This document provides an overview of the MapReduce paradigm and Hadoop framework. It describes how MapReduce uses a map and reduce phase to process large amounts of distributed data in parallel. Hadoop is an open-source implementation of MapReduce that stores data in HDFS. It allows applications to work with thousands of computers and petabytes of data. Key advantages of MapReduce include fault tolerance, scalability, and flexibility. While it is well-suited for batch processing, it may not replace traditional databases for data warehousing. Overall efficiency remains an area for improvement.
Related topics: