SlideShare a Scribd company logo
Lukáš MAREK 
Spatial aannaallyysseess ooff hheeaalltthh ddaattaa:: 
FFrroomm ppooiinnttss ttoo mmooddeellss 
www.geoinformatics.upol.cz 
lukas.marek@upol.cz
Why Geographical Information Systems? 
• Advanced methods for spatial analyses 
• Spatial statistics 
• Exploration of spatial pattern 
• Visualization and presentation for non-geographers 
(doctors, specialist) 
www.geoinformatics.upol.cz
Spatial Analyses of Health Data 
• Disease mapping 
– Visual description of spatial variability of the disease incidence 
– Maps of incidence risk, identification of areas with high risk 
• Geographic correlation studies 
– Analysis of associations among the incidence and environmental 
factors 
• Analyses of spatial pattern 
– Exploration of spatial and spatio-temporal patterns in data 
– Disease clusters, randomness, … 
www.geoinformatics.upol.cz
Objectives 
• Disease occurence as the event 
– Space, time, attributes 
– Spatial (point) pattern 
• Spatio-temporal evaluation of Campylobacter 
infection in the Czech Republic 
• Association with environmental / social factors 
www.geoinformatics.upol.cz
Tools 
www.geoinformatics.upol.cz
Campylobacteriosis 
• Campylobacter spp. (C. jejuni) 
• Most frequent gastroenteritis in developed 
countries 
• Often foodborne 
• Symptoms are similar to salmonella 
• Poultry, fresh milk products, sewage, wild animals 
… 
www.geoinformatics.upol.cz
Campylobacteriosis 
• Children are by far the 
most vulnerable group 
• Seasonality 
• Underreported 
– 225 cases / 100 000 population 
– Havelaar et al. (2013) 
• 11.3 times more cases in the 
Czech Republic 
• 45.7 times more case in EU 
www.geoinformatics.upol.cz
Data 
• EPIDAT database 
– Mandatory records about infectious diseases and patients, manually 
fulfilled 
– Age, Sex, Date, Profession, Place of residence, infection, isolation, … 
– 2008 - 2012 
– ≈ 100 000 records 
– (weakly) Anonymized 
• Aggregation 
– Regular square network, municipal districts 
• Statistical data 
– National census 2011 
– EUROSTAT population grid 
www.geoinformatics.upol.cz
Data Privacy 
• Health and medical data = private, confidential and 
sensitive data 
• Keeping all available records but prevent their re-identification 
• Usefulness of the local scale analysis X privacy 
protection 
• Unlikely to explore the relations on the individual level 
(and not necessary) 
• Availability, accessibility and restrictions 
www.geoinformatics.upol.cz
Time 
www.geoinformatics.upol.cz
Spatial visualization 
www.geoinformatics.upol.cz
Spatio-temporal visualization 
www.geoinformatics.upol.cz
Spatio-temporal kriging 
• Continuous incidence surface in populated places 
of the Czech Republic 
• Exploration of the phenomenon‘s autocorrelation 
simultaneously in space and time 
• Interpolation of logarithm of standardized 
incidence into 4 km2 grid 
• Ordinary global spatio-temporal kriging 
www.geoinformatics.upol.cz
Spatio-temporal kriging 
• Exponential model / Metric model 
• nugget = 0.15, partial sill = 1.94, range = 14150.46 m 
and space-time anisotropy = 544.58 
www.geoinformatics.upol.cz
Spatio-temporal kriging 
• Vysledky 
• Bud sada obrazku nebo potom screen video 
www.geoinformatics.upol.cz
Spatio-temporal clustering 
• Visual overview of the space-time pattern in Google 
Earth 
• Spatial Scan Statistics 
– Identification of clusters of high and low rate areas together in the 
continuous geographical areas and time 
• Age/sex stratified cases, age/sex stratified 
population, coordinates of centroids 
• Weekly aggregated data 
www.geoinformatics.upol.cz
Spatio-temporal clustering 
• Retrospective analysis based on Poisson probability 
model 
• Clusters of maximum size of 3% of population, max. 
50% of time or entire time period 
• Non-parametric temporal adjustment 
• Monte Carlo simulation, p-value < 0.05 
• Comparison based on relative risk 
www.geoinformatics.upol.cz
Spatial clustering 
www.geoinformatics.upol.cz
Spatio-temporal clustering 
www.geoinformatics.upol.cz
Spatio-temporal clustering 
Cluster Type Time period Region Count Observed Expected Relative risk Population 
1* H 2008/01/01 – 2012/12/31 Ostrava 31 5975 2861 2.16 292,978 
2 H 2008/01/01 – 2012/12/31 North Wallachia - Lachia 70 5414 2788 2.00 277,236 
3 H 2008/01/01 – 2012/12/31 Silesia 16 4773 2534 1.93 256,657 
4 H 2008/01/01 – 2012/12/31 Prague - centre 1 1006 245 4.13 29,948 
5 H 2008/05/13 – 2010/11/01 South Moravia 167 2274 1432 1.60 292,885 
6 H 2008/01/01 – 2012/12/31 Dražíč 1 72 2 41.92 214 
7 H 2008/01/01 – 2012/12/31 Brno - centre 19 3951 2590 1.55 271,742 
8 H 2008/01/01 – 2012/12/31 Opava 37 1714 877 1.97 87,203 
9 H 2008/01/01 – 2012/12/31 Haná 66 3828 2526 1.54 256,721 
10 H 2009/04/14 – 2011/09/05 South Wallachia 90 1596 932 1.72 196,522 
11 H 2010/01/12 – 2010/02/22 Budweis 60 194 36 5.41 157,425 
12 H 2008/01/01 – 2012/12/31 Benešov 15 640 313 2.05 31,115 
13 H 2010/04/06 – 2010/10/04 Brno - surroundings 224 568 286 1.99 284,346 
www.geoinformatics.upol.cz 
14 H 2011/05/03 – 2011/11/14 Pilsen 22 394 201 1.96 197,263
Model 
• Models help to understand reality 
– Although they do not have to fully describe its variation 
• Models help to clarify significance of most likely 
associated factors 
• Models help to describe the future using the data 
from the past 
• Models help to identify vulnerable areas 
www.geoinformatics.upol.cz
Arsenault, J. (2010): Épidémiologie spatiale de la campylobactériose au Québec. 
www.geoinformatics.upol.cz
www.geoinformatics.upol.cz
Conclusions 
• Space – time aggregation and visualization for 
visual analytics 
• Continuous incidence surface describing spatial and 
temporal progress of the disease 
• Scan statistics identifying high and low rate clusters 
as well as their temporal support 
• Visualization in Google Earth 
www.geoinformatics.upol.cz
Problems / Challenges 
• Geocoding 
• Aggregation 
• Age / Population standardization 
• Neighbourhood estimation 
• Modifiable areal unit problem 
• Probability distribution of the disease occurrence 
• Underlying processes 
• Under / Overestimation of results leading to 
misinterpretation 
www.geoinformatics.upol.cz
www.geoinformatics.upol.cz 
THANK YOU 
FOR 
YOUR ATTENTION 
Lukáš MAREK 
lukas.marek@upol.cz

