SlideShare a Scribd company logo
Name: ______________________ Class: _________________ Date: _________ ID: A
1
Unit Two Practice Test: Powers and Exponent Laws
Multiple Choice
Identify the choice that best completes the statement or answers the question.
____ 1. Write the base of −(−6)
5
.
a. 6 b. −6 c. −6 × 5 d. 5
____ 2. Evaluate: 4
6
a. 1296 b. 4096 c. 10 d. 24
____ 3. Write one billion as a power of 10.
a. 109 b. 108 c. 1010 d. 108
____ 4. Evaluate: (−15)
0
a. –1 b. 1 c. 0 d. –15
____ 5. Evaluate: −(10
0
)
7
a. −7 b. 1 c. 7 d. −1
____ 6. State which operation you would do first to evaluate 8 + 9 × 6
2
− 5.
a. Square 6 c. Subtract 5 from 6
b. Add 8 and 9 d. Multiply 9 and 6
____ 7. Evaluate: 5
3
− −6
( )
3
a. 33 b. –91 c. 341 d. –3
____ 8. Evaluate: (2 + 3)
2
− (3 − 5)
3
a. 17 b. –85 c. 16 d. 33
____ 9. Write the product of 5
2
× 5
4
as a single power.
a. 10
6
b. 5
6
c. 25
6
d. 5
8
Name: ______________________ ID: A
2
____ 10. Write the quotient of
6
8
6
4
as a single power.
a. 6
4
b. 2 c. 6
2
d. 6
12
____ 11. Express
−5
( )
6
× −5
( )
6
−5
( )
4
as a single power.
a. (−5)
9
b. (−5)
8
c. (−5)
32
d. (−5)
3
____ 12. Write −4
( ) × −5
( )
È
Î
Í
Í
Í
Í
˘
˚
˙
˙
˙
˙
5
as a product of powers.
a. −4
( )
5
+ −5
( )
5
c. −4
( )
5
× −5
( )
5
b. 4
5
× 5
5
d. 5 −4
( ) + 5 −5
( )
____ 13. Write
5
3
Ê
Ë
Á
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
˜
3
as a quotient of powers.
a. 5
3
− 3
3
b. 2
3
c.
5
3
3
1
d.
5
3
3
3
____ 14. Evaluate: −4
( )
0
È
Î
Í
Í
Í
Í
Í
Í
˘
˚
˙
˙
˙
˙
˙
˙
5
a. 5 b. −5 c. 1 d. −1
____ 15. Which answer is negative?
i) (−7)
10
ii) −(7)
10
iii) −(−7)
10
a. i only b. i and iii c. i and ii d. ii and iii
____ 16. Evaluate: 107
a. 100 000 000 b. 10 000 000 c. 1 000 000 d. 70
Name: ______________________ ID: A
3
____ 17. Which is the correct value of 2
2
+ 3 × 5 − 3?
i) 14
ii) 10
iii) 16
iv) 32
a. ii b. iii c. i d. iv
____ 18. Evaluate: −2
( )
4
× −2
( )
2
÷ −2
( )
0
a. –32 b. 64 c. 256 d. –64
____ 19. Evaluate: 10
4
× 10
3
+ 10
5
a. 1 000 000 000 000 c. 120
b. 10 100 000 d. 1 000 000 100 000
____ 20. Write −7
( ) × 2
È
Î
Í
Í
Í
Í
˘
˚
˙
˙
˙
˙
5
as a product of powers.
a. −7
( )
5
× 2
5
b. −7
( )
5
+ 2
5
c. −5
( )
5
d. 5 −7
( ) × 2
____ 21. Which expressions have positive values?
i) −7
( )
6
È
Î
Í
Í
Í
Í
Í
Í
˘
˚
˙
˙
˙
˙
˙
˙
7
ii) − −7
( )
6
È
Î
Í
Í
Í
Í
Í
Í
˘
˚
˙
˙
˙
˙
˙
˙
7
iii) − 7
6
Ê
Ë
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
7
iv) − − −7
( )
6
È
Î
Í
Í
Í
Í
Í
Í
˘
˚
˙
˙
˙
˙
˙
˙
7
a. ii and iv b. i and iv c. i and ii d. ii and iii
Short Answer
22. Write the base and the exponent of this power: (−8)
4
.
Name: ______________________ ID: A
4
23. Write 704 065 using powers of 10.
.
24. Evaluate: 4
2
− [6 ÷ (−2)]
3
.
25. Simplify, then evaluate.
−2
( )
5
× −2
( )
7
÷ −2
( )
6
.
26. Simplify, then evaluate.
2
2
8
0
Ê
Ë
Á
Á
Á
Á
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
˜
˜
˜
˜
3
.
27. State which operation you would do first to evaluate (6)
0
+ [8 ÷ (−2)]
2
− 5.
.
