SlideShare a Scribd company logo
Machine learning for functional connectomes
Gaël Varoquaux
Machine learning for functional connectomes
Gaël Varoquaux
Outline:
1 Intuitions on machine learning
2 Machine learning on rest fMRI
Pointers to code in nilearn & scikit-learn
nilearn.github.io — scikit-learn.org
Use the “API reference” to look up functions
and scroll down for examples of usage
1 Intuitions on machine learning
Adjusting models for prediction
G Varoquaux 2
1 Machine learning in a nutshell: an example
Face recognition
Andrew Bill Charles Dave
G Varoquaux 3
1 Machine learning in a nutshell: an example
Face recognition
Andrew Bill Charles Dave
?G Varoquaux 3
1 Machine learning in a nutshell
A simple method:
1 Store all the known (noisy) images and the names
that go with them.
2 From a new (noisy) images, find the image that is
most similar.
“Nearest neighbor” method
G Varoquaux 4
1 Machine learning in a nutshell
A simple method:
1 Store all the known (noisy) images and the names
that go with them.
2 From a new (noisy) images, find the image that is
most similar.
“Nearest neighbor” method
How many errors on already-known images?
... 0: no errors
Test data = Train data
G Varoquaux 4
1 Machine learning in a nutshell
A simple method:
1 Store all the known (noisy) images and the names
that go with them.
2 From a new (noisy) images, find the image that is
most similar.
“Nearest neighbor” method
How many errors on already-known images?
... 0: no errors
Test data = Train data
G Varoquaux 4
1 Machine learning in a nutshell: intuitions
A single descriptor:
one dimension
x
y
G Varoquaux 5
1 Machine learning in a nutshell: intuitions
A single descriptor:
one dimension
x
y
x
y
Which model to prefer?
G Varoquaux 5
1 Machine learning in a nutshell: intuitions
A single descriptor:
one dimension
x
y
x
y
Problem of “over-fitting”
Minimizing error is not always the best strategy
(learning noise)
Test data = train data
G Varoquaux 5
1 Machine learning in a nutshell: intuitions
A single descriptor:
one dimension
x
y
x
y
Prefer simple models
= concept of “regularization”
Balance the number of parameters to learn
with the amount of data
G Varoquaux 5
1 Machine learning in a nutshell: intuitions
A single descriptor:
one dimension
x
y
Two descriptors:
2 dimensions
X_1
X_2
y
The higher the number of descriptors
the more the trouble
G Varoquaux 5
1 Machine learning in a nutshell: intuitions
A single descriptor:
one dimension
x
y
Two descriptors:
2 dimensions
X_1
X_2
y
The higher the number of descriptors
the more the trouble
The higher the required number of subjects
G Varoquaux 5
1 Testing prediction: generalization and cross-validation
[Varoquaux... 2017]
x
y
x
y
G Varoquaux 6
1 Testing prediction: generalization and cross-validation
[Varoquaux... 2017]
x
y
x
y
⇒ Need test on independent, unseen data
Train set Validation
set
Measures prediction accuracy
sklearn.model_selection.train_test_split
G Varoquaux 6
1 Testing prediction: generalization and cross-validation
[Varoquaux... 2017]
x
y
x
y
⇒ Need test on independent, unseen data
Loop
Test setTrain set
Full data
sklearn.
model_selection.
cross_val_score
G Varoquaux 6
2 Machine learning on rest
fMRI
for population imaging
finding differences between subjects
in functional connectomesG Varoquaux 7
From rest-fMRI to biomarkers
No salient features in rest fMRI
G Varoquaux 8
From rest-fMRI to biomarkers
Define functional regions
G Varoquaux 8
From rest-fMRI to biomarkers
Define functional regions
Learn interactions
G Varoquaux 8
From rest-fMRI to biomarkers
Define functional regions
Learn interactions
Find differences
G Varoquaux 8
From rest-fMRI to biomarkers
Functional
connectivity
matrix
Time series
extraction
Region
definition
Supervised learning
RS-fMRI
Typical pipeline [Varoquaux and Craddock 2013]
1. Define regions
2. Extract times series
3. Build functional-connectivity matrix
4. Apply supervised machine learning
G Varoquaux 9
2 Defining regions from rest-fMRI
Clustering nilearn.regions.Parcellations
k-means
Fast (in nilearn)
No spatial model
⇒ smooth the data
G Varoquaux 10
2 Defining regions from rest-fMRI
Clustering nilearn.regions.Parcellations
k-means
Fast (in nilearn)
No spatial model
⇒ smooth the data
Ward agglomerative clustering
Recursive merges of clusters
Spatial model constraints merges
⇒ fast
... ... ...