More Related Content

PDF
Bringing the Data Alive - Dr. A. Gonzalez
PDF
IV Torneo de Voleibol "CIUTAT DE GRANOLLERS"
PDF
Tata project
PPS
PPT
Family planning via mobile phones: Proof-of-concept testing in India (CycleTel)
PPT
Margaret martin 2009 Annual Statistics Launch
PPS
Mobile plus
Bringing the Data Alive - Dr. A. Gonzalez
IV Torneo de Voleibol "CIUTAT DE GRANOLLERS"
Tata project
Family planning via mobile phones: Proof-of-concept testing in India (CycleTel)
Margaret martin 2009 Annual Statistics Launch
Mobile plus

Viewers also liked (7)

PPT
Mobile Phones to aid People in Disasters
PPTX
Mobile phone usage among indian youth
PPTX
Zero Mothers Die - Presentation to the Government of Ghana
PPT
Android ppt
PPTX
Innovation for Women's Empoerment in Southeast Anatolia, Phase 2
PPTX
Generation of mobile communication systems
PPTX
Android Project Presentation
Mobile Phones to aid People in Disasters
Mobile phone usage among indian youth
Zero Mothers Die - Presentation to the Government of Ghana
Android ppt
Innovation for Women's Empoerment in Southeast Anatolia, Phase 2
Generation of mobile communication systems
Android Project Presentation
Ad

Similar to Marek - Spatial analyses of health data: From points to models (20)

