀ
ሺౌሺ౟.ౠሻ
౎
ቁ
ଵାሺ୧ି୨ሻమ
, i ് j୒
୨ୀଵ
Where P(i, j) is the GLCM Matrix, R is the total number of pixel pairs used for the
calculation of GLCM and ߤ௫, ߤ௬, ߪ௫ and ߪ௬ are the mean and standard deviation values of
GLCM values accumulated in the x and y directions respectively.
2.2 CLASSIFICATION
The aim of classification is to group items that have similar feature values into
groups. Classifier achieves this by making a classification decision based on the value of the
linear combination of the features. SVM is a binary classification method that takes as input
labelled data from two classes and outputs a model file for classifying new unlabelled or
labelled data into one of two classes [1, 9,11].
2.3 SUPPORT VECTOR MACHINE
Support Vector Machine (SVM) is a binary classifier based supervised learning
theory, a recent advances in statistical learning theory. SVMs deliver state-of-the-art
performance in real-world applications such as text categorisation, hand-written character
recognition, image classification, bio sequences analysis, etc. The basis of this approach is
the projection of the low-dimensional training data in a higher dimensional feature space,
because in this higher dimensional feature space it is easier to separate the input data. This
projection is achieved by using kernel functions. So kernel functions provides the bridge
between non-linear to linear. Thus kernel function is used to map the low dimensional data
into the high dimensional feature space where data points are linearly separable. There are
many types of kernels are available for SVM and this work uses the following kernels:
Linear, Polynomial and radial basis function (RBF) [1, 9, 11].
3. RESULTS AND DISCUSSIONS
In the proposed work, T2 FLAIR weighted axial MRI Brain images as input data set.
Here two types of databases are used
1. Simulated Brain Database.
2. Brain Database of a Hospital
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 2, March – April (2013), © IAEME
407
The input data involved 100 patients (50 abnormal and 50 normal). At first the
normal- abnormal classification is done without considering the anatomical structure. In this
stage of the work a set of 320 brain slices, 160 normal and 160 abnormal, are used. Out of
these two hundred images, 160 slices, 80 normal and 80 abnormal, are used for training and
remaining hundred are used for testing.
For level based normal- abnormal classification, the whole normal and abnormal
images are divided into 4 levels according to the similarity of the brain slices based on a
viewing aspect of the images. Thus each level contains a total of 160 images with 80 normal
and 80 abnormal. Out of these 160 images 80, 40 normal and 40 abnormal are used for
training phase and remaining 80 are used for testing phase. Results are summarised in Tables
3, 4 and 5.
Table 3: Classification using Polynomial Kernel
Level 1 Level 2 Level 3 Level 4 All Levels
TP 40 39 39 40 78
FN 0 1 1 0 2
TN 40 40 39 40 78
FP 0 0 1 0 2
Sensitivity (TPR) 1 0.975 0.975 1 0.975
(FPR) 0 0.025 0.025 0 0.025
Specificity (TNR) 1 1 0.975 1 0.975
(FNR) 0 0 0.025 0 0.025
Accuracy 1 0.9875 0.975 1 0.975
Table 4: Classification using RBF Kernel
Level 1 Level 2 Level 3 Level 4 All Levels
TP 40 39 39 40 73
FN 0 1 1 0 7
TN 40 39 38 40 72
FP 0 1 2 0 8
Sensitivity (TPR) 1 0.975 0.975 1 0.9125
(FPR) 0 0.025 0.025 0 0.0875
Specificity (TNR) 1 0.975 0.95 1 0.9
(FNR) 0 0.025 0.05 0 0.1
Accuracy 1 0.975 0.9625 1 0.90625
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 2, March – April (2013), © IAEME
408
Table 5: Classification using Linear Kernel
Level 1 Level 2 Level 3 Level 4 All Levels
TP 40 40 39 39 72
FN 0 0 1 1 8
TN 40 38 39 40 73
FP 0 2 1 0 7
Sensitivity (TPR) 1 1 0.975 0.975 0.9
(FPR) 0 0 0.025 0.025 0.1
Specificity (TNR) 1 0.95 0.975 1 0.9125
(FNR) 0 0.05 0.025 0 0.0875
Accuracy 1 0.975 0.975 0.9875 0.90625
The results shows that level based normal-abnormal classification got better result than
non-level based classification. Also it shows that SVM with Polynomial kernel got better result
than those with RBF and Linear kernels.
4. CONCLUSION
This work is intended to prove that, the consideration of anatomical structure of the MRI
Brain slices, for the normal/abnormal classification, will help to get more accurate result. Level
based normal abnormal classification got better results than non- level based classification. Here
support vector machine with polynomial kernel of degree 3 shows better results than those with
linear or RBF kernel.