Name: ______________________ ID: A
5
28. Insert brackets to make each statement true.
a) 3
2
+ 4 × 5 − 2
2
= 13
b) 3
2
+ 4 × 5 − 2
2
= 61
.
29. Simplify, then evaluate.
−2
( )
4
× −2
( )
2
−2
( )
4
× −2
( )
0
.
30. Write 11 × −12
( ) × 13
È
Î
Í
Í
Í
Í
˘
˚
˙
˙
˙
˙
3
as a product of powers.
.
31. Simplify, then evaluate.
2
4
Ê
Ë
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
3
× 2
2
Ê
Ë
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
4
2
2
× 2
6
Ê
Ë
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
2
.
Name: ______________________ ID: A
6
32. Simplify, then evaluate.
4
9
÷ 4
6
Ê
Ë
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
2
− 2
8
÷ 2
6
Ê
Ë
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
2
.
Problem
33. Evaluate: 5(3)
3
− 3(−5)
3
Show your steps.
.
34. One estimate shows that the number of people without access to safe drinking water is about one billion.
How much water is required if each person who does not have access to safe drinking water is given 10 L
of safe drinking water?
Give your answer in standard form and using powers of 10.
.
Name: ______________________ ID: A
7
35. Evaluate:
(10)
2
− (4)
2
(6)
2
− 2(2)
2
Show your calculations.
.
36. Identify, then correct, any errors in the work shown.
3
3
× 3
4
÷ 3
6
= 3
3×4÷6
= 3
2
= 6
.
Name: ______________________ ID: A
8
37. Identify, then correct, any errors in the work shown.
32
× 33
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
2
= 32×3
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
2
= 36
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
2
= 36+2
= 38
= 6561
.
38. Where possible, replace with a “+” or “−” sign to make each product positive.
a) −( 8)
11
b) (−8)
12
c) −( 8)
12
d) (−8)
11
Can all products be made positive? Explain.
.
Name: ______________________ ID: A
9
39. These are two samples of student work. Are they correct? Explain.
Student A: 3
3
× 3
4
Ê
Ë
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
2
= 3
12
Ê
Ë
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
2
= 3
14
Student B: 3
3
× 3
4
Ê
Ë
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
2
= 3
7
Ê
Ë
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
2
= 3
14
.
40. Simplify, then evaluate. Show your work.
102
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
4
× 53
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
4
54
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
2
× 102
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
5
×
105
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
3
× 24
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
3
22
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
4
× 102
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
2
.
