SlideShare a Scribd company logo
Integration
Introduction
Estimating with Finite Sums
mathmathmathmathmathmathmathmathmathmath
mathmathmathmathmathmathmathmathmathmath
mathmathmathmathmathmathmathmathmathmath
mathmathmathmathmathmathmathmathmathmath




n
k
k
k
n x
c
f
s
1
).
(
The Definite Integral
mathmathmathmathmathmathmathmathmathmath
mathmathmathmathmathmathmathmathmathmath
mathmathmathmathmathmathmathmathmathmath
mathmathmathmathmathmathmathmathmathmath
mathmathmathmathmathmathmathmathmathmath
mathmathmathmathmathmathmathmathmathmath
mathmathmathmathmathmathmathmathmathmath
Example 1
Find the area A under
y = x over the interval
[0,b], b > 0
By integration,
Δx
2
0
2
2
2
2
0
0
2
b
b
x
dx
x
b
b

















Area of
triangle,
Area = ½ (base)
x (height)
Area = ½ (b)(b)
= 2
2
b
By integration,
Similarly,
mathmathmathmathmathmathmathmathmathmath
mathmathmathmathmathmathmathmathmathmath
 
2
5
2
3
-
4(3)
3
1
2
4
3
1
x
-
4
3
1
)
(
1
Average
2
3
0
2
3
0





















x
x
dx
dx
x
f
a
b
b
a
Example 2
Example 3
Calculate the area bounded by
the x-axis and the parabola
2
6 x
x
y 


Solution:
2
3
2
3
3
2
2
3
2
6
)
6
(


 










x
x
x
dx
x
x



















3
27
2
9
18
3
8
2
12
6
5
20

Example 4
2
1
2
)
(
of
graph
the
and
axis
-
between x
region
the
of
area
the
Find
2
3






x
x
x
x
x
f
12
5
3
4
)
2
(
:
0
1
2
3
4
0
1
2
3















x
x
x
dx
x
x
x
Solution
3
8
3
4
)
2
(
2
0
2
3
4
2
0
2
3














x
x
x
dx
x
x
x
2
units
12
37
3
8
12
5
area
enclosed
Total 



Definite integral
Area under the
curve
mathmathmathmathmathmathmathmathmathmath
 

b
a
dx
x
g
x
f
Area )]
(
)
(
[
Find the solution by 3 steps:
1. Sketch the curves and shade the required
area.
2. Find the limits of integration by solving
simultaneous equations.
3. Calculate the area.
Find the area enclosed by the parabola y=2 – x2
and the line y = – x.
Example 5
origin
through
passing
slope
negative
line
straight
axis
-
y
on
intercept
c
slope,
m
where
,
line
straight
of
Equation
:
Revision









x
y
c
mx
y
y
x
y = – x
2
,
0
when
:
axis
-
on x
on
intersecti
Find
2
,
0
when
:
axis
-
y
on
on
intersecti
Find
2 2







x
y
y
x
x
y
y
x
(minima)
positive
(maxima),
negative
when
:
Note
(maxima)
2
(0,2)
point
turning
2
,
0
when
0
,
0
when
(slope)
2
2
2
2
2
2
2













dx
y
d
dx
y
d
y
x
x
dx
dy
x
dx
dy
x
y
y
x
)
2
(2,
and
1)
,
1
(
are
points
on
Intersecti
2
2
When
1
1
When
2
,
1
0
)
2
)(
1
(
0
2
2
:
and
2
for
Solve
:
curves
2
between
points
on
intersecti
Finding
2
2
2
























, y
x
, y
x
x
x
x
x
x
x
x
x
x
y
x
y
Combining both
graphs,
Note:
- Slope of curves
- Turning point
- Maxima
- Intersection points
2
2
1
3
2
2
1
2
2
1
2
unit
2
9
3
1
2
1
2
3
8
2
4
4
3
2
2
)
2
(
)]
(
)
2
[(
)]
(
)
(
[












































x
x
x
dx
x
x
dx
x
x
dx
x
g
x
f
A
b
a
Solution for
area between
2 curves:
Example 6
6.
Solution:
Area A
Limits of integration are a=0, b=2.
Area B
Solving simultaneously 2
and 

 x
y
x
y
4
,
1
0
)
4
)(
1
(
0
4
5
4
4
)
2
(
2
2
2













x
x
x
x
x
x
x
x
x
x
3
10
)
2
(
area
Total
4
2
2
0




 
 dx
x
x
dx
x
2)
-
(x
-
)
(
)
(
:
4
2
For
)
(
)
(
:
2
0
For
4
limit
hand
Right
x
x
g
x
f
x
x
x
g
x
f
x









mathmathmathmathmathmathmathmathmathmath
mathmathmathmathmathmathmathmathmathmath
Solution:
Solving simultaneous equation of
gives roots y=-1, y=2.
Limits a=0,b=2.
2
and
2


 y
x
y
x
3
10
)
2
(
)]
(
)
(
[
2
0
2








dy
y
y
dy
y
g
y
f
A
b
a
mathmathmathmathmathmathmathmathmathmath
mathmathmathmathmathmathmathmathmathmath
mathmathmathmathmathmathmathmathmathmath
mathmathmathmathmathmathmathmathmathmath