PDF
Lukáš Marek - Spatial Clustering and Multivariate Statistics in Analysis of I...
PPTX
PPTX
GEOGRAPHICAL INFORMATION SYSTEM (GIS)
PDF
Spatial Analysis In Epidemiology Illustrated Stevenson Mark Stevens
PDF
Spatial data analysis 1
PPTX
PDF
Using Geographic Information Systems (GIS) to Model the Clustering Effect of ...
PPT
GIS in Health
PPT
GISpublichealthtsou.ppt
PPTX
Geographic information system application of environmental epidemiology
PPTX
Geographical Information System GIS.pptx
PDF
Finding Meaning in Points, Areas and Surfaces: Spatial Analysis in R
PDF
ABSTRACT Public Health GIS- DST NATIONAL PROJECT
PDF
Role of GIS in Health Care Management by Dr. Dipti Mukherji
PDF
Spatial data analysis
PPS
Geovisualization and Geostatistics: A Concept for the Numerical and Visual An...
PPS
Spatial Analysis of the 2008 Influenza Outbreak of Hong Kong Poh-chin LAI and...
PDF
Spatial Analysis with R - the Good, the Bad, and the Pretty
PPTX
s3859353_Lab2.pptx
PDF
Python for Geospatial Data Analysis (First Early Release) Bonny P. Mcclain
Lukáš Marek - Spatial Clustering and Multivariate Statistics in Analysis of I...
GEOGRAPHICAL INFORMATION SYSTEM (GIS)
Spatial Analysis In Epidemiology Illustrated Stevenson Mark Stevens
Spatial data analysis 1
Using Geographic Information Systems (GIS) to Model the Clustering Effect of ...
GIS in Health
GISpublichealthtsou.ppt
Geographic information system application of environmental epidemiology
Geographical Information System GIS.pptx
Finding Meaning in Points, Areas and Surfaces: Spatial Analysis in R
ABSTRACT Public Health GIS- DST NATIONAL PROJECT
Role of GIS in Health Care Management by Dr. Dipti Mukherji
Spatial data analysis
Geovisualization and Geostatistics: A Concept for the Numerical and Visual An...
Spatial Analysis of the 2008 Influenza Outbreak of Hong Kong Poh-chin LAI and...
Spatial Analysis with R - the Good, the Bad, and the Pretty
s3859353_Lab2.pptx
Python for Geospatial Data Analysis (First Early Release) Bonny P. Mcclain
Ad

More from swenney (20)

PPTX
Ooms - Cognitive user evaluation of digital maps: findings and challenges
PPTX
Buchroithner - Multitemporal remote sensing-based 3D mapping of glacier chang...
PPT
Hiba idris - GIS Based Visualisation of the Aesthetic Value of The Landscapes...
PPT
OGiC - Manfred Buchroithner - Karst caves in tropical jungle: 3D mapping and ...
PPTX
OGiC - Kristien Ooms - Eye tracking in the Geo-domain: a perception on cartog...
PPT
Workshop - Ruzicka - Webové mapy prakticky
PDF
Workshop - Stachon - Staré mapy v praxi
PPTX
Workshop - Hajek+Jedlicka - Jak exportovat sémantická data ze SketchUp
PPT
Workshop - Sasinka - Metodologické aspekty empirického výzkumu v oblasti kogn...
PPT
Workshop - Hejlova - Bezdrátová senzorová síť
PPT
Merickova - Characteristic of the Cognition of Military Pilots: A Geographic ...
PPT
Vavra - Assessment and visualization of phenological data by using of GIS
PPTX
Popelka - The role of hill-shading in tourist maps: an eye-tracking study
PPTX
Brychtova - Evaluation of colour schemes usability in Atlas of the Phenologic...
PDF
Caha - Visibility on a fuzzy surface: A case study
PPT
Dolezalova - Optimizing colors for effective visualization of geographic data
PPTX
Zajickova - Changes in the public service transport network in the Olomouc Re...
PPT
Hejlova - Parametres of WSN for temperature monitoring
PPT
Netek - On-screen Editing of Map Content via Web Browser in Real Time
PPTX
Samec - Regression analysis of relations among main Quaternary environmental ...
Ooms - Cognitive user evaluation of digital maps: findings and challenges
Buchroithner - Multitemporal remote sensing-based 3D mapping of glacier chang...
Hiba idris - GIS Based Visualisation of the Aesthetic Value of The Landscapes...
OGiC - Manfred Buchroithner - Karst caves in tropical jungle: 3D mapping and ...
OGiC - Kristien Ooms - Eye tracking in the Geo-domain: a perception on cartog...
Workshop - Ruzicka - Webové mapy prakticky
Workshop - Stachon - Staré mapy v praxi
Workshop - Hajek+Jedlicka - Jak exportovat sémantická data ze SketchUp
Workshop - Sasinka - Metodologické aspekty empirického výzkumu v oblasti kogn...
Workshop - Hejlova - Bezdrátová senzorová síť
Merickova - Characteristic of the Cognition of Military Pilots: A Geographic ...
Vavra - Assessment and visualization of phenological data by using of GIS
Popelka - The role of hill-shading in tourist maps: an eye-tracking study
Brychtova - Evaluation of colour schemes usability in Atlas of the Phenologic...
Caha - Visibility on a fuzzy surface: A case study
Dolezalova - Optimizing colors for effective visualization of geographic data
Zajickova - Changes in the public service transport network in the Olomouc Re...
Hejlova - Parametres of WSN for temperature monitoring
Netek - On-screen Editing of Map Content via Web Browser in Real Time
Samec - Regression analysis of relations among main Quaternary environmental ...