... ...
G Varoquaux 10
2 Defining regions from rest-fMRI
Clustering nilearn.regions.Parcellations
k-means
Fast (in nilearn)
No spatial model
⇒ smooth the data
Ward agglomerative clustering
Recursive merges of clusters
Spatial model constraints merges
⇒ fast
Decomposition models
time
voxels
time
voxels
time
voxels
Y +E · S=
25
N
G Varoquaux 10
2 Defining regions from rest-fMRI
Clustering nilearn.regions.Parcellations
k-means
Fast (in nilearn)
No spatial model
⇒ smooth the data
Ward agglomerative clustering
Recursive merges of clusters
Spatial model constraints merges
⇒ fast
Decomposition models
ICA: nilearn.decomposition.CanICA
seek independence of maps
Sparse dictionary learning:
seek sparse maps
nilearn.decomposition.DictLearning
G Varoquaux 10
2 For connectome prediction [Dadi... 2018]
RS-fMRI
Functional
connectivity
Time series
2
4
3
1
Diagnosis
ROIs
Choice of regions for best prediction?
G Varoquaux 11
2 For connectome prediction [Dadi... 2018]
RS-fMRI
Functional
connectivity
Time series
2
4
3
1
Diagnosis
ROIs
Choice of regions for best prediction?
G Varoquaux 11
2 Region definition: resulting parcellations
Dictionary learning Group ICA
Ward clustering K-Means clustering
2 Region definition: resulting parcellations
Dictionary learning Group ICA
Ward clustering K-Means clustering
2 Region definition: resulting parcellations
Dictionary learning Group ICA
Ward clustering K-Means clustering
2 Time-series extraction
Extract ROI-average signal:
Optional low-pass filter
(≈ .1 Hz – .3 Hz)
Regress out confounds (movement parameters, CSF &
white matter signals, Compcorr, Global mean)
Hard parcellations (eg from clustering)
nilearn.input_data.NiftiLabelsMasker
Soft parcellations (eg from ICA)
nilearn.input_data.NiftiMapsMasker
G Varoquaux 13
2 Connectome: building a connectivity matrix
How to capture and represent interactions?
G Varoquaux 14
2 Connectome: differences across subjects
0 5 10 15 20 25
0
5
10
15
20
25
0 5 10 15 20 25
0
5
10
15
20
25
0 5 10 15 20 25
0
5
10
15
20
25
0 5 10 15 20 25
0
5
10
15
20
25
Correlation matrices
0 5 10 15 20 25
0
5
10
15
20
25
0 5 10 15 20 25
0
5
10
15
20
25
0 5 10 15 20 25
0
5
10
15
20
25
0 5 10 15 20 25
0
5
10
15
20
25
Partial correlation matrices
3 controls, 1 severe stroke patient
Which is which?
G Varoquaux 15
2 Connectome: differences across subjects
0 5 10 15 20 25
0
5
10
15
20
25 Control
0 5 10 15 20 25
0
5
10
15
20
25 Control
0 5 10 15 20 25
0
5
10
15
20
25 Control
0 5 10 15 20 25
0
5
10
15
20
25Large lesion
Correlation matrices
0 5 10 15 20 25
0
5
10
15
20
25 Control
0 5 10 15 20 25
0
5
10
15
20
25 Control
0 5 10 15 20 25
0
5
10
15
20
25 Control
0 5 10 15 20 25
0
5
10
15
20
25Large lesion
Partial correlation matrices
Spread-out variability in correlation matrices
Noise in partial-correlations
Strong dependence between coefficients
[Varoquaux... 2010]
G Varoquaux 15
2 Information geometry: uniform-error parametrization
Subject-specific noise in covariance form manifold
Tangent space removes coupling in coefficients
Controls
Patient
dΣ
M
anifold
Tangent
Tangent embedding[Varoquaux... 2010]
