MAPEM.ppsx
 Reconstruct an Image using Projection
 Maximum A Posteriori Expectation
Maximization (MAPEM)
 Optimizing the Iteration
 Reducing the time
 Performance Analysis –Amdahl’s Law.
 Mathematical Process
 Data obtained at various angles
 Medical imaging modalities
◦ CT scan
◦ PET
◦ MRI scan
Computed Tomography Scan
Positron Emission Tomography Magnetic Resonance imaging
 Analytical
◦ Filtered Back Projection (FBP)
 Iterative
◦ Algebraic Reconstruction Technique (ART)
◦ Statistical Reconstruction Technique
 Weighted Least Square
 Likelihood based iterative Expectation Maximization
 Maximum Likelihood Expectation Maximization
 Maximum A Posteriori Expectation Maximization
 Projection is a line integral along the path:


 cos
sin
where
y)ds
f(x,
)
( y
x
s
t
p
AB



 
 Projections with
different angles
are stored in
sinogram (raw
data)
 Each horizontal
line in sinogram is
a projection
with different
angle
)
(t
p
projection )
(t
p
Y is constant
posterior
likelihood
prior
X: reconstruction
Y: projection
Bayes:
MAP: maximize
p(Y|X) p(X) or ln p(Y|X) + ln p(X)
 Multi-core platform
◦ Thread level parallelism
 Simultaneous Multi-Threading (SMT)
 Chip Multi-Processor (CMP)
 Multi Core
 Many Core
◦ Two conclusions for applications running on multi-
core platform
 Conclusion 1. When multiple applications are executed,
the performance on multi-core platform is better than
single-core platform with the same clock frequency.
 Conclusion 2. Applications without parallelization can’t
make full use of computing power on multi-core
platform.
 OpenMP (OMP) directives is implemented
 Amdahl’s Law
◦ statement of the maximum theoretical speed-up
you casn ever hope to achieve.
time
execution
Parallel
time
execution
Sequential
Speedup
f
n
f
f
p
S
1
/
)
1
(
1
)
( 





 Shepp Logan Phantom
64 x 64 128 x 128 256 x 256
 Sinogram (Raw data)
A B C D E
1
2
3
 Iteration Optimized
Projections/
Sizes 30 20
1
5 12 10
64x64 20 18
1
0 23 19
128x128 27 27
3
5 23 41
256x256 61 29
4
5 39 61
 PSNR
10 12 15 20 30
64x64
53.43
72
53.37
98
53.09
74
53.26
82
53.36
85
128x1
28
61.67
12
61.23
3
62.13
11
62.09
66
62.15
82
256x2
56
69.58
12
69.70
39
70.25
1
70.31
48
71.01
51
 Image Reconstructed
A B C D E
1
2
3
 Time Complexity 64 x 64
10 12 15 20 30
1 core 3.09129 4.27891 2.09782 5.43004 8.33448
2 Core 2.41019 2.99262 1.47404 4.17731 5.21191
4 Core 1.92379 2.53712 1.24897 2.96779 4.50192
8 Core 1.5557 1.60578 0.946761 2.04252 3.55317
0
1
2
3
4
5
6
7
8
9
Reconstruction
Time
(s)
Time Complexity (64x64)
1 core
2 Core
4 Core
8 Core
 Time Complexity 128 x 128
10 12 15 20 30
1 core 47.9322 26.299 66.0366 66.9674 98.2584
2 Core 36.5989 24.8049 41.1161 49.6748 72.4108
4 Core 25.3501 20.7042 40.2762 42.9248 53.6694
8 Core 10.3271 11.9932 30.9506 20.7319 30.8544
0
20
40
60
80
100
120
Reconstruction
Time
(s)
Time complexity (128x128)
1 core
2 Core
4 Core
8 Core
 Time Complexity 256 x 256
10 12 15 20 30
1 core 568.4280 394.722 630.297 552.071 1758.98
2 Core 464.261 337.362 483.439 453.559 1415.51
4 Core 273.036 250.089 340.672 323.802 1019.31
8 Core 185.939 164.266 225.58 193.718 646.457
0
200
400
600
800
1000
1200
1400
1600
1800
2000
Reconstruction
Time
(s)
Time complexity (256x256)
1 core
2 Core
4 Core
8 Core
 Performance Analysis
0
2
4
6
8
10
10 12 15 20 30
1
2
4
8 0
2
4
6
8
10
10 12 15 20 30
1
2
4
8
0
2
4
6
8
10
10 12 15 20 30
1
2
4
8
64 x 64 128 x 128
256 x 256

