SlideShare a Scribd company logo
5
Most read
7
Most read
15
Most read
Slide - 1Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
2
Exponents and
Polynomials
12
Slide - 2Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
1. Use 0 as an exponent.
2. Use negative numbers as exponents.
3. Use the quotient rule for exponents.
4. Use combinations of the rules for
exponents.
Objectives
12.2 Integer Exponents and the Quotient
Rule
Slide - 3Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Zero Exponent
For any nonzero real number a,
a0 = 1.
Example: 170 = 1
Use 0 as an Exponent
Slide - 4Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
(a) 380
Example Evaluate.
Use 0 as an Exponent
(b) (–9)0
(c) –90 = –1(9)0 = –1(1) = –1
(d) x0 = 1
= 1
= 1
(e) 5x0 = 5·1= 5
(f) (5x)0 = 1
Slide - 5Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Negative Exponents
For any nonzero real number a and any integer n,
Example:
Use Negative Numbers as Exponents
an

1
an
.
32

1
32

1
9
.
Slide - 6Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Example
Simplify by writing with positive exponents. Assume that all
variables represent nonzero real numbers.
Use Negative Numbers as Exponents
(a) 9–3
3
1
9

1
729

3
1
(b)
4

 
 
 
3
4
1
 
  
 
64
Notice that we can change the
base to its reciprocal if we also
change the sign of the exponent.
5
2
(c)
3

 
 
 
5
3
2
 
  
 
243
32

Slide - 7Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Example (cont)
Simplify by writing with positive exponents. Assume that all
variables represent nonzero real numbers.
Use Negative Numbers as Exponents
1 1
(d) 6 3 

1 1
6 3
 
1 2
6 6
 
1
6
 
4
3
(e)
x
4
3
1
x

4
3x
Slide - 8Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
CAUTION
A negative exponent does not indicate a negative
number. Negative exponents lead to reciprocals.
Use Negative Numbers as Exponents
3
3
1 1
2
2 8

 
Expression Example
a–n Not negative
–a–n 3
3
1 1
2
2 8

    Negative
Slide - 9Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Use Negative Numbers as Exponents
Changing from Negative to Positive Exponents
For any nonzero numbers a and b and any integers m and n,
am
bn

bn
am
and
a
b




m

b
a




m
.
Examples:
3 35 4
4 5
3 2 4 5
and .
2 3 5 4


   
    
   
Slide - 10Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
CAUTION
Be careful. We cannot use the rule to
change negative exponents to positive exponents if the
exponents occur in a sum or difference of terms. For
example,
Use Negative Numbers as Exponents
2 1
3
5 3
7 2
 



would be written with positive exponents as
2
3
1 1
5 3 .
1
7
2


m n
n m
a b
b a



Slide - 11Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Use the Quotient Rule for Exponents
Quotient Rule for Exponents
For any nonzero number a and any integers m and n,

 .
m
m n
n
a
a
a
Example:
8
8 6 2
6
5
5 =5 =25.
5


(Keep the same base and subtract the exponents.)
Slide - 12Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
CAUTION
A common error is to write This is
incorrect.
By the quotient rule, the quotient must have the same
base, 5, so
We can confirm this by using the definition of
exponents to write out the factors:
Use the Quotient Rule for Exponents
58
56
 186
 12
.
58
56
 586
=52
.
58
56

55555555
555555
.
Slide - 13Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Example
Simplify. Assume that all variables represent nonzero real
numbers.
Use the Quotient Rule for Exponents
4
6
3
(a)
3
4 6
3 
 2
1
3
2
3

4
9
(b)
y
y


4 ( 9)
y  
 5
y4 9
y 

Slide - 14Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
4 ( 5) 7 6
2 ( )z a  
  
Example (cont)
Simplify. Assume that all variables represent nonzero real
numbers.
Use the Quotient Rule for Exponents
4 7
5 6
2 ( )
(c)
2 ( )
z a
z a


4 7
5 6
2 ( )
2 ( )
z a
z a

 

9
2 ( )z a  
Slide - 15Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Example (cont)
Simplify. Assume that all variables represent nonzero real
numbers.
Use the Quotient Rule for Exponents
3 8
2 4 6
5
(d)
3
x y
x y


3 8
2 4 6
5
3
x y
x y


  
2 3 4 8 6
5 3 x y  
   
7 2
5 9x y
 
2
7
45y
x

Slide - 16Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Definitions and Rules for Exponents
For any integers m and n:
Product rule am · an = am+n
Zero exponent a0 = 1 (a ≠ 0)
Negative exponent
Quotient rule
Use the Quotient Rule for Exponents
an