G Varoquaux 16
2 Connectome: which parametrization maps differences?
0 5 10 15 20 25
0
5
10
15
20
25 Control
0 5 10 15 20 25
0
5
10
15
20
25 Control
0 5 10 15 20 25
0
5
10
15
20
25 Control
0 5 10 15 20 25
0
5
10
15
20
25Large lesion
Correlation matrices
0 5 10 15 20 25
0
5
10
15
20
25 Control
0 5 10 15 20 25
0
5
10
15
20
25 Control
0 5 10 15 20 25
0
5
10
15
20
25 Control
0 5 10 15 20 25
0
5
10
15
20
25Large lesion
Partial correlation matrices
0 5 10 15 20 25
0
5
10
15
20
25 Control
0 5 10 15 20 25
0
5
10
15
20
25 Control
0 5 10 15 20 25
0
5
10
15
20
25 Control
0 5 10 15 20 25
0
5
10
15
20
25Large lesion
Tangent-space embedding
[varoquaux 2010]
G Varoquaux 17
2 For connectome prediction [Dadi... 2018]
Time series
2
RS-fMRI
41
Diagnosis
ROIs Functional
connectivity
3
Connectivity matrix
Correlation nilearn.connectome.ConnectivityMeasure
Partial correlations
Tangent space
G Varoquaux 18
2 For connectome prediction [Dadi... 2018]
Time series
2
RS-fMRI
41
Diagnosis
ROIs Functional
connectivity
3
Connectivity matrix
Correlation nilearn.connectome.ConnectivityMeasure
Partial correlations
Tangent space
G Varoquaux 18
2 Supervised learning step [Dadi... 2018]
Functional
connectivity
Time series
3
4
Diagnosis
2
RS-fMRI
1 ROIs
Supervised learning
Stick with Linear models
sklearn.linear_model.LogisticRegression
G Varoquaux 19
2 Supervised learning step [Dadi... 2018]
Functional
connectivity
Time series
3
4
Diagnosis
2
RS-fMRI
1 ROIs
Supervised learning
Stick with Linear models
sklearn.linear_model.LogisticRegression
G Varoquaux 19
Predicting from brain activity at rest
RS-fMRI
Functional
connectivity
Time series
2
4
3
1
Diagnosis
ROIs
1. Functional regions (eg clustering, decomposition, or BASC atlas)
2. Filtering and or confound removal
3. Tangent-space parametrization
4. Supervised linear models (eg SVMs)
G Varoquaux 20
3 References I
A. Abraham, E. Dohmatob, B. Thirion, D. Samaras, and
G. Varoquaux. Extracting brain regions from rest fMRI with
total-variation constrained dictionary learning. In MICCAI, page
607. 2013.
K. Dadi, M. Rahim, A. Abraham, D. Chyzhyk, M. Milham,
B. Thirion, and G. Varoquaux. Benchmarking functional
connectome-based predictive models for resting-state fmri. 2018.
G. Varoquaux and R. C. Craddock. Learning and comparing
functional connectomes across subjects. NeuroImage, 80:405,
2013.
G. Varoquaux and B. Thirion. How machine learning is shaping
cognitive neuroimaging. GigaScience, 3:28, 2014.
G. Varoquaux, F. Baronnet, A. Kleinschmidt, P. Fillard, and
B. Thirion. Detection of brain functional-connectivity difference
in post-stroke patients using group-level covariance modeling. In
MICCAI. 2010.G Varoquaux 21
3 References II
G. Varoquaux, P. R. Raamana, D. A. Engemann, A. Hoyos-Idrobo,
Y. Schwartz, and B. Thirion. Assessing and tuning brain
decoders: cross-validation, caveats, and guidelines. NeuroImage,
145:166–179, 2017.