This work will surely help the radiologists and doctors in the identification of abnormal
brain slices. Magnetic Resonance Images are examined by radiologists based on visual
interpretation of the films to identify the presence of tumour abnormal tissue. The shortage of
radiologists and the large volume of MRI to be analysed make such readings labour intensive,
cost expensive and often inaccurate. The sensitivity of the human eye in interpreting large
numbers of images decreases with increasing number of cases, particularly when only a small
number of slices are affected. Hence this automated systems for analysis and classification of
such medical image will surely become an aid for both radiologists and doctors in tumour
analysis and detection. Also it will be the key step for the automated tumour detection system
development.
REFERENCES
[1] Abdullah, N, Ngah, U.K.; Aziz, S.A., “Image classification of brain MRI using support
vector machine” Imaging Systems and Techniques (IST), 2011 IEEE International Conference on
17-18 May 2011.
[2] T Kesavamurthy, S SubhaRani, ``Pattern Classification using imaging techniques for
Infarct and Hemorrhage Identification in the Human Brain"Calicut Medical Journal 2006.
[3] http://www.braintumor.org/TumorTypes
[4] http://www.bio-medicine.org/Biology
[5] D. Selvathi, R.S. Ram Prakash, Dr.S.ThamaraiSelvi, “Performance Evaluation of Kernel
Based Techniques for Brain MRI Data Classification"International Conference on Computational
Intelligence and Multimedia Applications 2007.
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 2, March – April (2013), © IAEME
409
[6] R. M Haarlick, “Statistical and structural approaches to texture", Proc. IEEE, vol. 67, pp.
786-804, 1979.
[7] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image
Classification", IEEE transaction on systems, man, and cybernetics, Vol.3, No 6, pp. 610-621,
1973.
[8] S. Chaplot, L.M. Patnaik, N.R. Jaganathan, “Classification of magnetic resonance brain
images using wavelet as input to support vector machine and neural network" Biomed. Signal
Process. Control (2006).
[9] V.N. Vapnik, “Statistical Learning Theory", Wiley, New York, 1998.
[10] VerlagDr. Mueller, “Image De-noising Using Wavelet Transforms" April 2008.
[11] H. Selvaraj, S. ThamaraiSelvi, D. Selvathi, L. Gewali, “Brain MRI Slices Classification
Using Least Squares Support Vector Machine”, IC-MED, Vol. 1, No. 1, Issue 1, Page 21 of 33
[12] Ching-Tsorng Tsai, Hsian Min Chen, Jyh-Wen Chai, Chen, Chein-I Chang,
“Classification of Magnetic Resonance Brain Images by Using Weighted Radial Basis Function
kernels",IEEE International Conference of Electrical and Control Engineering (ICECE), 2011,
Page(s): 5784 - 5787.
[13] MadhubantiMaitra, AmitavaChatterjee and FumitoshiMatsuno, “A Novel Scheme for
Feature Extraction and Classification of Magnetic Resonance Brain Images Based on Slantlet
Transform and Support Vector Machine",IEEE SICE Annual Conference 2008, Page(s): 1130 -
1134.
[14] N. HemaRajini, R.Bhavani, “ Classification of MRI Brain Images using K-Nearest
Neighbour and Artificial Neural Network",IEEE-International Conference on Recent Trends in
Information Technology, ICRTIT 2011, Page(s): 563-568.
[15] ShahlaNajafi, Mehdi ChehelAmirani and Zahra Sedgh, “A New Approach to MRI Brain
Images Classification",IEEE 19th Iranian Conference on Electrical Engineering (ICEE), 2011,
Page(s): 1.
[16] Ahmed Kharrat, Karim Gasmi n, Mohamed Ben Messaoud, NacéraBenamrane and
Mohamed Abid, “Automated Classification of Magnetic Resonance Brain Images Using Wavelet
Genetic Algorithm and Support Vector Machine",IEEE International Conference on Cognitive
Informatics (ICCI 10), 2010, Page(s): 369-374 .
[17] Abraham Varghese, RejiRajan Varghese, KannanBalakrishnan, J. S. Paul, “Axial T2
Weighted MR Brain Image Retrieval Using Moment Features",Springer- Advances in Intelligent
Systems and Computing Volume 177, 2013, pp 355-363.
[18] Alberto Martin and SobriTosunoglu, “Image Processing Techniques for Machine
Vision", Florida University, 2000
[19] A. Baraldi, F. Parmiggiani, “An Investigation Of The Textural Characteristics Associated
With GLCM Matrix Statistical Parameters”,IEEE Trans. on Geos. and Rem. Sens., vol. 33(2), pp.
293-304, 1995.
[20] A. Ukovich, G. Impoco, G. Ramponi, “A tool based on the GLCM to measure the
performance of dynamic range reduction algorithms”,IEEE Int. Workshop on Imaging Sys. &
Techniques, pp. 36-41, 2005.
[21] Selvaraj.D and Dhanasekaran.R, “MRI Brain Tumour Detection by Histogram and
Segmentation by Modified Gvf Model”, International Journal of Electronics and Communication
Engineering & Technology (IJECET), Volume 4, Issue 1, 2013, pp. 55 - 68,
ISSN Print: 0976- 6464, ISSN Online: 0976 –6472.