More Related Content

DOCX
Chapter 4
PPT
Integration Ppt
PPT
香港六合彩
PPT
integration techiniquesintegration techiniquesintegration techiniquesintegrat...
PPT
Lesson 11 plane areas area by integration
PPTX
5.3 areas, riemann sums, and the fundamental theorem of calaculus
PDF
Applications of integration
PDF
SMT1105-1.pdf
Chapter 4
Integration Ppt
香港六合彩
integration techiniquesintegration techiniquesintegration techiniquesintegrat...
Lesson 11 plane areas area by integration
5.3 areas, riemann sums, and the fundamental theorem of calaculus
Applications of integration
SMT1105-1.pdf

Similar to mathmathmathmathmathmathmathmathmathmath (20)

PPTX
Ch 5 integration
PPT
1545 integration-define
PPT
1544 integration-define
DOCX
TO FIND AREA UNDER THE CURVE USING INTEGRATION
PPTX
Integration
PPTX
Lesson 8 the definite integrals
PDF
Math Homework
PDF
11X1 T16 01 area under curve (2011)
PDF
11X1 T17 01 area under curve
PDF
11X1 T14 01 area under curves
PDF
11 x1 t16 01 area under curve (2012)
PPTX
5 4 Notes
PDF
lemh202 (1).pdfhjsbjsjshsisvsjsbishsisbsisvsus
PDF
Mathematics and Physics And Chemistry with your mind properly and then practice
PDF
3. Quadrature Complete Theory Module-5.pdf
PPTX
Ch 5-integration-part-1
PDF
Final Exam Review (Integration)
ODP
U6 Cn2 Definite Integrals Intro
PDF
Application of the integral
PDF
APPLICATION OF INTEGRALS.pdf
Ch 5 integration
1545 integration-define
1544 integration-define
TO FIND AREA UNDER THE CURVE USING INTEGRATION
Integration
Lesson 8 the definite integrals
Math Homework
11X1 T16 01 area under curve (2011)
11X1 T17 01 area under curve
11X1 T14 01 area under curves
11 x1 t16 01 area under curve (2012)
5 4 Notes
lemh202 (1).pdfhjsbjsjshsisvsjsbishsisbsisvsus
Mathematics and Physics And Chemistry with your mind properly and then practice
3. Quadrature Complete Theory Module-5.pdf
Ch 5-integration-part-1
Final Exam Review (Integration)
U6 Cn2 Definite Integrals Intro
Application of the integral
APPLICATION OF INTEGRALS.pdf
Ad

Recently uploaded (20)

PDF
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
PDF
Galatica Smart Energy Infrastructure Startup Pitch Deck
PDF
Mega Projects Data Mega Projects Data
PDF
.pdf is not working space design for the following data for the following dat...
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PDF
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PPTX
STUDY DESIGN details- Lt Col Maksud (21).pptx
PPTX
climate analysis of Dhaka ,Banglades.pptx
PPTX
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
PPTX
Qualitative Qantitative and Mixed Methods.pptx
PDF
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
PPTX
Computer network topology notes for revision
PDF
Business Analytics and business intelligence.pdf
PPTX
Introduction to Knowledge Engineering Part 1
PPTX
Business Acumen Training GuidePresentation.pptx
PPT
Miokarditis (Inflamasi pada Otot Jantung)
PPTX
Data_Analytics_and_PowerBI_Presentation.pptx
PPTX
Introduction-to-Cloud-ComputingFinal.pptx
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
Galatica Smart Energy Infrastructure Startup Pitch Deck
Mega Projects Data Mega Projects Data
.pdf is not working space design for the following data for the following dat...
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
STUDY DESIGN details- Lt Col Maksud (21).pptx
climate analysis of Dhaka ,Banglades.pptx
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
Qualitative Qantitative and Mixed Methods.pptx
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
Computer network topology notes for revision
Business Analytics and business intelligence.pdf
Introduction to Knowledge Engineering Part 1
Business Acumen Training GuidePresentation.pptx
Miokarditis (Inflamasi pada Otot Jantung)
Data_Analytics_and_PowerBI_Presentation.pptx
Introduction-to-Cloud-ComputingFinal.pptx
Ad

mathmathmathmathmathmathmathmathmathmath