ID: A
1
Unit Two Practice Test: Powers and Exponent Laws
Answer Section
MULTIPLE CHOICE
1. ANS: B PTS: 1 DIF: Easy REF: 2.1 What Is a Power?
LOC: 9.N1 TOP: Number KEY: Conceptual Understanding
2. ANS: B PTS: 1 DIF: Moderate REF: 2.1 What Is a Power?
LOC: 9.N1 TOP: Number KEY: Procedural Knowledge
3. ANS: A PTS: 1 DIF: Easy
REF: 2.2 Powers of Ten and the Zero Exponent LOC: 9.N1
TOP: Number KEY: Procedural Knowledge
4. ANS: B PTS: 1 DIF: Easy
REF: 2.2 Powers of Ten and the Zero Exponent LOC: 9.N1
TOP: Number KEY: Procedural Knowledge
5. ANS: D PTS: 1 DIF: Moderate
REF: 2.2 Powers of Ten and the Zero Exponent LOC: 9.N1
TOP: Number KEY: Procedural Knowledge
6. ANS: A PTS: 1 DIF: Easy
REF: 2.3 Order of Operations with Powers LOC: 9.N1
TOP: Number KEY: Conceptual Understanding
7. ANS: C PTS: 1 DIF: Moderate
REF: 2.3 Order of Operations with Powers LOC: 9.N1
TOP: Number KEY: Procedural Knowledge
8. ANS: D PTS: 1 DIF: Moderate
REF: 2.3 Order of Operations with Powers LOC: 9.N1
TOP: Number KEY: Procedural Knowledge
9. ANS: B PTS: 1 DIF: Easy REF: 2.4 Exponent Laws I
LOC: 9.N2 TOP: Number KEY: Procedural Knowledge
10. ANS: A PTS: 1 DIF: Easy REF: 2.4 Exponent Laws I
LOC: 9.N2 TOP: Number KEY: Procedural Knowledge
11. ANS: B PTS: 1 DIF: Moderate REF: 2.4 Exponent Laws I
LOC: 9.N2 TOP: Number KEY: Procedural Knowledge
12. ANS: C PTS: 1 DIF: Easy REF: 2.5 Exponent Laws II
LOC: 9.N2 TOP: Number KEY: Procedural Knowledge
13. ANS: D PTS: 1 DIF: Easy REF: 2.5 Exponent Laws II
LOC: 9.N2 TOP: Number KEY: Procedural Knowledge
14. ANS: C PTS: 1 DIF: Moderate REF: 2.5 Exponent Laws II
LOC: 9.N2 TOP: Number KEY: Procedural Knowledge
15. ANS: D PTS: 1 DIF: Moderate REF: 2.1 What Is a Power?
LOC: 9.N1 TOP: Number KEY: Conceptual Understanding
16. ANS: B PTS: 1 DIF: Easy
REF: 2.2 Powers of Ten and the Zero Exponent LOC: 9.N1
TOP: Number KEY: Procedural Knowledge
17. ANS: B PTS: 1 DIF: Moderate
REF: 2.3 Order of Operations with Powers LOC: 9.N1
TOP: Number KEY: Procedural Knowledge
ID: A
2
18. ANS: B PTS: 1 DIF: Moderate REF: 2.4 Exponent Laws I
LOC: 9.N2 TOP: Number KEY: Procedural Knowledge
19. ANS: B PTS: 1 DIF: Moderate REF: 2.4 Exponent Laws I
LOC: 9.N2 TOP: Number KEY: Procedural Knowledge
20. ANS: A PTS: 1 DIF: Easy REF: 2.5 Exponent Laws II
LOC: 9.N2 TOP: Number KEY: Procedural Knowledge
21. ANS: B PTS: 1 DIF: Moderate REF: 2.5 Exponent Laws II
LOC: 9.N2 TOP: Number KEY: Conceptual Understanding
SHORT ANSWER
22. ANS:
Base: −8
Exponent: 4
PTS: 1 DIF: Easy REF: 2.1 What Is a Power?
LOC: 9.N1 TOP: Number KEY: Conceptual Understanding
23. ANS:
704 065 = (7 × 10
5
) + (4 × 10
3
) + (6 × 10
1
) + (5 × 10
0
)
PTS: 1 DIF: Moderate REF: 2.2 Powers of Ten and the Zero Exponent
LOC: 9.N1 TOP: Number KEY: Procedural Knowledge
24. ANS:
43
PTS: 1 DIF: Moderate REF: 2.3 Order of Operations with Powers
LOC: 9.N1 TOP: Number KEY: Procedural Knowledge
25. ANS:
−2
( )
6
= 64
PTS: 1 DIF: Moderate REF: 2.4 Exponent Laws I
LOC: 9.N2 TOP: Number KEY: Procedural Knowledge
26. ANS:
2
2
8
0
Ê
Ë
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
3
=
2
2
1
Ê
Ë
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
3
= 2
6
= 64
PTS: 1 DIF: Moderate REF: 2.5 Exponent Laws II
LOC: 9.N2 TOP: Number KEY: Procedural Knowledge
27. ANS:
Divide 8 by −2
PTS: 1 DIF: Easy REF: 2.3 Order of Operations with Powers
LOC: 9.N1 TOP: Number KEY: Conceptual Understanding
ID: A
3
28. ANS:
a) 3
2
+ 4 × (5 − 2
2
) = 13
b) (3
2
+ 4) × 5 − 2
2
= 61
PTS: 1 DIF: Moderate REF: 2.3 Order of Operations with Powers
LOC: 9.N1 TOP: Number KEY: Problem-Solving Skills
29. ANS:
−2
( )
2
= 4
PTS: 1 DIF: Moderate REF: 2.4 Exponent Laws I
LOC: 9.N2 TOP: Number KEY: Procedural Knowledge
30. ANS:
11
3
× −12
( )
3
× 13
3
PTS: 1 DIF: Easy REF: 2.5 Exponent Laws II
LOC: 9.N2 TOP: Number KEY: Procedural Knowledge
31. ANS:
2
4
Ê
Ë
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
3
× 2
2
Ê
Ë
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
4
2
2
× 2
6
Ê
Ë
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
2
=
2
20
2
16
= 2
4
= 16
PTS: 1 DIF: Moderate REF: 2.5 Exponent Laws II
LOC: 9.N2 TOP: Number KEY: Procedural Knowledge
32. ANS:
4
9
÷ 4
6
Ê
Ë
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
2
− 2
8
÷ 2
6
Ê
Ë
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
2
= 4
3
Ê
Ë
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
2
− 2
2
Ê
Ë
Á
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
˜
2
= 4
6
− 2
4
= 4080
PTS: 1 DIF: Moderate REF: 2.5 Exponent Laws II
LOC: 9.N2 TOP: Number KEY: Procedural Knowledge
PROBLEM
33. ANS:
5(3)
3
− 3(−5)
3
= 5 × 27 − 3 × (−125)
= 135 + 375
= 510
PTS: 1 DIF: Difficult REF: 2.1 What Is a Power?
LOC: 9.N1 TOP: Number KEY: Problem-Solving Skills
ID: A
4
34. ANS:
Each person is to be given 10 L of safe drinking water.