[22] B.Venkateswara Reddy, Dr.P.Satish Kumar, Dr.P.Bhaskar Reddy and B.Naresh Kumar
Reddy, “Identifying Brain Tumour from MRI Image using Modified FCM and Support Vector
Machine”, International journal of Computer Engineering & Technology (IJCET), Volume 4,
Issue 1, 2013, pp. 244 - 262, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375.

More Related Content

PDF
Segmentation of unhealthy region of plant leaf using image processing techniq...
PDF
MRIIMAGE SEGMENTATION USING LEVEL SET METHOD AND IMPLEMENT AN MEDICAL DIAGNOS...
PDF
Segmentation of Brain MR Images for Tumor Extraction by Combining Kmeans Clus...
PDF
Application of Neural Network for Cell Formation in Group Technology
PDF
An iterative morphological decomposition algorithm for reduction of skeleton ...
PDF
Illustration of Medical Image Segmentation based on Clustering Algorithms
PDF
Telecardiology and Teletreatment System Design for Heart Failures Using Type-...
PDF
Fuzzy Logic based Edge Detection Method for Image Processing
Segmentation of unhealthy region of plant leaf using image processing techniq...
MRIIMAGE SEGMENTATION USING LEVEL SET METHOD AND IMPLEMENT AN MEDICAL DIAGNOS...
Segmentation of Brain MR Images for Tumor Extraction by Combining Kmeans Clus...
Application of Neural Network for Cell Formation in Group Technology
An iterative morphological decomposition algorithm for reduction of skeleton ...
Illustration of Medical Image Segmentation based on Clustering Algorithms
Telecardiology and Teletreatment System Design for Heart Failures Using Type-...
Fuzzy Logic based Edge Detection Method for Image Processing

What's hot (19)

PDF
ZERNIKE MOMENT-BASED FEATURE EXTRACTION FOR FACIAL RECOGNITION OF IDENTICAL T...
PDF
4 tracking objects of deformable shapes
PDF
WCTFR : W RAPPING C URVELET T RANSFORM B ASED F ACE R ECOGNITION
PDF
Diabetes Mellitus Detection Based on Facial Texture Feature using the GLCM
PDF
An efficient feature extraction method with pseudo zernike moment for facial ...
PDF
Fuzzy Logic Based Parameter Adaptation of Interior Search Algorithm
PDF
Mri image registration based segmentation framework for whole heart
PDF
Ba4103327330
PDF
C1103041623
PDF
A survey early detection of
PDF
fMRI Segmentation Using Echo State Neural Network
PDF
Brain Tissues Segmentation in MR Images based on Level Set Parameters Improve...
PDF
Ea4301770773
PDF
40120130405012
PDF
Hybrid Approach for Brain Tumour Detection in Image Segmentation
PDF
Medical Image Segmentation Based on Level Set Method
PDF
MULTIPLE SCLEROSIS DIAGNOSIS WITH FUZZY C-MEANS
PDF
A Learning Linguistic Teaching Control for a Multi-Area Electric Power System
PDF
Application of Medical Image Fusion models, to OCT and Fundus Photographic Im...
ZERNIKE MOMENT-BASED FEATURE EXTRACTION FOR FACIAL RECOGNITION OF IDENTICAL T...
4 tracking objects of deformable shapes
WCTFR : W RAPPING C URVELET T RANSFORM B ASED F ACE R ECOGNITION
Diabetes Mellitus Detection Based on Facial Texture Feature using the GLCM
An efficient feature extraction method with pseudo zernike moment for facial ...
Fuzzy Logic Based Parameter Adaptation of Interior Search Algorithm
Mri image registration based segmentation framework for whole heart
Ba4103327330
C1103041623
A survey early detection of
fMRI Segmentation Using Echo State Neural Network
Brain Tissues Segmentation in MR Images based on Level Set Parameters Improve...
Ea4301770773
40120130405012
Hybrid Approach for Brain Tumour Detection in Image Segmentation
Medical Image Segmentation Based on Level Set Method
MULTIPLE SCLEROSIS DIAGNOSIS WITH FUZZY C-MEANS
A Learning Linguistic Teaching Control for a Multi-Area Electric Power System
Application of Medical Image Fusion models, to OCT and Fundus Photographic Im...
Ad

Similar to Level based normal abnormal classification of mri brain images (20)

PDF
20120140506005
PDF
IRJET- A Novel Segmentation Technique for MRI Brain Tumor Images
PDF
Medical Image segmentation using Image Mining concepts
PDF
International Journal of Engineering Research and Development
PDF
Brain Tissues Segmentation in MR Images based on Level Set Parameters Improve...
PDF
Performance Analysis of SVM Classifier for Classification of MRI Image
PDF
Automatic Diagnosis of Abnormal Tumor Region from Brain Computed Tomography I...