1
an
am
an
 amn
(a  0)
Slide - 17Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Definitions and Rules for Exponents (concluded)
For any integers m and n:
Power rules (a) (am)n = amn
(b) (ab)m = ambm
(c)
Negative-to-Positive
Rules
Use the Quotient Rule for Exponents
a
b




m

am
bm
(b  0)
a
b




m

b
a




m
am
bn

bn
am
(a,b  0)
Slide - 18Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Example
Simplify each expression. Assume all variables represent
nonzero real numbers.
Use Combinations of Rules
3 2
6
(2 )
(a)
2
6 6
2 

1
6
6
2
2

0
2
Slide - 19Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Example (cont)
Simplify each expression. Assume all variables represent
nonzero real numbers.
Use Combinations of Rules
4 2
1
(3 ) (3 )
(b)
(3 )
y y
y 
4 2
1
(3 )
(3 )
y
y



6 ( 1)
(3 )y  

7
(3 )y
7 7
3 y
7
2187y
Slide - 20Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G
Example (cont)
Simplify each expression. Assume all variables represent
nonzero real numbers.
Use Combinations of Rules
23
1 4
5
(c)
2
a
b


 
 
 
21 4
3
2
5
b
a


 
  
  23 4
1
2 5
a b 
  
 
6 8
2
(10)
a b

6 8
100
a b


More Related Content

PPT
To determine if a relation is a function
PDF
1.3 Complex Numbers
PPTX
7.2 simplifying radicals
PDF
Multiplying polynomials
PPT
Slope of a Line
PPT
Adding and subtracting polynomials
PDF
Multiplying Polynomials: Two Binomials
PPT
Simplifying radical expressions, rational exponents, radical equations
To determine if a relation is a function
1.3 Complex Numbers
7.2 simplifying radicals
Multiplying polynomials
Slope of a Line
Adding and subtracting polynomials
Multiplying Polynomials: Two Binomials
Simplifying radical expressions, rational exponents, radical equations

What's hot (20)

PPTX
Lecture 05 b radicals multiplication and division
PPTX
Rational exponents and radicals
PDF
Factoring Sum and Difference of Two Cubes
PPT
Angle relationships
PPTX
Applying Triangle Congruence to Construct Perpendicular Lines and.pptx
PPTX
Quadratic Inequalities
PDF
Sets of numbers
PPTX
Transformations of functions
PPTX
Multiplying-and-dividing-polynomials.pptx
PPT
Rational Exponents
PPTX
Rectangular Coordinate System PPT
PPTX
Introduction to sequences and series
PPT
Rational Exponents
PPTX
Quadratic inequality
PPTX
Rectangular coordinate system
PPTX
Lecture complex fractions
PPT
Multiplying polynomials
PPT
6.6 analyzing graphs of quadratic functions
PPTX
Multiplying Monomials
PPTX
Solving inequalities
Lecture 05 b radicals multiplication and division
Rational exponents and radicals
Factoring Sum and Difference of Two Cubes
Angle relationships
Applying Triangle Congruence to Construct Perpendicular Lines and.pptx
Quadratic Inequalities
Sets of numbers
Transformations of functions
Multiplying-and-dividing-polynomials.pptx
Rational Exponents
Rectangular Coordinate System PPT
Introduction to sequences and series
Rational Exponents
Quadratic inequality
Rectangular coordinate system
Lecture complex fractions
Multiplying polynomials
6.6 analyzing graphs of quadratic functions
Multiplying Monomials
Solving inequalities
Ad

Similar to Mat 092 section 12.2 integer exponents (20)

PPTX
Mat 092 section 12.1 the power and product rules for exponents
PDF
Exponents Lessson Plan...learning about Exponents
PPTX
Rules Of Exponents
PPTX
ZERO AND NEGATIVE INTEGRAL EXPONENTS.pptx
PPT
Exponent 3
PPTX
Third quarter-Zero and Negative exponent.pptx
DOCX
297Source NASA.5.1 Rules for Exponents5.2 Addition.docx
PPT
PPTX
Feb. 18, 2014
PPS
1 rules for exponents
PPTX
Zero, negative, and fractional exponents
ODP
Simplifying exponents
PPT
Rules of exponents 1
PPT
Exponent 2
PPTX
Exponent Rules Math Presentation in Colorful Simple Style_20240921_172116_000...
PPT
Law_of_Exponents_Grade7 Final Presentation
PDF
Polinomios
PPTX
Lesson 4_Laws of Exponents incomplete.pptx
Mat 092 section 12.1 the power and product rules for exponents
Exponents Lessson Plan...learning about Exponents
Rules Of Exponents
ZERO AND NEGATIVE INTEGRAL EXPONENTS.pptx
Exponent 3
Third quarter-Zero and Negative exponent.pptx
297Source NASA.5.1 Rules for Exponents5.2 Addition.docx
Feb. 18, 2014
1 rules for exponents
Zero, negative, and fractional exponents
Simplifying exponents
Rules of exponents 1
Exponent 2
Exponent Rules Math Presentation in Colorful Simple Style_20240921_172116_000...
Law_of_Exponents_Grade7 Final Presentation
Polinomios
Lesson 4_Laws of Exponents incomplete.pptx
Ad