1 billion ×10 L = 1 000 000 000 × 10
= 10 000 000 000
= 1 × 10
10
L
1 × 10
10
L = 10 000 000 000 L
The amount of water required is about 1 × 10
10
L, or 10 000 000 000 L.
PTS: 1 DIF: Moderate REF: 2.2 Powers of Ten and the Zero Exponent
LOC: 9.N1 TOP: Number KEY: Problem-Solving Skills | Communication
35. ANS:
(10)
2
− (4)
2
(6)
2
− 2(2)
2
=
100 − 16
36 − 8
=
84
28
= 3
PTS: 1 DIF: Moderate REF: 2.3 Order of Operations with Powers
LOC: 9.N1 TOP: Number KEY: Problem-Solving Skills | Communication
36. ANS:
Errors:
The exponents should be added and subtracted, not multiplied and divided.
The result of 3
2
is 3 × 3, not 3 × 2.
Correction:
3
3
× 3
4
÷ 3
6
= 3
3+4−6
= 3
1
= 3
PTS: 1 DIF: Difficult REF: 2.4 Exponent Laws I
LOC: 9.N2 TOP: Number KEY: Problem-Solving Skills | Communication
ID: A
5
37. ANS:
Errors:
In line 1, the exponents of 3 should be added instead of multiplied.
In line 3, the exponents of 3 should be multiplied instead of added.
Correction:
32
× 33
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
2
= 32+3
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
2
= 35
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
2
= 35×2
= 310
= 59 049
PTS: 1 DIF: Moderate REF: 2.5 Exponent Laws II
LOC: 9.N2 TOP: Number KEY: Problem-Solving Skills | Communication
38. ANS:
a) Replace with a “−” sign.
b) Replace with a “+” sign.
c) −( 8)
12
is always negative.
d) Replace with a “−” sign.
Not all products can be made positive.
In part c, there is an even number of factors in the power ( 8)
12
.
( 8)
12
is always positive, which means −( 8)
12
is always negative.
PTS: 1 DIF: Difficult REF: 2.1 What Is a Power?
LOC: 9.N1 TOP: Number KEY: Problem-Solving Skills | Communication
39. ANS:
Both final answers are correct but the method Student A used is wrong.
When two powers of 3, 33 and 34, are multiplied, the exponents 3 and 4 should be added.
When a power of 3, 312, is raised to the exponent 2, the exponents 12 and 2 should be multiplied.
PTS: 1 DIF: Moderate REF: 2.5 Exponent Laws II
LOC: 9.N2 TOP: Number KEY: Communication
ID: A
6
40. ANS:
102
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
4
× 53
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
4
54
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
2
× 102
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
5
×
105
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
3
× 24
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
3
22
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
4
× 102
Ê
Ë
Á
Á
Á
Á
ˆ
¯
˜
˜
˜
˜
6
=
108
× 512
58
× 1010
×
1015
× 212
28
× 1012
=
10
(8+15)
× 512
× 212
10
(10+12)
× 58
× 28
=
1023
× 512
× 212
1022
× 58
× 28
= 101
× 54
× 24
= 10 × 625 × 16
= 100 000
PTS: 1 DIF: Difficult REF: 2.5 Exponent Laws II
LOC: 9.N2 TOP: Number KEY: Problem-Solving Skills

More Related Content

PPT
Chapter4.3
PDF
Integral exponent 1 (Instructional Material)
PPT
Rational Exponents
PPT
Chapter4.2
PPT
3.2 powerpoint
PPT
PDF
Math for 800 07 powers, roots and sequences
PPT
9 2power Of Power
Chapter4.3
Integral exponent 1 (Instructional Material)
Rational Exponents
Chapter4.2
3.2 powerpoint
Math for 800 07 powers, roots and sequences
9 2power Of Power

Similar to Math_9_Chapter_2_Practice_Test.pdf (20)

PPT
Exponent 3
PPT
Exponents
PDF
Exponential Rules Lesson Plan
PDF
Algebra 6
PPT
PPT _Composite_ Week 29 dated 03-13-2023 Rational Exponents_.ppt
PPT
PPT _Composite_ Week 29 dated 03-13-2023 Rational Exponents_.ppt
PDF
INTEGERS LESSON PLAN FOR JUNIOR HIGH SCHOOL
PPT
Powers and Exponents
DOCX
Digital textbook -EXPONENTS AND POWERS
PDF
Exponents Lessson Plan...learning about Exponents
PPT
PPT
Ppt lucian vladescu
DOC
Unit 2 powers
PPT
8 2power Of Power
PDF
Indices
PPT
Chapter 07
PPTX
Laws of exponents and Power
PPTX
525e3d418e9bda8dd6cb2866acfc9e15.pptx
ODP
Simplifying exponents
Exponent 3
Exponents
Exponential Rules Lesson Plan
Algebra 6
PPT _Composite_ Week 29 dated 03-13-2023 Rational Exponents_.ppt
PPT _Composite_ Week 29 dated 03-13-2023 Rational Exponents_.ppt
INTEGERS LESSON PLAN FOR JUNIOR HIGH SCHOOL
Powers and Exponents
Digital textbook -EXPONENTS AND POWERS
Exponents Lessson Plan...learning about Exponents
Ppt lucian vladescu
Unit 2 powers
8 2power Of Power
Indices
Chapter 07
Laws of exponents and Power
525e3d418e9bda8dd6cb2866acfc9e15.pptx
Simplifying exponents
Ad

Recently uploaded (20)

PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
RMMM.pdf make it easy to upload and study
PDF
A systematic review of self-coping strategies used by university students to ...