PDF
Development of algorithm for identification of maligant growth in cancer usin...
PDF
40120130405013
PDF
IRJET- Image Processing for Brain Tumor Segmentation and Classification
PDF
IRJET- Analysis of Brain Tumor Classification by using Multiple Clustering Al...
PDF
Comparative performance analysis of segmentation techniques
PDF
Segmentation
PDF
Comparative Study on Medical Image Classification Techniques
PDF
MRI Image Segmentation Using Gradient Based Watershed Transform In Level Set ...
PDF
Mri brain tumour detection by histogram and segmentation
PDF
Mri brain tumour detection by histogram and segmentation by modified gvf model 2
PDF
Mri brain tumour detection by histogram and segmentation
PDF
Mri brain tumour detection by histogram and segmentation by modified gvf model 2
PDF
A Review on Label Image Constrained Multiatlas Selection
20120140506005
IRJET- A Novel Segmentation Technique for MRI Brain Tumor Images
Medical Image segmentation using Image Mining concepts
International Journal of Engineering Research and Development
Brain Tissues Segmentation in MR Images based on Level Set Parameters Improve...
Performance Analysis of SVM Classifier for Classification of MRI Image
Automatic Diagnosis of Abnormal Tumor Region from Brain Computed Tomography I...
Development of algorithm for identification of maligant growth in cancer usin...
40120130405013
IRJET- Image Processing for Brain Tumor Segmentation and Classification
IRJET- Analysis of Brain Tumor Classification by using Multiple Clustering Al...
Comparative performance analysis of segmentation techniques
Segmentation
Comparative Study on Medical Image Classification Techniques
MRI Image Segmentation Using Gradient Based Watershed Transform In Level Set ...
Mri brain tumour detection by histogram and segmentation
Mri brain tumour detection by histogram and segmentation by modified gvf model 2
Mri brain tumour detection by histogram and segmentation
Mri brain tumour detection by histogram and segmentation by modified gvf model 2
A Review on Label Image Constrained Multiatlas Selection
Ad

More from IAEME Publication (20)

PDF
IAEME_Publication_Call_for_Paper_September_2022.pdf
PDF
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
PDF
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
PDF
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
PDF
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
PDF
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
PDF
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
PDF
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
PDF
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
PDF
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
PDF
GANDHI ON NON-VIOLENT POLICE
PDF
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
PDF
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
PDF
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
PDF
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
PDF
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
PDF
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
PDF
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
PDF
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
PDF
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
IAEME_Publication_Call_for_Paper_September_2022.pdf
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
GANDHI ON NON-VIOLENT POLICE
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT

Recently uploaded (20)

PPTX
IMM marketing mix of four ps give fjcb jjb
PDF
Vinod Bhatt - Most Inspiring Supply Chain Leader in India 2025.pdf
PPTX
Understanding Procurement Strategies.pptx Your score increases as you pick a ...
PPTX
Market and Demand Analysis.pptx for Management students
PDF
Satish NS: Fostering Innovation and Sustainability: Haier India’s Customer-Ce...
PDF
Cross-Cultural Leadership Practices in Education (www.kiu.ac.ug)
DOCX
Handbook of entrepreneurship- Chapter 7- Types of business organisations
PPTX
Chapter 2 strategic Presentation (6).pptx
PDF
Highest-Paid CEO in 2025_ You Won’t Believe Who Tops the List.pdf
PPTX
df0ee68f89e1a869be4bff9b80a7 business 79f0.pptx
PPTX
CTG - Business Update 2Q2025 & 6M2025.pptx
DOCX
Center Enamel A Strategic Partner for the Modernization of Georgia's Chemical...
PPTX
basic introduction to research chapter 1.pptx
PPTX
operations management : demand supply ch
PDF
HQ #118 / 'Building Resilience While Climbing the Event Mountain
PDF
Robin Fischer: A Visionary Leader Making a Difference in Healthcare, One Day ...
PDF
Comments on Clouds that Assimilate Parts I&II.pdf
PPTX
Transportation in Logistics management.pptx
PDF
Consumer Behavior in the Digital Age (www.kiu.ac.ug)
PDF
#1 Safe and Secure Verified Cash App Accounts for Purchase.pdf
IMM marketing mix of four ps give fjcb jjb
Vinod Bhatt - Most Inspiring Supply Chain Leader in India 2025.pdf
Understanding Procurement Strategies.pptx Your score increases as you pick a ...
Market and Demand Analysis.pptx for Management students
Satish NS: Fostering Innovation and Sustainability: Haier India’s Customer-Ce...
Cross-Cultural Leadership Practices in Education (www.kiu.ac.ug)
Handbook of entrepreneurship- Chapter 7- Types of business organisations
Chapter 2 strategic Presentation (6).pptx
Highest-Paid CEO in 2025_ You Won’t Believe Who Tops the List.pdf
df0ee68f89e1a869be4bff9b80a7 business 79f0.pptx
CTG - Business Update 2Q2025 & 6M2025.pptx
Center Enamel A Strategic Partner for the Modernization of Georgia's Chemical...
basic introduction to research chapter 1.pptx
operations management : demand supply ch
HQ #118 / 'Building Resilience While Climbing the Event Mountain
Robin Fischer: A Visionary Leader Making a Difference in Healthcare, One Day ...
