SlideShare a Scribd company logo
Machine Learning with Microsoft Azure
#msdevcon
Dmitry Petukhov,
ML/DS Preacher, Coffee Addicted &&
Machine Intelligence Researcher @ OpenWay
R for Fun Prototyping
developer PC
code
result RAM
Data
IDE
RStudio or/and
Visual Studio
Runtime
CRAN or/and
Microsoft R Open
Flexibility Distributed Scalable: horizontal, vertical Fault-tolerance Reliable
OSS-based BigData-ready LSML Secure
R for full cycle development
CRISP-DM
Model evaluation
Evaluate measures of quality model
(ROC, RMSE, F-Score, etc.)
Feature Selection**
Feature Selection
Feature Scaling (Normalization)
Dimension Reduction
Final Model
Training ML algorithm
Share results
Revision
FinalModelEvaluation
Data Flow
Cross-validation
Training Dataset Test Dataset
Source: http://0xCode.in/azure-ml-for-data-scientist
This work is licensed under a Creative Commons Attribution 4.0 International License
Step 1: read data
# 1. from local file system
library(data.table)
dt <- fread("data/transactions.csv")
# > Read 6849346 rows and 6 (of 6) columns from 0.299 GB file in 00:00:31
# 2. from Web
dt <- fread("https://raw.githubusercontent.com/greggles/mcc-codes/master/mcc_codes.csv",
sep = ",", stringsAsFactors = F, header = T, colClasses = list(character = 2)))
# > % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed
# > 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0100 14872 100 14872 0 0 29744 0 --:--:-- --
:--:-- --:--:-- 31710
# 3. from Azure Blob Storage
library(AzureSMR)
sc <- createAzureContext(tenantID = "{TID}", clientID = "{CID}", authKey = "{KEY}")
sc
azureGetBlob(sc,
storageAccount = "contestsdata",
container = "financial",
blob = "transactions.csv",
type = "text")
Step 1: read data
# 4. from MS SQL Server
library(RODBC) # Provides database connectivity
connectionString <- "Driver={ODBC Driver 13 for SQL
Server};Server=tcp:msdevcon.database.windows.net,1433;Database=TransDb;Uid=..."
trans.conn <- odbcDriverConnect(connectionString) # open RODBC connection
sqlSave(trans.conn, mcc.raw, "MCC2", addPK = T) # save data to table
mccFromDb <- sqlQuery(trans.conn, "SELECT * FROM MCC2 WHERE edited_description LIKE '%For Visa Only%'") # get data
head(mccFromDb)
#> rownames code edited_description combined_description
#> 1 978 9700 Automated Referral Service ( For Visa Only) Automated Referral Service ( For Visa Only)
#> 2 979 9701 Visa Credential Service ( For Visa Only) Visa Credential Service ( For Visa Only)
#> 3 980 9702 GCAS Emergency Services ( For Visa Only) GCAS Emergency Services ( For Visa Only)
#> 4 981 9950 Intra ??“ Company Purchases ( For Visa Only) Intra ??“ Company Purchases ( For Visa Only) Intra ??“
close(trans.conn)
# * Excel, HDFS, Amazon S3, REST-services as data sources
# { "0 10:23:26" "1 10:19:29" "1 10:20:56" } > { 0, 1, 1 }
getDay <- function(x) { strsplit(x, split = " ")[[1]][1] }
trans <- trans.raw %>%
# remove invalid rows
filter(
!is.na(amount) | amount != 0
) %>%
# transform data
mutate(
OperationType = factor(ifelse(amount > 0, "income", "withdraw")),
TransDay = as.numeric(sapply(tr_datetime, getDay)),