Recently uploaded (20)

PDF
Clinical guidelines as a resource for EBP(1).pdf
PPTX
STUDY DESIGN details- Lt Col Maksud (21).pptx
PPTX
climate analysis of Dhaka ,Banglades.pptx
PPTX
Business Ppt On Nestle.pptx huunnnhhgfvu
PPTX
Business Acumen Training GuidePresentation.pptx
PPTX
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
PPTX
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PPTX
CEE 2 REPORT G7.pptxbdbshjdgsgjgsjfiuhsd
PPTX
Major-Components-ofNKJNNKNKNKNKronment.pptx
PPTX
Supervised vs unsupervised machine learning algorithms
PPTX
Introduction to Knowledge Engineering Part 1
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PDF
Galatica Smart Energy Infrastructure Startup Pitch Deck
PPT
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
PPTX
Moving the Public Sector (Government) to a Digital Adoption
PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
Clinical guidelines as a resource for EBP(1).pdf
STUDY DESIGN details- Lt Col Maksud (21).pptx
climate analysis of Dhaka ,Banglades.pptx
Business Ppt On Nestle.pptx huunnnhhgfvu
Business Acumen Training GuidePresentation.pptx
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
CEE 2 REPORT G7.pptxbdbshjdgsgjgsjfiuhsd
Major-Components-ofNKJNNKNKNKNKronment.pptx
Supervised vs unsupervised machine learning algorithms
Introduction to Knowledge Engineering Part 1
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
Galatica Smart Energy Infrastructure Startup Pitch Deck
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
Moving the Public Sector (Government) to a Digital Adoption
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
oil_refinery_comprehensive_20250804084928 (1).pptx