G Varoquaux 22

More Related Content

PDF
Towards psychoinformatics with machine learning and brain imaging
PDF
Estimating Functional Connectomes: Sparsity’s Strength and Limitations
PDF
Dirty data science machine learning on non-curated data
PDF
Similarity encoding for learning on dirty categorical variables
PDF
Inter-site autism biomarkers from resting state fMRI
PDF
Brain maps from machine learning? Spatial regularizations
PDF
Connectomics: Parcellations and Network Analysis Methods
PDF
Python for brain mining: (neuro)science with state of the art machine learnin...
Towards psychoinformatics with machine learning and brain imaging
Estimating Functional Connectomes: Sparsity’s Strength and Limitations
Dirty data science machine learning on non-curated data
Similarity encoding for learning on dirty categorical variables
Inter-site autism biomarkers from resting state fMRI
Brain maps from machine learning? Spatial regularizations
Connectomics: Parcellations and Network Analysis Methods
Python for brain mining: (neuro)science with state of the art machine learnin...

What's hot (20)

PDF
Advanced network modelling 2: connectivity measures, goup analysis
PDF
Bayesian Deep Learning
PDF
Uncertainty in Deep Learning
PDF
Uncertainty Modeling in Deep Learning
PDF
Modeling uncertainty in deep learning
PDF
Graph Neural Network for Phenotype Prediction
PDF
Performance evaluation of GANs in a semisupervised OCR use case
PDF
Large Scale Recommendation: a view from the Trenches
PDF
Selective inference and single-cell differential analysis
PDF
2018.01.12 AHClab SD-study paper reading
PDF
Fast relaxation methods for the matrix exponential
PPTX
How to calculate back propagation
PDF
Joint causal inference on observational and experimental data - NIPS 2016 "Wh...
PDF
Talk: Joint causal inference on observational and experimental data - NIPS 20...
PDF
Anti-differentiating Approximation Algorithms: PageRank and MinCut
PDF
Pattern-based classification of demographic sequences
PDF
Localized methods for diffusions in large graphs
PDF
CSC446: Pattern Recognition (LN6)
PDF
La statistique et le machine learning pour l'intégration de données de la bio...
PDF
Naive Bayes Classifier Tutorial | Naive Bayes Classifier Example | Naive Baye...
Advanced network modelling 2: connectivity measures, goup analysis
Bayesian Deep Learning
Uncertainty in Deep Learning
Uncertainty Modeling in Deep Learning
Modeling uncertainty in deep learning
Graph Neural Network for Phenotype Prediction
Performance evaluation of GANs in a semisupervised OCR use case
Large Scale Recommendation: a view from the Trenches
Selective inference and single-cell differential analysis
2018.01.12 AHClab SD-study paper reading
Fast relaxation methods for the matrix exponential
How to calculate back propagation
Joint causal inference on observational and experimental data - NIPS 2016 "Wh...
Talk: Joint causal inference on observational and experimental data - NIPS 20...
Anti-differentiating Approximation Algorithms: PageRank and MinCut
Pattern-based classification of demographic sequences
Localized methods for diffusions in large graphs
CSC446: Pattern Recognition (LN6)
La statistique et le machine learning pour l'intégration de données de la bio...
Naive Bayes Classifier Tutorial | Naive Bayes Classifier Example | Naive Baye...
Ad

Similar to Machine learning for functional connectomes (20)

PDF
Functional-connectome biomarkers to meet clinical needs?
PDF
Better neuroimaging data processing: driven by evidence, open communities, an...