Comments on Clouds that Assimilate Parts I&II.pdf
Transportation in Logistics management.pptx
Consumer Behavior in the Digital Age (www.kiu.ac.ug)
#1 Safe and Secure Verified Cash App Accounts for Purchase.pdf

Level based normal abnormal classification of mri brain images

  • 1. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 2, March – April (2013), © IAEME 403 LEVEL BASED NORMAL- ABNORMAL CLASSIFICATION OF MRI BRAIN IMAGES Sumesh M. S.1 , GopakumarC.2 , RejiRajan Varghese3 , Abraham Varghese4 1 (Computer Engineering, College of Engineering, Chengannur, Kerala, India,) 2 (Dept. of Electronics & Communication Engineering, College of Engineering, Chengannur, India) 3 (Senior Resident, Radio diagnosis, Cochin Medical College, Cochin, India) 4 (Dept. of Computer science and Engg, Adi- SankaraInsitute of Engineering and Technology, Kalady, India) ABSTRACT This work proposes a new concept for the normal- abnormal classification of MRI brain images, a level based approach, and compare the result with the existing methods. The existing works does not consider the anatomical structure of the brain slices for the classification of MRI brain images. In the aspect of image processing, the anatomically similarity of the brain slices can be treated as the similarity of brain slices in the viewing aspect along with the actual anatomical structure. This work aimed to prove that the consideration of the anatomical structure for the normal– abnormal classification will improve the result of the classification. The existing work shows that the feature vector, statistical features along with gray level co-occurrence matrix (GLCM) features with support vector machine (SVM) classifier produce better results than other methods. It uses statistical features along with GLCM features as feature vector and SVM classifier. Related works in current literatures for the normal/abnormal classification of MRI images does not consider the anatomical structure of the brain slices. Because of the dissimilarity in the anatomical structure, it may produce undesirable results. In this proposed work, the anatomical structure of the brain slices is considered for the classification. To accompany this level based concept is introduced here. In the level based concept, the brain slices are classified into four levels depending on the similarity in the anatomical structure to implement the normal/abnormal classification at that particular level. INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) ISSN 0976 – 6367(Print) ISSN 0976 – 6375(Online) Volume 4, Issue 2, March – April (2013), pp. 403-409 © IAEME: www.iaeme.com/ijcet.asp Journal Impact Factor (2013): 6.1302 (Calculated by GISI) www.jifactor.com IJCET © I A E M E
  • 2. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 2, March – April (2013), © IAEME 404 Keywords: Brain tumour, Level based classification, Magnetic resonance imaging, Medical imaging, Support vector machine. 1. INTRODUCTION Medical imaging is widely used for disease diagnosis and treatment evaluation. Medical imaging techniques and analysis tools enable both doctors and radiologists to identify and diagnose various disorders [1, 2]. The medical image data obtained from bio- medical devices have important roles in disease diagnosis. MRI is a non-hazardous method which detects signals emitted from normal and abnormal tissue, providing clear images of most tumours [3, 4]. The radiologist or doctor can identify abnormal tissues by examining the MRI slices based on the visual interpretation. The shortage of radiologists and the large volume of MRI to be analysed make such readings laborious and cost expensive. Also the manual classification by mere visual interpretation of the radiologists may cause bad results due to vision problems. This leads to automated system to aid the doctors and radiologists in the identification of abnormal brain slices. To develop an accurate and sensitive automated system for the normal- abnormal classification of MRI brain slices, it has to identify a good set of feature vectors that can be substituted instead of the original image without losing its actual meaning and a good classifier. The related works suggests several feature vectors and classifiers which are shown in Table 1. This works shows that the combination of statistical features and GLCM features [6, 7] along with SVM classifier [8, 9] provides better results than the other methods. Table 1: Related woks for the classification of MRI brain slices Pre-processing Feature Extraction Feature Reduction Classification WAVELET TRANSFORM [10, 1 ], HISTOGRAM EQUALISATION [15]. DWT [1, 8,14,16], GLCM [11,12 ], SLANTLET TRANSFORM [13]. PCA [14,15 ], GA [16]. SVM [11,12,13,16], ANN [14,15 ], K-NN [11,14,15], MLP [11]. The proposed method also use the combination of statistical features along with GLCM features as feature vector and is used as the input to the SVM classifier. The related works for the normal/abnormal classification of MRI images does not consider the anatomical structure of the brain slices. Because of the dissimilarity in the anatomical structure, it may produce undesirable results. So in this proposed work, the anatomical structure of the brain slices is considered for the classification. In the aspect of image processing, the anatomical similarity of the brain slices can be treated as the similarity of brain slices in the viewing aspect along with the actual anatomical structure. To accompany this level based concept is introduced here. In the level based concept, the brain slices are classified into four levels depending on the similarity in the anatomical structure of the brain slices [17]. That is, classify the brain slices into one of the four levels and implement the normal/abnormal classification at that particular level.
  • 3. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 2, March – April (2013), © IAEME 405 2. METHODOLOGY The proposed methodology for the normal- abnormal classification of MRI brain slices has 2 steps, feature extraction and classification. Significant difference in tissue types, observed in variety of texture measures of MRI, is used for this classification. The classifier has 2 phases, training and testing phases. In training phase the statistical and GLCM texture features of MRI brain slices along with its label and normality or abnormality details, are given as input to the classifier. In testing phase, if the feature vector of a new slice is given as input to the classifier, a well-trained classifier can accurately classify it according to the parameters formed in the training phase. In the level based approach, the brain slices are grouped into four classes according to the similarity of anatomical structure in visual aspect of the image and the above texture extraction, training and testing processes are done at each level independently. 2.1 FEATURE EXTRACTION The purpose of feature extraction is to reduce the original data set by measuring certain properties, or features, that distinguish one input pattern from another [18]. The extracted features provide the characteristics of the input type to the classifier by considering the description of the relevant properties of the image into a feature space. Most of the tumour is heterogeneous tissues and the mean values of relaxation times are not at all sufficient to characterize the heterogeneity of the different tumour types [3]. An alternative approach, which is being investigated within the framework of this study, is to apply texture analysis to the T2 FLAIR images to describe quantitatively the brightness and texture of the images. Texture analysis covers a wide range of techniques based on first- and second order image texture parameters. In the present study the statistical features based on image intensity like mean & variance and features from gray level co-occurrence matrices (GLCMs) such as entropy, contrast, energy, inverse difference moment and correlation [ 6,7 ,11] are used to investigate the adequacy for the discrimination of normal and abnormal patient. The gray level co- occurrence matrix (GLCM) calculates how often a pixel with gray level value occurs either horizontally, vertically, or diagonally to adjacent pixels with the value j, where i and j are the gray level values in the image. Haralick features [6, 7] based on GLCM is a proven technique to analyse the object with irregular outlines [6, 7]. Haralick introduced fourteen textural features from the GLCM and out of these fourteen features five of the textural features are considered to be the most relevant. Those textural features are Energy, Entropy, Contrast, Correlation and Inverse Difference Moment. Energy is also called Angular Second Moment (ASM) where it measures textural uniformity [19]. If an image is completely homogeneous, its energy will be maximum. Entropy is a measure, which is inversely correlated to energy. It measures the disorder or randomness of an image [19]. Next, contrast is a measure of local gray level variation of an image. This parameter takes low value for a smooth image and high value for a coarse image. On the other hand, inverse difference moment is a measure that takes a high value for a low contrast image. Thus, the parameter is more sensitive to the presence of the GLCM elements, which are nearer to the symmetry line x (i, i) [19]. The last feature, correlation, measures the linear dependency among neighbouring pixels. It gives a measure of abrupt pixel transitions in the image [20].
  • 4. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 2, March – April (2013), © IAEME 406 2.2.1 FEATURES USED Statistical Features Meanܺത ൌ 1 X ‫כ‬ Y ෍ ୶ ୧ୀଵ ෍ xሺi. jሻ ୷ ୨ୀଵ VarianceV ൌ ଵ ଡ଼‫כ‬ଢ଼ ∑୶ ୧ୀଵ ∑ ሺxሺi. jሻ ୷ ୨ୀଵ െ xതሻ GLCM Features Entropyൌ െ ∑୒ ୧ୀଵ ∑ ቀ ሺ୔ሺ୧.୨ሻ ୖ ቁ୒ ୨ୀଵ ݈‫݃݋‬ሺ ሺ୔ሺ୧.୨ሻ ୖ ሻ Energyൌ െ ∑୒ ୧ୀଵ ∑ ቀ ሺ୔ሺ୧.୨ሻ ୖ ቁ ଶ ୒ ୨ୀଵ Contrastൌ െ ∑୒ ୧ୀଵ ∑ ሺi െ jሻ ቀ ሺ୔ሺ୧.୨ሻ ୖ ቁ୒ ୨ୀଵ Correlationൌ െ ∑୒ ୧ୀଵ ∑ ቀ ౟ౠሺౌሺ౟.ౠሻ ౎ ቁିµ౮µ౯ σ౮σ౯ ୒ ୨ୀଵ Inverse Difference Momentൌ ∑୒ ୧ୀଵ ∑ ቀ ሺౌሺ౟.ౠሻ ౎ ቁ ଵାሺ୧ି୨ሻమ , i ് j୒ ୨ୀଵ Where P(i, j) is the GLCM Matrix, R is the total number of pixel pairs used for the calculation of GLCM and ߤ௫, ߤ௬, ߪ௫ and ߪ௬ are the mean and standard deviation values of GLCM values accumulated in the x and y directions respectively. 2.2 CLASSIFICATION The aim of classification is to group items that have similar feature values into groups. Classifier achieves this by making a classification decision based on the value of the linear combination of the features. SVM is a binary classification method that takes as input labelled data from two classes and outputs a model file for classifying new unlabelled or labelled data into one of two classes [1, 9,11]. 