Amount = abs(amount)
) %>%
# remove redundant columns
select(
-c(tr_datetime, amount, term_id)
) %>%
# set column names
rename(
CustomerId = customer_id, MCC = mcc_code, TransType = tr_type
) %>%
# sort
arrange(
TransDay, Amount
)
Step 2: preprocessing data
Step 3: feature engineering
# calculate stats
library(dplyr)
customers.stats <- trans.x %>%
mutate(LogAmount = log(Amount)) %>%
group_by(CustomerId, OperationType, Gender) %>%
filter(n() > 30) %>%
summarize(
Min = min(LogAmount),
P1 = quantile(LogAmount, probs = c(.01)),
Q1 = quantile(LogAmount, probs = c(.25)),
Mean = mean(LogAmount),
Q3 = quantile(LogAmount, probs = c(.75)),
P99 = quantile(LogAmount, probs = c(.99)),
Max = max(LogAmount),
Total = sum(Amount),
Count = n(),
StandDev = sd(LogAmount)
) %>%
ungroup()
# shape from long to wide table form
library(reshape2)
x <- dcast(customers.stats, CustomerId + Gender ~ OperationType, value.var = "Mean", fun.aggregate = mean)
Step 3: feature engineering
library(ggplot2)
ggplot(x, aes(x = income, y = withdraw)) +
geom_point(alpha = 0.25, colour = "darkblue") + facet_grid(. ~ Gender) +
xlab("Income, rub") + ylab("Withdraw, rub")
Step 4: training ML-model
# train model
model <- glm(formula = gender ~ ., family = binomial(link = "logit"), data = dt.train)
# score model
p <- predict(model, newdata = dt.test, type = "response")
pr <- prediction(p, dt.test$gender)
prf <- performance(pr, measure = "tpr", x.measure = "fpr")
plot(prf)
# evaluate model
auc <- performance(pr, measure = "auc")
auc <- auc@y.values[[1]]
auc
Challenges
Data Science evolve rapidly
Data growing even faster
Data >> Memory (now and evermore)
We must scale better
Complex infrastructure
Zoo of frameworks
May be cloud?
#msdevcon
Big Data + Cloud + Machine Learning
Долго, дорого, …
#msdevcon
Apache Spark/Hadoop + Azure + R Server
Доступен как PaaS-сервис
Application Server
(Task Manager)
Flexibility Distributed Large scalable Fault-tolerance Reliable
OSS-based BigData-ready LSML Secure
Team
Head
Node Worker
Node
DFS
ML for the bloody Enterprise
Version
Control
Distributed Execution Framework
Tasks
Big Data Cluster
Tasks
Pull
code
Azure Blob Storage
Microsoft R Server
Team
Head
Node Worker
Node
HDFS API
R for the Enterprise
Apache Spark / Hadoop
Tasks
Azure HDInsight
Tasks
Pull
code
Microsoft R
Microsoft R Open and Microsoft R Server #R
MicrosoftML #R
Microsoft R Server for Azure HDInsight #PaaS
R Server on Apache Spark
Data Science VM #R #IaaS
CNTK & GPU Instances #NN #GPU #OSS
Batch AI Training preview #PaaS #NN #GPU
Azure Machine Learning #PaaS
R scripts, modules and models #R
Jupyter Notebooks #R #SaaS
R-to-cloud: AzureSMR, AzureML #R #OSS
Cognitive Services #SaaS #NN
SQL Server R Services #R #PaaS
Power BI #R #Viz
Execute R scripts
Visual Studio
R extensions for VS2015
R in-box-support for VS2017
MicrosoftAzure
© 2017, Dmitry Petukhov. CC BY-SA 4.0 license. Microsoft and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
Data Science must win!
Q&A
Now or later (use contacts below)
Ping me
Habr: @codezombie
All contacts: http://0xCode.in/author