PDF
Scikit-learn and nilearn: Democratisation of machine learning for brain imaging
PDF
Olga Senyukova - Machine Learning Applications in Medicine
PDF
A tutorial on Machine Learning, with illustrations for MR imaging
PPTX
Open science resources for `Big Data' Analyses of the human connectome
PDF
Learning about the brain: Neuroimaging and Beyond
PDF
ugc carelist journals ugc carelist journals
PDF
ugc carelist journals ugc carelist journals
PDF
ugc carelist journals ugc carelist journals
PPTX
NTI_AI_Project_graphic era hill_2022.pptx
PDF
Machine learning and cognitive neuroimaging: new tools can answer new questions
PDF
Connectomics_Journal Club
PPTX
Computational approaches for mapping the human connectome
PDF
Simple big data, in Python
PDF
Dx25751756
PPTX
CSU_comp
PPTX
Graph theoretic neuromorphology
DOCX
Chen_Colleen_Thesis_2014
PPTX
Defenseeeeeeeeedefenceeeeeunckefjdfd I.pptx
Functional-connectome biomarkers to meet clinical needs?
Better neuroimaging data processing: driven by evidence, open communities, an...
Scikit-learn and nilearn: Democratisation of machine learning for brain imaging
Olga Senyukova - Machine Learning Applications in Medicine
A tutorial on Machine Learning, with illustrations for MR imaging
Open science resources for `Big Data' Analyses of the human connectome
Learning about the brain: Neuroimaging and Beyond
ugc carelist journals ugc carelist journals
ugc carelist journals ugc carelist journals
ugc carelist journals ugc carelist journals
NTI_AI_Project_graphic era hill_2022.pptx
Machine learning and cognitive neuroimaging: new tools can answer new questions
Connectomics_Journal Club
Computational approaches for mapping the human connectome
Simple big data, in Python
Dx25751756
CSU_comp
Graph theoretic neuromorphology
Chen_Colleen_Thesis_2014
Defenseeeeeeeeedefenceeeeeunckefjdfd I.pptx
Ad

More from Gael Varoquaux (18)

PDF
Evaluating machine learning models and their diagnostic value
PDF
Measuring mental health with machine learning and brain imaging
PDF
Machine learning with missing values
PDF
Representation learning in limited-data settings
PDF
Atlases of cognition with large-scale human brain mapping
PDF
Simple representations for learning: factorizations and similarities
PDF
Computational practices for reproducible science
PDF
Coding for science and innovation
PDF
On the code of data science
PDF
Scientist meets web dev: how Python became the language of data
PDF
Social-sparsity brain decoders: faster spatial sparsity
PDF
Scikit-learn: the state of the union 2016
PDF
Scikit-learn for easy machine learning: the vision, the tool, and the project
PDF
Succeeding in academia despite doing good_software
PDF
Building a cutting-edge data processing environment on a budget
PDF
Scikit-learn: apprentissage statistique en Python. Créer des machines intelli...
PDF
Open Source Scientific Software
PDF
Scikit learn: apprentissage statistique en Python
Evaluating machine learning models and their diagnostic value
Measuring mental health with machine learning and brain imaging
Machine learning with missing values
Representation learning in limited-data settings
Atlases of cognition with large-scale human brain mapping
Simple representations for learning: factorizations and similarities
Computational practices for reproducible science
Coding for science and innovation
On the code of data science
Scientist meets web dev: how Python became the language of data
Social-sparsity brain decoders: faster spatial sparsity
Scikit-learn: the state of the union 2016
Scikit-learn for easy machine learning: the vision, the tool, and the project
Succeeding in academia despite doing good_software
Building a cutting-edge data processing environment on a budget
Scikit-learn: apprentissage statistique en Python. Créer des machines intelli...
Open Source Scientific Software
Scikit learn: apprentissage statistique en Python

Recently uploaded (20)

PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Electronic commerce courselecture one. Pdf
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
sap open course for s4hana steps from ECC to s4
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PPTX
MYSQL Presentation for SQL database connectivity
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Empathic Computing: Creating Shared Understanding
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Advanced methodologies resolving dimensionality complications for autism neur...
Electronic commerce courselecture one. Pdf
The AUB Centre for AI in Media Proposal.docx
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
sap open course for s4hana steps from ECC to s4
Digital-Transformation-Roadmap-for-Companies.pptx
Diabetes mellitus diagnosis method based random forest with bat algorithm
MYSQL Presentation for SQL database connectivity
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
NewMind AI Weekly Chronicles - August'25-Week II
Network Security Unit 5.pdf for BCA BBA.
Dropbox Q2 2025 Financial Results & Investor Presentation
Empathic Computing: Creating Shared Understanding
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
MIND Revenue Release Quarter 2 2025 Press Release
Unlocking AI with Model Context Protocol (MCP)
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
“AI and Expert System Decision Support & Business Intelligence Systems”
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows

Machine learning for functional connectomes

  • 1. Machine learning for functional connectomes Gaël Varoquaux
  • 2. Machine learning for functional connectomes Gaël Varoquaux Outline: 1 Intuitions on machine learning 2 Machine learning on rest fMRI Pointers to code in nilearn & scikit-learn nilearn.github.io — scikit-learn.org Use the “API reference” to look up functions and scroll down for examples of usage
  • 3. 1 Intuitions on machine learning Adjusting models for prediction G Varoquaux 2
  • 4. 1 Machine learning in a nutshell: an example Face recognition Andrew Bill Charles Dave G Varoquaux 3
  • 5. 1 Machine learning in a nutshell: an example Face recognition Andrew Bill Charles Dave ?G Varoquaux 3
  • 6. 1 Machine learning in a nutshell A simple method: 1 Store all the known (noisy) images and the names that go with them. 2 From a new (noisy) images, find the image that is most similar. “Nearest neighbor” method G Varoquaux 4
  • 7. 1 Machine learning in a nutshell A simple method: 1 Store all the known (noisy) images and the names that go with them. 2 From a new (noisy) images, find the image that is most similar. “Nearest neighbor” method How many errors on already-known images? ... 0: no errors Test data = Train data G Varoquaux 4
  • 8. 1 Machine learning in a nutshell A simple method: 1 Store all the known (noisy) images and the names that go with them. 2 From a new (noisy) images, find the image that is most similar. “Nearest neighbor” method How many errors on already-known images? ... 0: no errors Test data = Train data G Varoquaux 4
  • 9. 1 Machine learning in a nutshell: intuitions A single descriptor: one dimension x y G Varoquaux 5
  • 10. 1 Machine learning in a nutshell: intuitions A single descriptor: one dimension x y x y Which model to prefer? G Varoquaux 5
  • 11. 1 Machine learning in a nutshell: intuitions A single descriptor: one dimension x y x y Problem of “over-fitting” Minimizing error is not always the best strategy (learning noise) Test data = train data G Varoquaux 5
  • 12. 1 Machine learning in a nutshell: intuitions A single descriptor: one dimension x y x y Prefer simple models = concept of “regularization” Balance the number of parameters to learn with the amount of data G Varoquaux 5
  • 13. 1 Machine learning in a nutshell: intuitions A single descriptor: one dimension x y Two descriptors: 2 dimensions X_1 X_2 y The higher the number of descriptors the more the trouble G Varoquaux 5
  • 14. 1 Machine learning in a nutshell: intuitions A single descriptor: one dimension x y Two descriptors: 2 dimensions X_1 X_2 y The higher the number of descriptors the more the trouble The higher the required number of subjects G Varoquaux 5
  • 15. 1 Testing prediction: generalization and cross-validation [Varoquaux... 2017] x y x y G Varoquaux 6
  • 16. 1 Testing prediction: generalization and cross-validation [Varoquaux... 2017] x y x y ⇒ Need test on independent, unseen data Train set Validation set Measures prediction accuracy sklearn.model_selection.train_test_split G Varoquaux 6
  • 17. 1 Testing prediction: generalization and cross-validation [Varoquaux... 2017] x y x y ⇒ Need test on independent, unseen data Loop Test setTrain set Full data sklearn. model_selection. cross_val_score G Varoquaux 6