2.3 SUPPORT VECTOR MACHINE Support Vector Machine (SVM) is a binary classifier based supervised learning theory, a recent advances in statistical learning theory. SVMs deliver state-of-the-art performance in real-world applications such as text categorisation, hand-written character recognition, image classification, bio sequences analysis, etc. The basis of this approach is the projection of the low-dimensional training data in a higher dimensional feature space, because in this higher dimensional feature space it is easier to separate the input data. This projection is achieved by using kernel functions. So kernel functions provides the bridge between non-linear to linear. Thus kernel function is used to map the low dimensional data into the high dimensional feature space where data points are linearly separable. There are many types of kernels are available for SVM and this work uses the following kernels: Linear, Polynomial and radial basis function (RBF) [1, 9, 11]. 3. RESULTS AND DISCUSSIONS In the proposed work, T2 FLAIR weighted axial MRI Brain images as input data set. Here two types of databases are used 1. Simulated Brain Database. 2. Brain Database of a Hospital
  • 5. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 2, March – April (2013), © IAEME 407 The input data involved 100 patients (50 abnormal and 50 normal). At first the normal- abnormal classification is done without considering the anatomical structure. In this stage of the work a set of 320 brain slices, 160 normal and 160 abnormal, are used. Out of these two hundred images, 160 slices, 80 normal and 80 abnormal, are used for training and remaining hundred are used for testing. For level based normal- abnormal classification, the whole normal and abnormal images are divided into 4 levels according to the similarity of the brain slices based on a viewing aspect of the images. Thus each level contains a total of 160 images with 80 normal and 80 abnormal. Out of these 160 images 80, 40 normal and 40 abnormal are used for training phase and remaining 80 are used for testing phase. Results are summarised in Tables 3, 4 and 5. Table 3: Classification using Polynomial Kernel Level 1 Level 2 Level 3 Level 4 All Levels TP 40 39 39 40 78 FN 0 1 1 0 2 TN 40 40 39 40 78 FP 0 0 1 0 2 Sensitivity (TPR) 1 0.975 0.975 1 0.975 (FPR) 0 0.025 0.025 0 0.025 Specificity (TNR) 1 1 0.975 1 0.975 (FNR) 0 0 0.025 0 0.025 Accuracy 1 0.9875 0.975 1 0.975 Table 4: Classification using RBF Kernel Level 1 Level 2 Level 3 Level 4 All Levels TP 40 39 39 40 73 FN 0 1 1 0 7 TN 40 39 38 40 72 FP 0 1 2 0 8 Sensitivity (TPR) 1 0.975 0.975 1 0.9125 (FPR) 0 0.025 0.025 0 0.0875 Specificity (TNR) 1 0.975 0.95 1 0.9 (FNR) 0 0.025 0.05 0 0.1 Accuracy 1 0.975 0.9625 1 0.90625
  • 6. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 2, March – April (2013), © IAEME 408 Table 5: Classification using Linear Kernel Level 1 Level 2 Level 3 Level 4 All Levels TP 40 40 39 39 72 FN 0 0 1 1 8 TN 40 38 39 40 73 FP 0 2 1 0 7 Sensitivity (TPR) 1 1 0.975 0.975 0.9 (FPR) 0 0 0.025 0.025 0.1 Specificity (TNR) 1 0.95 0.975 1 0.9125 (FNR) 0 0.05 0.025 0 0.0875 Accuracy 1 0.975 0.975 0.9875 0.90625 The results shows that level based normal-abnormal classification got better result than non-level based classification. Also it shows that SVM with Polynomial kernel got better result than those with RBF and Linear kernels. 4. CONCLUSION This work is intended to prove that, the consideration of anatomical structure of the MRI Brain slices, for the normal/abnormal classification, will help to get more accurate result. Level based normal abnormal classification got better results than non- level based classification. Here support vector machine with polynomial kernel of degree 3 shows better results than those with linear or RBF kernel. This work will surely help the radiologists and doctors in the identification of abnormal brain slices. Magnetic Resonance Images are examined by radiologists based on visual interpretation of the films to identify the presence of tumour abnormal tissue. The shortage of radiologists and the large volume of MRI to be analysed make such readings labour intensive, cost expensive and often inaccurate. The sensitivity of the human eye in interpreting large numbers of images decreases with increasing number of cases, particularly when only a small number of slices are affected. Hence this automated systems for analysis and classification of such medical image will surely become an aid for both radiologists and doctors in tumour analysis and detection. Also it will be the key step for the automated tumour detection system development. REFERENCES [1] Abdullah, N, Ngah, U.K.; Aziz, S.A., “Image classification of brain MRI using support vector machine” Imaging Systems and Techniques (IST), 2011 IEEE International Conference on 17-18 May 2011. [2] T Kesavamurthy, S SubhaRani, ``Pattern Classification using imaging techniques for Infarct and Hemorrhage Identification in the Human Brain"Calicut Medical Journal 2006. [3] http://www.braintumor.org/TumorTypes [4] http://www.bio-medicine.org/Biology [5] D. Selvathi, R.S. Ram Prakash, Dr.S.ThamaraiSelvi, “Performance Evaluation of Kernel Based Techniques for Brain MRI Data Classification"International Conference on Computational Intelligence and Multimedia Applications 2007.