More Related Content

PPTX
D3js learning tips
PDF
Introduction to d3js (and SVG)
PDF
THE DATA DRIVEN WEB OF NOW: EXTENDING D3JS (Travis Smith)
PDF
D3.js workshop
PPTX
NoSQL with MongoDB
PPTX
India software developers conference 2013 Bangalore
PDF
R statistics with mongo db
PDF
Java/Scala Lab: Борис Трофимов - Обжигающая Big Data.
D3js learning tips
Introduction to d3js (and SVG)
THE DATA DRIVEN WEB OF NOW: EXTENDING D3JS (Travis Smith)
D3.js workshop
NoSQL with MongoDB
India software developers conference 2013 Bangalore
R statistics with mongo db
Java/Scala Lab: Борис Трофимов - Обжигающая Big Data.

What's hot (20)

PPTX
3. R- list and data frame
PPTX
PistonHead's use of MongoDB for Analytics
PPT
Data Visualizations with D3
DOCX
Advanced Data Visualization Examples with R-Part II
PDF
NoSQL meets Microservices - Michael Hackstein
PDF
Learn D3.js in 90 minutes
PDF
Michael Hackstein - NoSQL meets Microservices - NoSQL matters Dublin 2015
PPTX
The rise of json in rdbms land jab17
PDF
Clojure for Data Science
DOCX
R-ggplot2 package Examples
PDF
Manchester Hadoop Meetup: Spark Cassandra Integration
PPTX
Enter The Matrix
PPTX
MongoDB for Time Series Data Part 2: Analyzing Time Series Data Using the Agg...
PPTX
MongoDB Stich Overview
PDF
Polyglot Persistence & Multi Model-Databases at JMaghreb3.0
DOCX
Advanced Data Visualization in R- Somes Examples.
PDF
Reading Cassandra Meetup Feb 2015: Apache Spark
DOCX
CLUSTERGRAM
PDF
Window functions in MySQL 8.0
PPTX
Megadata With Python and Hadoop
3. R- list and data frame
PistonHead's use of MongoDB for Analytics
Data Visualizations with D3
Advanced Data Visualization Examples with R-Part II
NoSQL meets Microservices - Michael Hackstein
Learn D3.js in 90 minutes
Michael Hackstein - NoSQL meets Microservices - NoSQL matters Dublin 2015
The rise of json in rdbms land jab17
Clojure for Data Science
R-ggplot2 package Examples
Manchester Hadoop Meetup: Spark Cassandra Integration
Enter The Matrix
MongoDB for Time Series Data Part 2: Analyzing Time Series Data Using the Agg...
MongoDB Stich Overview
Polyglot Persistence & Multi Model-Databases at JMaghreb3.0
Advanced Data Visualization in R- Somes Examples.
Reading Cassandra Meetup Feb 2015: Apache Spark
CLUSTERGRAM
Window functions in MySQL 8.0
Megadata With Python and Hadoop
Ad

Viewers also liked (20)

PDF
Schneider Electric Smart City Success Stories (Worldwide)
PPTX
Philip bane smart city
PPTX
Azure Machine Learning
PPTX
City as Platform Cooperative - Smart City Expo - Barcelona
PPTX
Machine Intelligence for Fraud Prediction
PPTX
Democratizing Artificial Intelligence
PDF
Auxis Webinar: Diving into RPA
PPTX
AI for Retail Banking
PDF
Monetizing the iot by Sandhiprakash Bhide generic-01-24-2017
PPTX
Smart-city implementation reference model
PDF
2016 Current State of IoT
PPTX
AI in IoT: Use Cases and Challenges
PDF
[Webinar Slides] Robotic Process Automation 101 What is it? What can it mean ...
PPTX
CISCO SMART CITY
PPTX
Microsoft Machine Learning Server. Architecture View
PDF
Smart City and Smart Government : Strategy, Model, and Cases of Korea
PPTX
What is next for IoT and IIoT
PPTX
AI & Robotic Process Automation (RPA) to Digitally Transform Your Environment
PDF
Build your First IoT Application with IBM Watson IoT
PDF
Iot for smart city
Schneider Electric Smart City Success Stories (Worldwide)
Philip bane smart city
Azure Machine Learning
City as Platform Cooperative - Smart City Expo - Barcelona
Machine Intelligence for Fraud Prediction
Democratizing Artificial Intelligence
Auxis Webinar: Diving into RPA
AI for Retail Banking
Monetizing the iot by Sandhiprakash Bhide generic-01-24-2017
Smart-city implementation reference model
2016 Current State of IoT
AI in IoT: Use Cases and Challenges
[Webinar Slides] Robotic Process Automation 101 What is it? What can it mean ...
CISCO SMART CITY
Microsoft Machine Learning Server. Architecture View
Smart City and Smart Government : Strategy, Model, and Cases of Korea
What is next for IoT and IIoT
AI & Robotic Process Automation (RPA) to Digitally Transform Your Environment
Build your First IoT Application with IBM Watson IoT
Iot for smart city
Ad

Similar to Machine Learning with Microsoft Azure (20)

PDF
The Machine Learning Workflow with Azure
PPTX
Integrating Azure Machine Learning and Predictive Analytics with SharePoint O...
PPTX
Azure Machine Learning Challenge_Speakers Presentation.pptx
PDF
Building a Data Science as a Service Platform in Azure with Databricks
PPTX
Machine learning
PDF
The Data Science Process - Do we need it and how to apply?
PDF
Machine learning for IoT - unpacking the blackbox
PDF
The machine learning process: From ideation to deployment with Azure Machine ...
PDF
Azure Machine Learning
PPTX
AzureML Welcome to the future of Predictive Analytics
PPTX
Data Science with Azure Machine Learning and  R
PDF
Insider's introduction to microsoft azure machine learning: 201411 Seattle Bu...
PDF
Azure Machine Learning and ML on Premises
PDF
The Power of Auto ML and How Does it Work
PDF
Prepare your data for machine learning
PPTX
Data analytics on Azure
DOCX
Vadlamudi saketh30 (ml)
PDF
Azure Machine Learning tutorial
PPTX
Data Science in the cloud with Microsoft Azure
PPTX
Azure machine learning tech mela
The Machine Learning Workflow with Azure
Integrating Azure Machine Learning and Predictive Analytics with SharePoint O...
Azure Machine Learning Challenge_Speakers Presentation.pptx
Building a Data Science as a Service Platform in Azure with Databricks
Machine learning
The Data Science Process - Do we need it and how to apply?
Machine learning for IoT - unpacking the blackbox
The machine learning process: From ideation to deployment with Azure Machine ...
Azure Machine Learning
AzureML Welcome to the future of Predictive Analytics
Data Science with Azure Machine Learning and  R
Insider's introduction to microsoft azure machine learning: 201411 Seattle Bu...
Azure Machine Learning and ML on Premises
The Power of Auto ML and How Does it Work
Prepare your data for machine learning
Data analytics on Azure
Vadlamudi saketh30 (ml)
Azure Machine Learning tutorial
Data Science in the cloud with Microsoft Azure
Azure machine learning tech mela

More from Dmitry Petukhov (9)

PPTX
Introduction to Auto ML
PPTX
Intelligent Banking: AI cases in Retail and Commercial Banking
PPTX
IaaS, PaaS, and DevOps for Data Scientist
PPTX
Introduction to Deep Learning
PPTX
Introduction to Machine Learning
PPTX
R + Apache Spark
PPTX
Introduction to R
PPTX
Microsoft Azure + R
PPTX
Machine Learning in Microsoft Azure
Introduction to Auto ML
Intelligent Banking: AI cases in Retail and Commercial Banking
IaaS, PaaS, and DevOps for Data Scientist
Introduction to Deep Learning
Introduction to Machine Learning
R + Apache Spark
Introduction to R
Microsoft Azure + R
Machine Learning in Microsoft Azure

Recently uploaded (20)

PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
PPTX
IB Computer Science - Internal Assessment.pptx
PPTX
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
PPTX
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
PPTX
Introduction to Knowledge Engineering Part 1
PPTX
Acceptance and paychological effects of mandatory extra coach I classes.pptx
PPT
Quality review (1)_presentation of this 21
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PDF
Clinical guidelines as a resource for EBP(1).pdf
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PPTX
Database Infoormation System (DBIS).pptx
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
PPTX
Moving the Public Sector (Government) to a Digital Adoption
PPT
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PDF
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
PPTX
1_Introduction to advance data techniques.pptx
PDF
.pdf is not working space design for the following data for the following dat...
PDF
Introduction to Business Data Analytics.
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
IB Computer Science - Internal Assessment.pptx
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
Introduction to Knowledge Engineering Part 1
Acceptance and paychological effects of mandatory extra coach I classes.pptx
Quality review (1)_presentation of this 21
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
Clinical guidelines as a resource for EBP(1).pdf
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
Database Infoormation System (DBIS).pptx
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
Moving the Public Sector (Government) to a Digital Adoption
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
1_Introduction to advance data techniques.pptx
.pdf is not working space design for the following data for the following dat...
Introduction to Business Data Analytics.