  • 18. 2 Machine learning on rest fMRI for population imaging finding differences between subjects in functional connectomesG Varoquaux 7
  • 19. From rest-fMRI to biomarkers No salient features in rest fMRI G Varoquaux 8
  • 20. From rest-fMRI to biomarkers Define functional regions G Varoquaux 8
  • 21. From rest-fMRI to biomarkers Define functional regions Learn interactions G Varoquaux 8
  • 22. From rest-fMRI to biomarkers Define functional regions Learn interactions Find differences G Varoquaux 8
  • 23. From rest-fMRI to biomarkers Functional connectivity matrix Time series extraction Region definition Supervised learning RS-fMRI Typical pipeline [Varoquaux and Craddock 2013] 1. Define regions 2. Extract times series 3. Build functional-connectivity matrix 4. Apply supervised machine learning G Varoquaux 9
  • 24. 2 Defining regions from rest-fMRI Clustering nilearn.regions.Parcellations k-means Fast (in nilearn) No spatial model ⇒ smooth the data G Varoquaux 10
  • 25. 2 Defining regions from rest-fMRI Clustering nilearn.regions.Parcellations k-means Fast (in nilearn) No spatial model ⇒ smooth the data Ward agglomerative clustering Recursive merges of clusters Spatial model constraints merges ⇒ fast ... ... ... ... ... G Varoquaux 10
  • 26. 2 Defining regions from rest-fMRI Clustering nilearn.regions.Parcellations k-means Fast (in nilearn) No spatial model ⇒ smooth the data Ward agglomerative clustering Recursive merges of clusters Spatial model constraints merges ⇒ fast Decomposition models time voxels time voxels time voxels Y +E · S= 25 N G Varoquaux 10
  • 27. 2 Defining regions from rest-fMRI Clustering nilearn.regions.Parcellations k-means Fast (in nilearn) No spatial model ⇒ smooth the data Ward agglomerative clustering Recursive merges of clusters Spatial model constraints merges ⇒ fast Decomposition models ICA: nilearn.decomposition.CanICA seek independence of maps Sparse dictionary learning: seek sparse maps nilearn.decomposition.DictLearning G Varoquaux 10
  • 28. 2 For connectome prediction [Dadi... 2018] RS-fMRI Functional connectivity Time series 2 4 3 1 Diagnosis ROIs Choice of regions for best prediction? G Varoquaux 11
  • 29. 2 For connectome prediction [Dadi... 2018] RS-fMRI Functional connectivity Time series 2 4 3 1 Diagnosis ROIs Choice of regions for best prediction? G Varoquaux 11
  • 30. 2 Region definition: resulting parcellations Dictionary learning Group ICA Ward clustering K-Means clustering
  • 31. 2 Region definition: resulting parcellations Dictionary learning Group ICA Ward clustering K-Means clustering
  • 32. 2 Region definition: resulting parcellations Dictionary learning Group ICA Ward clustering K-Means clustering
  • 33. 2 Time-series extraction Extract ROI-average signal: Optional low-pass filter (≈ .1 Hz – .3 Hz) Regress out confounds (movement parameters, CSF & white matter signals, Compcorr, Global mean) Hard parcellations (eg from clustering) nilearn.input_data.NiftiLabelsMasker Soft parcellations (eg from ICA) nilearn.input_data.NiftiMapsMasker G Varoquaux 13
  • 34. 2 Connectome: building a connectivity matrix How to capture and represent interactions? G Varoquaux 14
  • 35. 2 Connectome: differences across subjects 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 Correlation matrices 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 Partial correlation matrices 3 controls, 1 severe stroke patient Which is which? G Varoquaux 15