More from GlenSchlee (20)

PDF
Mat221 5.6 definite integral substitutions and the area between two curves
PPTX
Section 14.8 variation
PPTX
Section 14.6 solving equations with rational expressions
PPTX
Section 14.4 adding and subtracting rational expressions
PPTX
Section 14.3 Least common denominators
PPTX
Section 14.2 multiplying and dividing rational expressions
PPTX
Section 14.1 The fundamental property of rational expressions
PPTX
Section 13.6 solving quadratic equations using the zero-factor property
PPTX
Section 13.5 special factoing techniques
PPTX
Section 13.4 factoring trinomials using the foil method
PPTX
Section 13.4 factoring trinomials using the foil method
PPTX
Section 13.3 factoing trinomials by grouping
PPTX
Section 13.2 factoring trinomials
PPTX
Section 13.1 greatest common factor; factoring by grouping
PPTX
Section 12.8 dividing a polynomial by a polynomial
PPTX
Section 12.6 special products
PPTX
Section 12.5 multiplying polynomials
PPTX
Mat 092 section 12.4 adding and subtracting polynomials
PPTX
Mat 092 section 12.3 scientific notation
PPTX
17.5 introduction to functions
Mat221 5.6 definite integral substitutions and the area between two curves
Section 14.8 variation
Section 14.6 solving equations with rational expressions
Section 14.4 adding and subtracting rational expressions
Section 14.3 Least common denominators
Section 14.2 multiplying and dividing rational expressions
Section 14.1 The fundamental property of rational expressions
Section 13.6 solving quadratic equations using the zero-factor property
Section 13.5 special factoing techniques
Section 13.4 factoring trinomials using the foil method
Section 13.4 factoring trinomials using the foil method
Section 13.3 factoing trinomials by grouping
Section 13.2 factoring trinomials
Section 13.1 greatest common factor; factoring by grouping
Section 12.8 dividing a polynomial by a polynomial
Section 12.6 special products
Section 12.5 multiplying polynomials
Mat 092 section 12.4 adding and subtracting polynomials
Mat 092 section 12.3 scientific notation
17.5 introduction to functions

Recently uploaded (20)

PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
Pharma ospi slides which help in ospi learning
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Complications of Minimal Access Surgery at WLH
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
GDM (1) (1).pptx small presentation for students
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
Sports Quiz easy sports quiz sports quiz
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
Institutional Correction lecture only . . .
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
2.FourierTransform-ShortQuestionswithAnswers.pdf
TR - Agricultural Crops Production NC III.pdf
Pharma ospi slides which help in ospi learning
Module 4: Burden of Disease Tutorial Slides S2 2025
Complications of Minimal Access Surgery at WLH
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
GDM (1) (1).pptx small presentation for students
Microbial disease of the cardiovascular and lymphatic systems
VCE English Exam - Section C Student Revision Booklet
O7-L3 Supply Chain Operations - ICLT Program
Sports Quiz easy sports quiz sports quiz
Anesthesia in Laparoscopic Surgery in India
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Institutional Correction lecture only . . .
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student

Mat 092 section 12.2 integer exponents

  • 1. Slide - 1Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G 2 Exponents and Polynomials 12
  • 2. Slide - 2Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G 1. Use 0 as an exponent. 2. Use negative numbers as exponents. 3. Use the quotient rule for exponents. 4. Use combinations of the rules for exponents. Objectives 12.2 Integer Exponents and the Quotient Rule
  • 3. Slide - 3Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Zero Exponent For any nonzero real number a, a0 = 1. Example: 170 = 1 Use 0 as an Exponent
  • 4. Slide - 4Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G (a) 380 Example Evaluate. Use 0 as an Exponent (b) (–9)0 (c) –90 = –1(9)0 = –1(1) = –1 (d) x0 = 1 = 1 = 1 (e) 5x0 = 5·1= 5 (f) (5x)0 = 1
  • 5. Slide - 5Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Negative Exponents For any nonzero real number a and any integer n, Example: Use Negative Numbers as Exponents an  1 an . 32  1 32  1 9 .
  • 6. Slide - 6Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Example Simplify by writing with positive exponents. Assume that all variables represent nonzero real numbers. Use Negative Numbers as Exponents (a) 9–3 3 1 9  1 729  3 1 (b) 4        3 4 1        64 Notice that we can change the base to its reciprocal if we also change the sign of the exponent. 5 2 (c) 3        5 3 2        243 32 
  • 7. Slide - 7Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Example (cont) Simplify by writing with positive exponents. Assume that all variables represent nonzero real numbers. Use Negative Numbers as Exponents 1 1 (d) 6 3   1 1 6 3   1 2 6 6   1 6   4 3 (e) x 4 3 1 x  4 3x
  • 8. Slide - 8Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G CAUTION A negative exponent does not indicate a negative number. Negative exponents lead to reciprocals. Use Negative Numbers as Exponents 3 3 1 1 2 2 8    Expression Example a–n Not negative –a–n 3 3 1 1 2 2 8      Negative
  • 9. Slide - 9Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Use Negative Numbers as Exponents Changing from Negative to Positive Exponents For any nonzero numbers a and b and any integers m and n, am bn  bn am and a b     m  b a     m . Examples: 3 35 4 4 5 3 2 4 5 and . 2 3 5 4               
  • 10. Slide - 10Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G CAUTION Be careful. We cannot use the rule to change negative exponents to positive exponents if the exponents occur in a sum or difference of terms. For example, Use Negative Numbers as Exponents 2 1 3 5 3 7 2      would be written with positive exponents as 2 3 1 1 5 3 . 1 7 2   m n n m a b b a   
  • 11. Slide - 11Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Use the Quotient Rule for Exponents Quotient Rule for Exponents For any nonzero number a and any integers m and n,   . m m n n a a a Example: 8 8 6 2 6 5 5 =5 =25. 5   (Keep the same base and subtract the exponents.)
  • 12. Slide - 12Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G CAUTION A common error is to write This is incorrect. By the quotient rule, the quotient must have the same base, 5, so We can confirm this by using the definition of exponents to write out the factors: Use the Quotient Rule for Exponents 58 56  186  12 . 58 56  586 =52 . 58 56  55555555 555555 .
  • 13. Slide - 13Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Example Simplify. Assume that all variables represent nonzero real numbers. Use the Quotient Rule for Exponents 4 6 3 (a) 3 4 6 3   2 1 3 2 3  4 9 (b) y y   4 ( 9) y    5 y4 9 y  
  • 14. Slide - 14Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G 4 ( 5) 7 6 2 ( )z a      Example (cont) Simplify. Assume that all variables represent nonzero real numbers. Use the Quotient Rule for Exponents 4 7 5 6 2 ( ) (c) 2 ( ) z a z a   4 7 5 6 2 ( ) 2 ( ) z a z a     9 2 ( )z a  
  • 15. Slide - 15Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Example (cont) Simplify. Assume that all variables represent nonzero real numbers. Use the Quotient Rule for Exponents 3 8 2 4 6 5 (d) 3 x y x y   3 8 2 4 6 5 3 x y x y      2 3 4 8 6 5 3 x y       7 2 5 9x y   2 7 45y x 
  • 16. Slide - 16Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Definitions and Rules for Exponents For any integers m and n: Product rule am · an = am+n Zero exponent a0 = 1 (a ≠ 0) Negative exponent Quotient rule Use the Quotient Rule for Exponents an  1 an am an  amn (a  0)
  • 17. Slide - 17Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Definitions and Rules for Exponents (concluded) For any integers m and n: Power rules (a) (am)n = amn (b) (ab)m = ambm (c) Negative-to-Positive Rules Use the Quotient Rule for Exponents a b     m  am bm (b  0) a b     m  b a     m am bn  bn am (a,b  0)
  • 18. Slide - 18Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Example Simplify each expression. Assume all variables represent nonzero real numbers. Use Combinations of Rules 3 2 6 (2 ) (a) 2 6 6 2   1 6 6 2 2  0 2
  • 19. Slide - 19Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Example (cont) Simplify each expression. Assume all variables represent nonzero real numbers. Use Combinations of Rules 4 2 1 (3 ) (3 ) (b) (3 ) y y y  4 2 1 (3 ) (3 ) y y    6 ( 1) (3 )y    7 (3 )y 7 7 3 y 7 2187y
  • 20. Slide - 20Copyright © 2018, 2014, 2010 Pearson Education Inc.A L W A Y S L E A R N I N G Example (cont) Simplify each expression. Assume all variables represent nonzero real numbers. Use Combinations of Rules 23 1 4 5 (c) 2 a b         21 4 3 2 5 b a          23 4 1 2 5 a b       6 8 2 (10) a b  6 8 100 a b 