  • 7. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 2, March – April (2013), © IAEME 409 [6] R. M Haarlick, “Statistical and structural approaches to texture", Proc. IEEE, vol. 67, pp. 786-804, 1979. [7] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image Classification", IEEE transaction on systems, man, and cybernetics, Vol.3, No 6, pp. 610-621, 1973. [8] S. Chaplot, L.M. Patnaik, N.R. Jaganathan, “Classification of magnetic resonance brain images using wavelet as input to support vector machine and neural network" Biomed. Signal Process. Control (2006). [9] V.N. Vapnik, “Statistical Learning Theory", Wiley, New York, 1998. [10] VerlagDr. Mueller, “Image De-noising Using Wavelet Transforms" April 2008. [11] H. Selvaraj, S. ThamaraiSelvi, D. Selvathi, L. Gewali, “Brain MRI Slices Classification Using Least Squares Support Vector Machine”, IC-MED, Vol. 1, No. 1, Issue 1, Page 21 of 33 [12] Ching-Tsorng Tsai, Hsian Min Chen, Jyh-Wen Chai, Chen, Chein-I Chang, “Classification of Magnetic Resonance Brain Images by Using Weighted Radial Basis Function kernels",IEEE International Conference of Electrical and Control Engineering (ICECE), 2011, Page(s): 5784 - 5787. [13] MadhubantiMaitra, AmitavaChatterjee and FumitoshiMatsuno, “A Novel Scheme for Feature Extraction and Classification of Magnetic Resonance Brain Images Based on Slantlet Transform and Support Vector Machine",IEEE SICE Annual Conference 2008, Page(s): 1130 - 1134. [14] N. HemaRajini, R.Bhavani, “ Classification of MRI Brain Images using K-Nearest Neighbour and Artificial Neural Network",IEEE-International Conference on Recent Trends in Information Technology, ICRTIT 2011, Page(s): 563-568. [15] ShahlaNajafi, Mehdi ChehelAmirani and Zahra Sedgh, “A New Approach to MRI Brain Images Classification",IEEE 19th Iranian Conference on Electrical Engineering (ICEE), 2011, Page(s): 1. [16] Ahmed Kharrat, Karim Gasmi n, Mohamed Ben Messaoud, NacéraBenamrane and Mohamed Abid, “Automated Classification of Magnetic Resonance Brain Images Using Wavelet Genetic Algorithm and Support Vector Machine",IEEE International Conference on Cognitive Informatics (ICCI 10), 2010, Page(s): 369-374 . [17] Abraham Varghese, RejiRajan Varghese, KannanBalakrishnan, J. S. Paul, “Axial T2 Weighted MR Brain Image Retrieval Using Moment Features",Springer- Advances in Intelligent Systems and Computing Volume 177, 2013, pp 355-363. [18] Alberto Martin and SobriTosunoglu, “Image Processing Techniques for Machine Vision", Florida University, 2000 [19] A. Baraldi, F. Parmiggiani, “An Investigation Of The Textural Characteristics Associated With GLCM Matrix Statistical Parameters”,IEEE Trans. on Geos. and Rem. Sens., vol. 33(2), pp. 293-304, 1995. [20] A. Ukovich, G. Impoco, G. Ramponi, “A tool based on the GLCM to measure the performance of dynamic range reduction algorithms”,IEEE Int. Workshop on Imaging Sys. & Techniques, pp. 36-41, 2005. [21] Selvaraj.D and Dhanasekaran.R, “MRI Brain Tumour Detection by Histogram and Segmentation by Modified Gvf Model”, International Journal of Electronics and Communication Engineering & Technology (IJECET), Volume 4, Issue 1, 2013, pp. 55 - 68, ISSN Print: 0976- 6464, ISSN Online: 0976 –6472. [22] B.Venkateswara Reddy, Dr.P.Satish Kumar, Dr.P.Bhaskar Reddy and B.Naresh Kumar Reddy, “Identifying Brain Tumour from MRI Image using Modified FCM and Support Vector Machine”, International journal of Computer Engineering & Technology (IJCET), Volume 4, Issue 1, 2013, pp. 244 - 262, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375.