  • 36. 2 Connectome: differences across subjects 0 5 10 15 20 25 0 5 10 15 20 25 Control 0 5 10 15 20 25 0 5 10 15 20 25 Control 0 5 10 15 20 25 0 5 10 15 20 25 Control 0 5 10 15 20 25 0 5 10 15 20 25Large lesion Correlation matrices 0 5 10 15 20 25 0 5 10 15 20 25 Control 0 5 10 15 20 25 0 5 10 15 20 25 Control 0 5 10 15 20 25 0 5 10 15 20 25 Control 0 5 10 15 20 25 0 5 10 15 20 25Large lesion Partial correlation matrices Spread-out variability in correlation matrices Noise in partial-correlations Strong dependence between coefficients [Varoquaux... 2010] G Varoquaux 15
  • 37. 2 Information geometry: uniform-error parametrization Subject-specific noise in covariance form manifold Tangent space removes coupling in coefficients Controls Patient dΣ M anifold Tangent Tangent embedding[Varoquaux... 2010] G Varoquaux 16
  • 38. 2 Connectome: which parametrization maps differences? 0 5 10 15 20 25 0 5 10 15 20 25 Control 0 5 10 15 20 25 0 5 10 15 20 25 Control 0 5 10 15 20 25 0 5 10 15 20 25 Control 0 5 10 15 20 25 0 5 10 15 20 25Large lesion Correlation matrices 0 5 10 15 20 25 0 5 10 15 20 25 Control 0 5 10 15 20 25 0 5 10 15 20 25 Control 0 5 10 15 20 25 0 5 10 15 20 25 Control 0 5 10 15 20 25 0 5 10 15 20 25Large lesion Partial correlation matrices 0 5 10 15 20 25 0 5 10 15 20 25 Control 0 5 10 15 20 25 0 5 10 15 20 25 Control 0 5 10 15 20 25 0 5 10 15 20 25 Control 0 5 10 15 20 25 0 5 10 15 20 25Large lesion Tangent-space embedding [varoquaux 2010] G Varoquaux 17
  • 39. 2 For connectome prediction [Dadi... 2018] Time series 2 RS-fMRI 41 Diagnosis ROIs Functional connectivity 3 Connectivity matrix Correlation nilearn.connectome.ConnectivityMeasure Partial correlations Tangent space G Varoquaux 18
  • 40. 2 For connectome prediction [Dadi... 2018] Time series 2 RS-fMRI 41 Diagnosis ROIs Functional connectivity 3 Connectivity matrix Correlation nilearn.connectome.ConnectivityMeasure Partial correlations Tangent space G Varoquaux 18
  • 41. 2 Supervised learning step [Dadi... 2018] Functional connectivity Time series 3 4 Diagnosis 2 RS-fMRI 1 ROIs Supervised learning Stick with Linear models sklearn.linear_model.LogisticRegression G Varoquaux 19
  • 42. 2 Supervised learning step [Dadi... 2018] Functional connectivity Time series 3 4 Diagnosis 2 RS-fMRI 1 ROIs Supervised learning Stick with Linear models sklearn.linear_model.LogisticRegression G Varoquaux 19
  • 43. Predicting from brain activity at rest RS-fMRI Functional connectivity Time series 2 4 3 1 Diagnosis ROIs 1. Functional regions (eg clustering, decomposition, or BASC atlas) 2. Filtering and or confound removal 3. Tangent-space parametrization 4. Supervised linear models (eg SVMs) G Varoquaux 20
  • 44. 3 References I A. Abraham, E. Dohmatob, B. Thirion, D. Samaras, and G. Varoquaux. Extracting brain regions from rest fMRI with total-variation constrained dictionary learning. In MICCAI, page 607. 2013. K. Dadi, M. Rahim, A. Abraham, D. Chyzhyk, M. Milham, B. Thirion, and G. Varoquaux. Benchmarking functional connectome-based predictive models for resting-state fmri. 2018. G. Varoquaux and R. C. Craddock. Learning and comparing functional connectomes across subjects. NeuroImage, 80:405, 2013. G. Varoquaux and B. Thirion. How machine learning is shaping cognitive neuroimaging. GigaScience, 3:28, 2014. G. Varoquaux, F. Baronnet, A. Kleinschmidt, P. Fillard, and B. Thirion. Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling. In MICCAI. 2010.G Varoquaux 21
  • 45. 3 References II G. Varoquaux, P. R. Raamana, D. A. Engemann, A. Hoyos-Idrobo, Y. Schwartz, and B. Thirion. Assessing and tuning brain decoders: cross-validation, caveats, and guidelines. NeuroImage, 145:166–179, 2017. G Varoquaux 22