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
master seminar digital applications in india
PDF
Classroom Observation Tools for Teachers
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
Institutional Correction lecture only . . .
PDF
VCE English Exam - Section C Student Revision Booklet
Chinmaya Tiranga quiz Grand Finale.pdf
RMMM.pdf make it easy to upload and study
A systematic review of self-coping strategies used by university students to ...
Anesthesia in Laparoscopic Surgery in India
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
Final Presentation General Medicine 03-08-2024.pptx
STATICS OF THE RIGID BODIES Hibbelers.pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
master seminar digital applications in india
Classroom Observation Tools for Teachers
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Final Presentation General Medicine 03-08-2024.pptx
Module 4: Burden of Disease Tutorial Slides S2 2025
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Institutional Correction lecture only . . .
VCE English Exam - Section C Student Revision Booklet
Ad

Math_9_Chapter_2_Practice_Test.pdf

  • 1. Name: ______________________ Class: _________________ Date: _________ ID: A 1 Unit Two Practice Test: Powers and Exponent Laws Multiple Choice Identify the choice that best completes the statement or answers the question. ____ 1. Write the base of −(−6) 5 . a. 6 b. −6 c. −6 × 5 d. 5 ____ 2. Evaluate: 4 6 a. 1296 b. 4096 c. 10 d. 24 ____ 3. Write one billion as a power of 10. a. 109 b. 108 c. 1010 d. 108 ____ 4. Evaluate: (−15) 0 a. –1 b. 1 c. 0 d. –15 ____ 5. Evaluate: −(10 0 ) 7 a. −7 b. 1 c. 7 d. −1 ____ 6. State which operation you would do first to evaluate 8 + 9 × 6 2 − 5. a. Square 6 c. Subtract 5 from 6 b. Add 8 and 9 d. Multiply 9 and 6 ____ 7. Evaluate: 5 3 − −6 ( ) 3 a. 33 b. –91 c. 341 d. –3 ____ 8. Evaluate: (2 + 3) 2 − (3 − 5) 3 a. 17 b. –85 c. 16 d. 33 ____ 9. Write the product of 5 2 × 5 4 as a single power. a. 10 6 b. 5 6 c. 25 6 d. 5 8
  • 2. Name: ______________________ ID: A 2 ____ 10. Write the quotient of 6 8 6 4 as a single power. a. 6 4 b. 2 c. 6 2 d. 6 12 ____ 11. Express −5 ( ) 6 × −5 ( ) 6 −5 ( ) 4 as a single power. a. (−5) 9 b. (−5) 8 c. (−5) 32 d. (−5) 3 ____ 12. Write −4 ( ) × −5 ( ) È Î Í Í Í Í ˘ ˚ ˙ ˙ ˙ ˙ 5 as a product of powers. a. −4 ( ) 5 + −5 ( ) 5 c. −4 ( ) 5 × −5 ( ) 5 b. 4 5 × 5 5 d. 5 −4 ( ) + 5 −5 ( ) ____ 13. Write 5 3 Ê Ë Á Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ ˜ 3 as a quotient of powers. a. 5 3 − 3 3 b. 2 3 c. 5 3 3 1 d. 5 3 3 3 ____ 14. Evaluate: −4 ( ) 0 È Î Í Í Í Í Í Í ˘ ˚ ˙ ˙ ˙ ˙ ˙ ˙ 5 a. 5 b. −5 c. 1 d. −1 ____ 15. Which answer is negative? i) (−7) 10 ii) −(7) 10 iii) −(−7) 10 a. i only b. i and iii c. i and ii d. ii and iii ____ 16. Evaluate: 107 a. 100 000 000 b. 10 000 000 c. 1 000 000 d. 70
  • 3. Name: ______________________ ID: A 3 ____ 17. Which is the correct value of 2 2 + 3 × 5 − 3? i) 14 ii) 10 iii) 16 iv) 32 a. ii b. iii c. i d. iv ____ 18. Evaluate: −2 ( ) 4 × −2 ( ) 2 ÷ −2 ( ) 0 a. –32 b. 64 c. 256 d. –64 ____ 19. Evaluate: 10 4 × 10 3 + 10 5 a. 1 000 000 000 000 c. 120 b. 10 100 000 d. 1 000 000 100 000 ____ 20. Write −7 ( ) × 2 È Î Í Í Í Í ˘ ˚ ˙ ˙ ˙ ˙ 5 as a product of powers. a. −7 ( ) 5 × 2 5 b. −7 ( ) 5 + 2 5 c. −5 ( ) 5 d. 5 −7 ( ) × 2 ____ 21. Which expressions have positive values? i) −7 ( ) 6 È Î Í Í Í Í Í Í ˘ ˚ ˙ ˙ ˙ ˙ ˙ ˙ 7 ii) − −7 ( ) 6 È Î Í Í Í Í Í Í ˘ ˚ ˙ ˙ ˙ ˙ ˙ ˙ 7 iii) − 7 6 Ê Ë Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ 7 iv) − − −7 ( ) 6 È Î Í Í Í Í Í Í ˘ ˚ ˙ ˙ ˙ ˙ ˙ ˙ 7 a. ii and iv b. i and iv c. i and ii d. ii and iii Short Answer 22. Write the base and the exponent of this power: (−8) 4 .