More Related Content

PDF
W13JPEGCompression techinques detail.pdf
PPT
Discrete cosine Transform and Digital Image compression.ppt
PDF
xldb-2015
PDF
GTC Taiwan 2017 GPU 平台上導入深度學習於半導體產業之 EDA 應用
PPTX
spie_poster_v4
DOCX
AU QP Answer key NOv/Dec 2015 Computer Graphics 5 sem CSE
PDF
Sparse coding Super-Resolution を用いた核医学画像処理
PDF
Ieee 2016 nss mic poster N30-21
W13JPEGCompression techinques detail.pdf
Discrete cosine Transform and Digital Image compression.ppt
xldb-2015
GTC Taiwan 2017 GPU 平台上導入深度學習於半導體產業之 EDA 應用
spie_poster_v4
AU QP Answer key NOv/Dec 2015 Computer Graphics 5 sem CSE
Sparse coding Super-Resolution を用いた核医学画像処理
Ieee 2016 nss mic poster N30-21

Similar to MAPEM.ppsx (20)

PDF
Injecting image priors into Learnable Compressive Subsampling
PPT
Basics of CT- Lecture 9.ppt
PDF
Computer Science Thesis Defense
PDF
Cycle’s topological optimizations and the iterative decoding problem on gener...
PPT
FR4.L09.5 - THREE DIMENSIONAL RECONSTRUCTION OF URBAN AREAS USING JOINTLY PHA...
PDF
Foreground Detection : Combining Background Subspace Learning with Object Smo...
PPTX
SPIE 10059-36(Reheman Baikejiang)
PPTX
Deep Learning Tomography
PPT
Advanced Multimedia
PDF
Learning Convolutional Neural Networks for Graphs
PDF
R package bayesImageS: Scalable Inference for Intractable Likelihoods
PDF
Lecture 3 image sampling and quantization
PPTX
drawing_model_as_ppt_deeplearning_framework.pptx
PDF
cheb_conf_aksenov.pdf
PDF
Model-counting Approaches For Nonlinear Numerical Constraints
PDF
Aistats RTD
PDF
Practical Spherical Harmonics Based PRT Methods
PPT
B Eng Final Year Project Presentation
PDF
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
PDF
Technical
Injecting image priors into Learnable Compressive Subsampling
Basics of CT- Lecture 9.ppt
Computer Science Thesis Defense
Cycle’s topological optimizations and the iterative decoding problem on gener...
FR4.L09.5 - THREE DIMENSIONAL RECONSTRUCTION OF URBAN AREAS USING JOINTLY PHA...
Foreground Detection : Combining Background Subspace Learning with Object Smo...
SPIE 10059-36(Reheman Baikejiang)
Deep Learning Tomography
Advanced Multimedia
Learning Convolutional Neural Networks for Graphs
R package bayesImageS: Scalable Inference for Intractable Likelihoods
Lecture 3 image sampling and quantization
drawing_model_as_ppt_deeplearning_framework.pptx
cheb_conf_aksenov.pdf
Model-counting Approaches For Nonlinear Numerical Constraints
Aistats RTD
Practical Spherical Harmonics Based PRT Methods
B Eng Final Year Project Presentation
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Technical
Ad

More from BharathiLakshmiAAssi (20)

PPT
.Net IDE Components and Applications
PPT
.Net Controlling Program Flow Statements
PPTX
Fundamentals of .Net Programming concepts
PPTX
VB.net&OOP.pptx
PPTX
VB.netIDE.pptx
PPT
VB.Net-Introduction.ppt
PPT
File Allocation Methods.ppt
PPTX
Demand Paging.pptx
PPTX
Virtual Memory.pptx
PPTX
Knowing about Computer SS.pptx
PPSX
Parallel Computing--Webminar.ppsx
PPSX
PPSX
Iterative Algorithms.ppsx
PPSX
Intensity Transformation.ppsx
PPSX
MAtrix Multiplication Parallel.ppsx
PPSX
Web Designing.ppsx
PPSX
Graphics Designing-Intro.ppsx
PPSX
Intensity Transformation & Spatial Filtering.ppsx
PPSX
DIP Slide Share.ppsx
PPSX
Class Timetable.ppsx
.Net IDE Components and Applications
.Net Controlling Program Flow Statements
Fundamentals of .Net Programming concepts
VB.net&OOP.pptx
VB.netIDE.pptx
VB.Net-Introduction.ppt
File Allocation Methods.ppt
Demand Paging.pptx
Virtual Memory.pptx
Knowing about Computer SS.pptx
Parallel Computing--Webminar.ppsx
Iterative Algorithms.ppsx
Intensity Transformation.ppsx
MAtrix Multiplication Parallel.ppsx
Web Designing.ppsx
Graphics Designing-Intro.ppsx
Intensity Transformation & Spatial Filtering.ppsx
DIP Slide Share.ppsx
Class Timetable.ppsx
Ad

Recently uploaded (20)

PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
My India Quiz Book_20210205121199924.pdf
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PPTX
20th Century Theater, Methods, History.pptx
PPTX
History, Philosophy and sociology of education (1).pptx
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Cambridge-Practice-Tests-for-IELTS-12.docx
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
B.Sc. DS Unit 2 Software Engineering.pptx
FORM 1 BIOLOGY MIND MAPS and their schemes
LDMMIA Reiki Yoga Finals Review Spring Summer
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
My India Quiz Book_20210205121199924.pdf
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Chinmaya Tiranga quiz Grand Finale.pdf
AI-driven educational solutions for real-life interventions in the Philippine...
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
202450812 BayCHI UCSC-SV 20250812 v17.pptx
A powerpoint presentation on the Revised K-10 Science Shaping Paper
20th Century Theater, Methods, History.pptx
History, Philosophy and sociology of education (1).pptx

MAPEM.ppsx

  • 2.  Reconstruct an Image using Projection  Maximum A Posteriori Expectation Maximization (MAPEM)  Optimizing the Iteration  Reducing the time  Performance Analysis –Amdahl’s Law.
  • 3.  Mathematical Process  Data obtained at various angles  Medical imaging modalities ◦ CT scan ◦ PET ◦ MRI scan
  • 4. Computed Tomography Scan Positron Emission Tomography Magnetic Resonance imaging
  • 5.  Analytical ◦ Filtered Back Projection (FBP)  Iterative ◦ Algebraic Reconstruction Technique (ART) ◦ Statistical Reconstruction Technique  Weighted Least Square  Likelihood based iterative Expectation Maximization  Maximum Likelihood Expectation Maximization  Maximum A Posteriori Expectation Maximization
  • 6.  Projection is a line integral along the path:    cos sin where y)ds f(x, ) ( y x s t p AB     
  • 7.  Projections with different angles are stored in sinogram (raw data)  Each horizontal line in sinogram is a projection with different angle ) (t p projection ) (t p
  • 8. Y is constant posterior likelihood prior X: reconstruction Y: projection Bayes: MAP: maximize p(Y|X) p(X) or ln p(Y|X) + ln p(X)
  • 9.  Multi-core platform ◦ Thread level parallelism  Simultaneous Multi-Threading (SMT)  Chip Multi-Processor (CMP)  Multi Core  Many Core ◦ Two conclusions for applications running on multi- core platform  Conclusion 1. When multiple applications are executed, the performance on multi-core platform is better than single-core platform with the same clock frequency.  Conclusion 2. Applications without parallelization can’t make full use of computing power on multi-core platform.  OpenMP (OMP) directives is implemented
  • 10.  Amdahl’s Law ◦ statement of the maximum theoretical speed-up you casn ever hope to achieve. time execution Parallel time execution Sequential Speedup f n f f p S 1 / ) 1 ( 1 ) (      
  • 11.  Shepp Logan Phantom 64 x 64 128 x 128 256 x 256
  • 12.  Sinogram (Raw data) A B C D E 1 2 3
  • 13.  Iteration Optimized Projections/ Sizes 30 20 1 5 12 10 64x64 20 18 1 0 23 19 128x128 27 27 3 5 23 41 256x256 61 29 4 5 39 61
  • 14.  PSNR 10 12 15 20 30 64x64 53.43 72 53.37 98 53.09 74 53.26 82 53.36 85 128x1 28 61.67 12 61.23 3 62.13 11 62.09 66 62.15 82 256x2 56 69.58 12 69.70 39 70.25 1 70.31 48 71.01 51
  • 15.  Image Reconstructed A B C D E 1 2 3
  • 16.  Time Complexity 64 x 64 10 12 15 20 30 1 core 3.09129 4.27891 2.09782 5.43004 8.33448 2 Core 2.41019 2.99262 1.47404 4.17731 5.21191 4 Core 1.92379 2.53712 1.24897 2.96779 4.50192 8 Core 1.5557 1.60578 0.946761 2.04252 3.55317 0 1 2 3 4 5 6 7 8 9 Reconstruction Time (s) Time Complexity (64x64) 1 core 2 Core 4 Core 8 Core
  • 17.  Time Complexity 128 x 128 10 12 15 20 30 1 core 47.9322 26.299 66.0366 66.9674 98.2584 2 Core 36.5989 24.8049 41.1161 49.6748 72.4108 4 Core 25.3501 20.7042 40.2762 42.9248 53.6694 8 Core 10.3271 11.9932 30.9506 20.7319 30.8544 0 20 40 60 80 100 120 Reconstruction Time (s) Time complexity (128x128) 1 core 2 Core 4 Core 8 Core
  • 18.  Time Complexity 256 x 256 10 12 15 20 30 1 core 568.4280 394.722 630.297 552.071 1758.98 2 Core 464.261 337.362 483.439 453.559 1415.51 4 Core 273.036 250.089 340.672 323.802 1019.31 8 Core 185.939 164.266 225.58 193.718 646.457 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Reconstruction Time (s) Time complexity (256x256) 1 core 2 Core 4 Core 8 Core
  • 19.  Performance Analysis 0 2 4 6 8 10 10 12 15 20 30 1 2 4 8 0 2 4 6 8 10 10 12 15 20 30 1 2 4 8 0 2 4 6 8 10 10 12 15 20 30 1 2 4 8 64 x 64 128 x 128 256 x 256