Machine Learning with Microsoft Azure

  • 1. Machine Learning with Microsoft Azure #msdevcon Dmitry Petukhov, ML/DS Preacher, Coffee Addicted && Machine Intelligence Researcher @ OpenWay
  • 2. R for Fun Prototyping developer PC code result RAM Data IDE RStudio or/and Visual Studio Runtime CRAN or/and Microsoft R Open Flexibility Distributed Scalable: horizontal, vertical Fault-tolerance Reliable OSS-based BigData-ready LSML Secure
  • 3. R for full cycle development CRISP-DM Model evaluation Evaluate measures of quality model (ROC, RMSE, F-Score, etc.) Feature Selection** Feature Selection Feature Scaling (Normalization) Dimension Reduction Final Model Training ML algorithm Share results Revision FinalModelEvaluation Data Flow Cross-validation Training Dataset Test Dataset Source: http://0xCode.in/azure-ml-for-data-scientist This work is licensed under a Creative Commons Attribution 4.0 International License
  • 4. Step 1: read data # 1. from local file system library(data.table) dt <- fread("data/transactions.csv") # > Read 6849346 rows and 6 (of 6) columns from 0.299 GB file in 00:00:31 # 2. from Web dt <- fread("https://raw.githubusercontent.com/greggles/mcc-codes/master/mcc_codes.csv", sep = ",", stringsAsFactors = F, header = T, colClasses = list(character = 2))) # > % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed # > 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0100 14872 100 14872 0 0 29744 0 --:--:-- -- :--:-- --:--:-- 31710 # 3. from Azure Blob Storage library(AzureSMR) sc <- createAzureContext(tenantID = "{TID}", clientID = "{CID}", authKey = "{KEY}") sc azureGetBlob(sc, storageAccount = "contestsdata", container = "financial", blob = "transactions.csv", type = "text")
  • 5. Step 1: read data # 4. from MS SQL Server library(RODBC) # Provides database connectivity connectionString <- "Driver={ODBC Driver 13 for SQL Server};Server=tcp:msdevcon.database.windows.net,1433;Database=TransDb;Uid=..." trans.conn <- odbcDriverConnect(connectionString) # open RODBC connection sqlSave(trans.conn, mcc.raw, "MCC2", addPK = T) # save data to table mccFromDb <- sqlQuery(trans.conn, "SELECT * FROM MCC2 WHERE edited_description LIKE '%For Visa Only%'") # get data head(mccFromDb) #> rownames code edited_description combined_description #> 1 978 9700 Automated Referral Service ( For Visa Only) Automated Referral Service ( For Visa Only) #> 2 979 9701 Visa Credential Service ( For Visa Only) Visa Credential Service ( For Visa Only) #> 3 980 9702 GCAS Emergency Services ( For Visa Only) GCAS Emergency Services ( For Visa Only) #> 4 981 9950 Intra ??“ Company Purchases ( For Visa Only) Intra ??“ Company Purchases ( For Visa Only) Intra ??“ close(trans.conn) # * Excel, HDFS, Amazon S3, REST-services as data sources
  • 6. # { "0 10:23:26" "1 10:19:29" "1 10:20:56" } > { 0, 1, 1 } getDay <- function(x) { strsplit(x, split = " ")[[1]][1] } trans <- trans.raw %>% # remove invalid rows filter( !is.na(amount) | amount != 0 ) %>% # transform data mutate( OperationType = factor(ifelse(amount > 0, "income", "withdraw")), TransDay = as.numeric(sapply(tr_datetime, getDay)), Amount = abs(amount) ) %>% # remove redundant columns select( -c(tr_datetime, amount, term_id) ) %>% # set column names rename( CustomerId = customer_id, MCC = mcc_code, TransType = tr_type ) %>% # sort arrange( TransDay, Amount ) Step 2: preprocessing data