  • 4. Name: ______________________ ID: A 4 23. Write 704 065 using powers of 10. . 24. Evaluate: 4 2 − [6 ÷ (−2)] 3 . 25. Simplify, then evaluate. −2 ( ) 5 × −2 ( ) 7 ÷ −2 ( ) 6 . 26. Simplify, then evaluate. 2 2 8 0 Ê Ë Á Á Á Á Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 3 . 27. State which operation you would do first to evaluate (6) 0 + [8 ÷ (−2)] 2 − 5. .
  • 5. Name: ______________________ ID: A 5 28. Insert brackets to make each statement true. a) 3 2 + 4 × 5 − 2 2 = 13 b) 3 2 + 4 × 5 − 2 2 = 61 . 29. Simplify, then evaluate. −2 ( ) 4 × −2 ( ) 2 −2 ( ) 4 × −2 ( ) 0 . 30. Write 11 × −12 ( ) × 13 È Î Í Í Í Í ˘ ˚ ˙ ˙ ˙ ˙ 3 as a product of powers. . 31. Simplify, then evaluate. 2 4 Ê Ë Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ 3 × 2 2 Ê Ë Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ 4 2 2 × 2 6 Ê Ë Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ 2 .
  • 6. Name: ______________________ ID: A 6 32. Simplify, then evaluate. 4 9 ÷ 4 6 Ê Ë Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ 2 − 2 8 ÷ 2 6 Ê Ë Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ 2 . Problem 33. Evaluate: 5(3) 3 − 3(−5) 3 Show your steps. . 34. One estimate shows that the number of people without access to safe drinking water is about one billion. How much water is required if each person who does not have access to safe drinking water is given 10 L of safe drinking water? Give your answer in standard form and using powers of 10. .
  • 7. Name: ______________________ ID: A 7 35. Evaluate: (10) 2 − (4) 2 (6) 2 − 2(2) 2 Show your calculations. . 36. Identify, then correct, any errors in the work shown. 3 3 × 3 4 ÷ 3 6 = 3 3×4÷6 = 3 2 = 6 .
  • 8. Name: ______________________ ID: A 8 37. Identify, then correct, any errors in the work shown. 32 × 33 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 2 = 32×3 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 2 = 36 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 2 = 36+2 = 38 = 6561 . 38. Where possible, replace with a “+” or “−” sign to make each product positive. a) −( 8) 11 b) (−8) 12 c) −( 8) 12 d) (−8) 11 Can all products be made positive? Explain. .
  • 9. Name: ______________________ ID: A 9 39. These are two samples of student work. Are they correct? Explain. Student A: 3 3 × 3 4 Ê Ë Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ 2 = 3 12 Ê Ë Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ 2 = 3 14 Student B: 3 3 × 3 4 Ê Ë Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ 2 = 3 7 Ê Ë Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ 2 = 3 14 . 40. Simplify, then evaluate. Show your work. 102 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 4 × 53 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 4 54 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 2 × 102 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 5 × 105 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 3 × 24 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 3 22 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 4 × 102 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 2 .