Marek - Spatial analyses of health data: From points to models

  • 1. Lukáš MAREK Spatial aannaallyysseess ooff hheeaalltthh ddaattaa:: FFrroomm ppooiinnttss ttoo mmooddeellss www.geoinformatics.upol.cz lukas.marek@upol.cz
  • 2. Why Geographical Information Systems? • Advanced methods for spatial analyses • Spatial statistics • Exploration of spatial pattern • Visualization and presentation for non-geographers (doctors, specialist) www.geoinformatics.upol.cz
  • 3. Spatial Analyses of Health Data • Disease mapping – Visual description of spatial variability of the disease incidence – Maps of incidence risk, identification of areas with high risk • Geographic correlation studies – Analysis of associations among the incidence and environmental factors • Analyses of spatial pattern – Exploration of spatial and spatio-temporal patterns in data – Disease clusters, randomness, … www.geoinformatics.upol.cz
  • 4. Objectives • Disease occurence as the event – Space, time, attributes – Spatial (point) pattern • Spatio-temporal evaluation of Campylobacter infection in the Czech Republic • Association with environmental / social factors www.geoinformatics.upol.cz
  • 6. Campylobacteriosis • Campylobacter spp. (C. jejuni) • Most frequent gastroenteritis in developed countries • Often foodborne • Symptoms are similar to salmonella • Poultry, fresh milk products, sewage, wild animals … www.geoinformatics.upol.cz
  • 7. Campylobacteriosis • Children are by far the most vulnerable group • Seasonality • Underreported – 225 cases / 100 000 population – Havelaar et al. (2013) • 11.3 times more cases in the Czech Republic • 45.7 times more case in EU www.geoinformatics.upol.cz
  • 8. Data • EPIDAT database – Mandatory records about infectious diseases and patients, manually fulfilled – Age, Sex, Date, Profession, Place of residence, infection, isolation, … – 2008 - 2012 – ≈ 100 000 records – (weakly) Anonymized • Aggregation – Regular square network, municipal districts • Statistical data – National census 2011 – EUROSTAT population grid www.geoinformatics.upol.cz
  • 9. Data Privacy • Health and medical data = private, confidential and sensitive data • Keeping all available records but prevent their re-identification • Usefulness of the local scale analysis X privacy protection • Unlikely to explore the relations on the individual level (and not necessary) • Availability, accessibility and restrictions www.geoinformatics.upol.cz
  • 13. Spatio-temporal kriging • Continuous incidence surface in populated places of the Czech Republic • Exploration of the phenomenon‘s autocorrelation simultaneously in space and time • Interpolation of logarithm of standardized incidence into 4 km2 grid • Ordinary global spatio-temporal kriging www.geoinformatics.upol.cz
  • 14. Spatio-temporal kriging • Exponential model / Metric model • nugget = 0.15, partial sill = 1.94, range = 14150.46 m and space-time anisotropy = 544.58 www.geoinformatics.upol.cz
  • 15. Spatio-temporal kriging • Vysledky • Bud sada obrazku nebo potom screen video www.geoinformatics.upol.cz
  • 16. Spatio-temporal clustering • Visual overview of the space-time pattern in Google Earth • Spatial Scan Statistics – Identification of clusters of high and low rate areas together in the continuous geographical areas and time • Age/sex stratified cases, age/sex stratified population, coordinates of centroids • Weekly aggregated data www.geoinformatics.upol.cz
  • 17. Spatio-temporal clustering • Retrospective analysis based on Poisson probability model • Clusters of maximum size of 3% of population, max. 50% of time or entire time period • Non-parametric temporal adjustment • Monte Carlo simulation, p-value < 0.05 • Comparison based on relative risk www.geoinformatics.upol.cz
  • 20. Spatio-temporal clustering Cluster Type Time period Region Count Observed Expected Relative risk Population 1* H 2008/01/01 – 2012/12/31 Ostrava 31 5975 2861 2.16 292,978 2 H 2008/01/01 – 2012/12/31 North Wallachia - Lachia 70 5414 2788 2.00 277,236 3 H 2008/01/01 – 2012/12/31 Silesia 16 4773 2534 1.93 256,657 4 H 2008/01/01 – 2012/12/31 Prague - centre 1 1006 245 4.13 29,948 5 H 2008/05/13 – 2010/11/01 South Moravia 167 2274 1432 1.60 292,885 6 H 2008/01/01 – 2012/12/31 Dražíč 1 72 2 41.92 214 7 H 2008/01/01 – 2012/12/31 Brno - centre 19 3951 2590 1.55 271,742 8 H 2008/01/01 – 2012/12/31 Opava 37 1714 877 1.97 87,203 9 H 2008/01/01 – 2012/12/31 Haná 66 3828 2526 1.54 256,721 10 H 2009/04/14 – 2011/09/05 South Wallachia 90 1596 932 1.72 196,522 11 H 2010/01/12 – 2010/02/22 Budweis 60 194 36 5.41 157,425 12 H 2008/01/01 – 2012/12/31 Benešov 15 640 313 2.05 31,115 13 H 2010/04/06 – 2010/10/04 Brno - surroundings 224 568 286 1.99 284,346 www.geoinformatics.upol.cz 14 H 2011/05/03 – 2011/11/14 Pilsen 22 394 201 1.96 197,263
  • 21. Model • Models help to understand reality – Although they do not have to fully describe its variation • Models help to clarify significance of most likely associated factors • Models help to describe the future using the data from the past • Models help to identify vulnerable areas www.geoinformatics.upol.cz
  • 22. Arsenault, J. (2010): Épidémiologie spatiale de la campylobactériose au Québec. www.geoinformatics.upol.cz
  • 24. Conclusions • Space – time aggregation and visualization for visual analytics • Continuous incidence surface describing spatial and temporal progress of the disease • Scan statistics identifying high and low rate clusters as well as their temporal support • Visualization in Google Earth www.geoinformatics.upol.cz
  • 25. Problems / Challenges • Geocoding • Aggregation • Age / Population standardization • Neighbourhood estimation • Modifiable areal unit problem • Probability distribution of the disease occurrence • Underlying processes • Under / Overestimation of results leading to misinterpretation www.geoinformatics.upol.cz
  • 26. www.geoinformatics.upol.cz THANK YOU FOR YOUR ATTENTION Lukáš MAREK lukas.marek@upol.cz

Editor's Notes

  • #17: ST aggregation, incidence surface
  • #25: Fuzzy surface contains several relations in comparison to traditional kriging that only contain one specific relation between input points