  • 7. Step 3: feature engineering # calculate stats library(dplyr) customers.stats <- trans.x %>% mutate(LogAmount = log(Amount)) %>% group_by(CustomerId, OperationType, Gender) %>% filter(n() > 30) %>% summarize( Min = min(LogAmount), P1 = quantile(LogAmount, probs = c(.01)), Q1 = quantile(LogAmount, probs = c(.25)), Mean = mean(LogAmount), Q3 = quantile(LogAmount, probs = c(.75)), P99 = quantile(LogAmount, probs = c(.99)), Max = max(LogAmount), Total = sum(Amount), Count = n(), StandDev = sd(LogAmount) ) %>% ungroup() # shape from long to wide table form library(reshape2) x <- dcast(customers.stats, CustomerId + Gender ~ OperationType, value.var = "Mean", fun.aggregate = mean)
  • 8. Step 3: feature engineering library(ggplot2) ggplot(x, aes(x = income, y = withdraw)) + geom_point(alpha = 0.25, colour = "darkblue") + facet_grid(. ~ Gender) + xlab("Income, rub") + ylab("Withdraw, rub")
  • 9. Step 4: training ML-model # train model model <- glm(formula = gender ~ ., family = binomial(link = "logit"), data = dt.train) # score model p <- predict(model, newdata = dt.test, type = "response") pr <- prediction(p, dt.test$gender) prf <- performance(pr, measure = "tpr", x.measure = "fpr") plot(prf) # evaluate model auc <- performance(pr, measure = "auc") auc <- auc@y.values[[1]] auc
  • 10. Challenges Data Science evolve rapidly Data growing even faster Data >> Memory (now and evermore) We must scale better Complex infrastructure Zoo of frameworks May be cloud?
  • 11. #msdevcon Big Data + Cloud + Machine Learning Долго, дорого, …
  • 12. #msdevcon Apache Spark/Hadoop + Azure + R Server Доступен как PaaS-сервис
  • 13. Application Server (Task Manager) Flexibility Distributed Large scalable Fault-tolerance Reliable OSS-based BigData-ready LSML Secure Team Head Node Worker Node DFS ML for the bloody Enterprise Version Control Distributed Execution Framework Tasks Big Data Cluster Tasks Pull code
  • 14. Azure Blob Storage Microsoft R Server Team Head Node Worker Node HDFS API R for the Enterprise Apache Spark / Hadoop Tasks Azure HDInsight Tasks Pull code
  • 15. Microsoft R Microsoft R Open and Microsoft R Server #R MicrosoftML #R Microsoft R Server for Azure HDInsight #PaaS R Server on Apache Spark Data Science VM #R #IaaS CNTK & GPU Instances #NN #GPU #OSS Batch AI Training preview #PaaS #NN #GPU Azure Machine Learning #PaaS R scripts, modules and models #R Jupyter Notebooks #R #SaaS R-to-cloud: AzureSMR, AzureML #R #OSS Cognitive Services #SaaS #NN SQL Server R Services #R #PaaS Power BI #R #Viz Execute R scripts Visual Studio R extensions for VS2015 R in-box-support for VS2017 MicrosoftAzure
  • 16. © 2017, Dmitry Petukhov. CC BY-SA 4.0 license. Microsoft and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. Data Science must win!
  • 17. Q&A Now or later (use contacts below) Ping me Habr: @codezombie All contacts: http://0xCode.in/author

Editor's Notes

  • #17: (c) 2017, Dmitry Petukhov. CC BY-SA 4.0 license.
  • #18: Event: https://events.techdays.ru/Future-Technologies/2017-06/