  • 10. ID: A 1 Unit Two Practice Test: Powers and Exponent Laws Answer Section MULTIPLE CHOICE 1. ANS: B PTS: 1 DIF: Easy REF: 2.1 What Is a Power? LOC: 9.N1 TOP: Number KEY: Conceptual Understanding 2. ANS: B PTS: 1 DIF: Moderate REF: 2.1 What Is a Power? LOC: 9.N1 TOP: Number KEY: Procedural Knowledge 3. ANS: A PTS: 1 DIF: Easy REF: 2.2 Powers of Ten and the Zero Exponent LOC: 9.N1 TOP: Number KEY: Procedural Knowledge 4. ANS: B PTS: 1 DIF: Easy REF: 2.2 Powers of Ten and the Zero Exponent LOC: 9.N1 TOP: Number KEY: Procedural Knowledge 5. ANS: D PTS: 1 DIF: Moderate REF: 2.2 Powers of Ten and the Zero Exponent LOC: 9.N1 TOP: Number KEY: Procedural Knowledge 6. ANS: A PTS: 1 DIF: Easy REF: 2.3 Order of Operations with Powers LOC: 9.N1 TOP: Number KEY: Conceptual Understanding 7. ANS: C PTS: 1 DIF: Moderate REF: 2.3 Order of Operations with Powers LOC: 9.N1 TOP: Number KEY: Procedural Knowledge 8. ANS: D PTS: 1 DIF: Moderate REF: 2.3 Order of Operations with Powers LOC: 9.N1 TOP: Number KEY: Procedural Knowledge 9. ANS: B PTS: 1 DIF: Easy REF: 2.4 Exponent Laws I LOC: 9.N2 TOP: Number KEY: Procedural Knowledge 10. ANS: A PTS: 1 DIF: Easy REF: 2.4 Exponent Laws I LOC: 9.N2 TOP: Number KEY: Procedural Knowledge 11. ANS: B PTS: 1 DIF: Moderate REF: 2.4 Exponent Laws I LOC: 9.N2 TOP: Number KEY: Procedural Knowledge 12. ANS: C PTS: 1 DIF: Easy REF: 2.5 Exponent Laws II LOC: 9.N2 TOP: Number KEY: Procedural Knowledge 13. ANS: D PTS: 1 DIF: Easy REF: 2.5 Exponent Laws II LOC: 9.N2 TOP: Number KEY: Procedural Knowledge 14. ANS: C PTS: 1 DIF: Moderate REF: 2.5 Exponent Laws II LOC: 9.N2 TOP: Number KEY: Procedural Knowledge 15. ANS: D PTS: 1 DIF: Moderate REF: 2.1 What Is a Power? LOC: 9.N1 TOP: Number KEY: Conceptual Understanding 16. ANS: B PTS: 1 DIF: Easy REF: 2.2 Powers of Ten and the Zero Exponent LOC: 9.N1 TOP: Number KEY: Procedural Knowledge 17. ANS: B PTS: 1 DIF: Moderate REF: 2.3 Order of Operations with Powers LOC: 9.N1 TOP: Number KEY: Procedural Knowledge
  • 11. ID: A 2 18. ANS: B PTS: 1 DIF: Moderate REF: 2.4 Exponent Laws I LOC: 9.N2 TOP: Number KEY: Procedural Knowledge 19. ANS: B PTS: 1 DIF: Moderate REF: 2.4 Exponent Laws I LOC: 9.N2 TOP: Number KEY: Procedural Knowledge 20. ANS: A PTS: 1 DIF: Easy REF: 2.5 Exponent Laws II LOC: 9.N2 TOP: Number KEY: Procedural Knowledge 21. ANS: B PTS: 1 DIF: Moderate REF: 2.5 Exponent Laws II LOC: 9.N2 TOP: Number KEY: Conceptual Understanding SHORT ANSWER 22. ANS: Base: −8 Exponent: 4 PTS: 1 DIF: Easy REF: 2.1 What Is a Power? LOC: 9.N1 TOP: Number KEY: Conceptual Understanding 23. ANS: 704 065 = (7 × 10 5 ) + (4 × 10 3 ) + (6 × 10 1 ) + (5 × 10 0 ) PTS: 1 DIF: Moderate REF: 2.2 Powers of Ten and the Zero Exponent LOC: 9.N1 TOP: Number KEY: Procedural Knowledge 24. ANS: 43 PTS: 1 DIF: Moderate REF: 2.3 Order of Operations with Powers LOC: 9.N1 TOP: Number KEY: Procedural Knowledge 25. ANS: −2 ( ) 6 = 64 PTS: 1 DIF: Moderate REF: 2.4 Exponent Laws I LOC: 9.N2 TOP: Number KEY: Procedural Knowledge 26. ANS: 2 2 8 0 Ê Ë Á Á Á Á Á Á Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 3 = 2 2 1 Ê Ë Á Á Á Á Á Á Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ 3 = 2 6 = 64 PTS: 1 DIF: Moderate REF: 2.5 Exponent Laws II LOC: 9.N2 TOP: Number KEY: Procedural Knowledge 27. ANS: Divide 8 by −2 PTS: 1 DIF: Easy REF: 2.3 Order of Operations with Powers LOC: 9.N1 TOP: Number KEY: Conceptual Understanding
  • 12. ID: A 3 28. ANS: a) 3 2 + 4 × (5 − 2 2 ) = 13 b) (3 2 + 4) × 5 − 2 2 = 61 PTS: 1 DIF: Moderate REF: 2.3 Order of Operations with Powers LOC: 9.N1 TOP: Number KEY: Problem-Solving Skills 29. ANS: −2 ( ) 2 = 4 PTS: 1 DIF: Moderate REF: 2.4 Exponent Laws I LOC: 9.N2 TOP: Number KEY: Procedural Knowledge 30. ANS: 11 3 × −12 ( ) 3 × 13 3 PTS: 1 DIF: Easy REF: 2.5 Exponent Laws II LOC: 9.N2 TOP: Number KEY: Procedural Knowledge 31. ANS: 2 4 Ê Ë Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ 3 × 2 2 Ê Ë Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ 4 2 2 × 2 6 Ê Ë Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ 2 = 2 20 2 16 = 2 4 = 16 PTS: 1 DIF: Moderate REF: 2.5 Exponent Laws II LOC: 9.N2 TOP: Number KEY: Procedural Knowledge 32. ANS: 4 9 ÷ 4 6 Ê Ë Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ 2 − 2 8 ÷ 2 6 Ê Ë Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ 2 = 4 3 Ê Ë Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ 2 − 2 2 Ê Ë Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ 2 = 4 6 − 2 4 = 4080 PTS: 1 DIF: Moderate REF: 2.5 Exponent Laws II LOC: 9.N2 TOP: Number KEY: Procedural Knowledge PROBLEM 33. ANS: 5(3) 3 − 3(−5) 3 = 5 × 27 − 3 × (−125) = 135 + 375 = 510 PTS: 1 DIF: Difficult REF: 2.1 What Is a Power? LOC: 9.N1 TOP: Number KEY: Problem-Solving Skills
  • 13. ID: A 4 34. ANS: Each person is to be given 10 L of safe drinking water. 1 billion ×10 L = 1 000 000 000 × 10 = 10 000 000 000 = 1 × 10 10 L 1 × 10 10 L = 10 000 000 000 L The amount of water required is about 1 × 10 10 L, or 10 000 000 000 L. PTS: 1 DIF: Moderate REF: 2.2 Powers of Ten and the Zero Exponent LOC: 9.N1 TOP: Number KEY: Problem-Solving Skills | Communication 35. ANS: (10) 2 − (4) 2 (6) 2 − 2(2) 2 = 100 − 16 36 − 8 = 84 28 = 3 PTS: 1 DIF: Moderate REF: 2.3 Order of Operations with Powers LOC: 9.N1 TOP: Number KEY: Problem-Solving Skills | Communication 36. ANS: Errors: The exponents should be added and subtracted, not multiplied and divided. The result of 3 2 is 3 × 3, not 3 × 2. Correction: 3 3 × 3 4 ÷ 3 6 = 3 3+4−6 = 3 1 = 3 PTS: 1 DIF: Difficult REF: 2.4 Exponent Laws I LOC: 9.N2 TOP: Number KEY: Problem-Solving Skills | Communication
  • 14. ID: A 5 37. ANS: Errors: In line 1, the exponents of 3 should be added instead of multiplied. In line 3, the exponents of 3 should be multiplied instead of added. Correction: 32 × 33 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 2 = 32+3 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 2 = 35 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 2 = 35×2 = 310 = 59 049 PTS: 1 DIF: Moderate REF: 2.5 Exponent Laws II LOC: 9.N2 TOP: Number KEY: Problem-Solving Skills | Communication 38. ANS: a) Replace with a “−” sign. b) Replace with a “+” sign. c) −( 8) 12 is always negative. d) Replace with a “−” sign. Not all products can be made positive. In part c, there is an even number of factors in the power ( 8) 12 . ( 8) 12 is always positive, which means −( 8) 12 is always negative. PTS: 1 DIF: Difficult REF: 2.1 What Is a Power? LOC: 9.N1 TOP: Number KEY: Problem-Solving Skills | Communication 39. ANS: Both final answers are correct but the method Student A used is wrong. When two powers of 3, 33 and 34, are multiplied, the exponents 3 and 4 should be added. When a power of 3, 312, is raised to the exponent 2, the exponents 12 and 2 should be multiplied. PTS: 1 DIF: Moderate REF: 2.5 Exponent Laws II LOC: 9.N2 TOP: Number KEY: Communication
  • 15. ID: A 6 40. ANS: 102 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 4 × 53 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 4 54 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 2 × 102 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 5 × 105 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 3 × 24 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 3 22 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 4 × 102 Ê Ë Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ 6 = 108 × 512 58 × 1010 × 1015 × 212 28 × 1012 = 10 (8+15) × 512 × 212 10 (10+12) × 58 × 28 = 1023 × 512 × 212 1022 × 58 × 28 = 101 × 54 × 24 = 10 × 625 × 16 = 100 000 PTS: 1 DIF: Difficult REF: 2.5 Exponent Laws II LOC: 9.N2 TOP: Number KEY: Problem-Solving Skills