Introduction to the Definite Integral Unit 6 Lesson 2 E. Alexander Burt Potomac School
Riemann Sums We can approximate the area under a curve with rectangles.  Each rectangle has a base of  D x and a height of f(x)
The area under the curve is approximately the sum of the area of those rectangles
The more rectangles we sum (and the smaller  D x gets) the closer our approximation will get to the actual area.
Riemann Sums A larger number of sub-intervals results in a closer approximation.  Note that all the approximations approach a specific value. http://commons.wikimedia.org/wiki/File:Riemann_sum_convergence.png
The Definite Integral If we had an infinite number of rectangles of width dx, the Riemann sum would “converge” to a specific value – the “definite integral” of f(x) for the interval a to b
Calculus Lawyer Talk:  if the function is continuous from a to b, the definite integral over the interval a to b exists.
Notation for the definite integral Pay careful attention to limits:  integrating FROM a TO b – see how the a limit is on the bottom of the integral sign?
Negative Area If f(x) is below the x-axis, the area “under” the curve (between the function and the x-axis) is negative. http://www.math.rutgers.edu/~greenfie/mill_courses/math135/gifstuff/signed_area.gif

More Related Content

PPTX
Riemann's Sum
PPT
Riemann sumsdefiniteintegrals
PPTX
NUMERICAL INTEGRATION AND ITS APPLICATIONS
PPTX
Nsm ppt.ppt
PPTX
Multiple sagement trapezoidal rule
PDF
A NEW STUDY OF TRAPEZOIDAL, SIMPSON’S1/3 AND SIMPSON’S 3/8 RULES OF NUMERICAL...
PPT
Integration Ppt
PPTX
Trapezoidal rule
Riemann's Sum
Riemann sumsdefiniteintegrals
NUMERICAL INTEGRATION AND ITS APPLICATIONS
Nsm ppt.ppt
Multiple sagement trapezoidal rule
A NEW STUDY OF TRAPEZOIDAL, SIMPSON’S1/3 AND SIMPSON’S 3/8 RULES OF NUMERICAL...
Integration Ppt
Trapezoidal rule

What's hot (20)

PPT
Numerical integration
PPTX
Trapezoidal rule
PPT
Calc 4.6
PPTX
Presentation on Numerical Method (Trapezoidal Method)
DOCX
Trapezoidal Method IN Numerical Analysis
PDF
Applications of integration
PPT
L 4 4
PPT
Calculus Ppt
PPTX
Area Under the Curve
PDF
Integration
DOCX
Chapter 4
PPT
Calc 4.3a
PPTX
Use of integral calculus in engineering
PPTX
Basics of calculus
PDF
7 regularization
PPTX
weddle's rule
PPT
Section 1-4 -- Trapezoid Rule
PPTX
trapezoidal and simpson's 1/3 and 3/8 rule
PDF
Int Calc11 Week8
PDF
6 logistic regression classification algo
Numerical integration
Trapezoidal rule
Calc 4.6
Presentation on Numerical Method (Trapezoidal Method)
Trapezoidal Method IN Numerical Analysis
Applications of integration
L 4 4
Calculus Ppt
Area Under the Curve
Integration
Chapter 4
Calc 4.3a
Use of integral calculus in engineering
Basics of calculus
7 regularization
weddle's rule
Section 1-4 -- Trapezoid Rule
trapezoidal and simpson's 1/3 and 3/8 rule
Int Calc11 Week8
6 logistic regression classification algo
Ad

Similar to U6 Cn2 Definite Integrals Intro (20)

PPTX
Calculus BC
PPTX
Definite Integral and Properties of Definite Integral
PPTX
11904040shaiful-191024200113.pptx
PPT
Areas and Definite Integrals.ppt
PPTX
Project in Calcu
PPTX
Basics of Integration and Derivatives
PDF
PPTX
CALCULUS chapter number one presentation
PDF
OPERATIONS RESEARCH
PDF
CRMS Calculus 2010 April 13, 2010
PPTX
Integration presentation
PPT
Lesson3.1 The Derivative And The Tangent Line
PPTX
5 4 Notes
PPTX
mathematics improper integral presentation
PDF
Generalised conditional expectation on extended positive part of
PPTX
Newton cotes integration method
PPTX
Beginning direct3d gameprogrammingmath04_calculus_20160324_jintaeks
PDF
Machine learning
PPTX
Chapter Six Overview (1).pptx
Calculus BC
Definite Integral and Properties of Definite Integral
11904040shaiful-191024200113.pptx
Areas and Definite Integrals.ppt
Project in Calcu
Basics of Integration and Derivatives
CALCULUS chapter number one presentation
OPERATIONS RESEARCH
CRMS Calculus 2010 April 13, 2010
Integration presentation
Lesson3.1 The Derivative And The Tangent Line
5 4 Notes
mathematics improper integral presentation
Generalised conditional expectation on extended positive part of
Newton cotes integration method
Beginning direct3d gameprogrammingmath04_calculus_20160324_jintaeks
Machine learning
Chapter Six Overview (1).pptx
Ad

More from Alexander Burt (20)

PPT
Standing waves in the stairwell
ODP
U9 cn3 circuits
ODP
Slope Fields For Snowy Days
ODP
U6 Cn3 Def Int And Anti Der
ODP
U3 Cn4 Implicit Differentiation
ODP
U3 Cn1 Derivatives
PPT
U2 Wiki1 09
ODP
U1 Cn5 Inverse And Log Functions
ODP
U1 Cn4 Parametric Functions
ODP
U1 Cn4 Parametric Functions
ODP
U2 Cn2 Graphing Position And Velocity
ODP
U1 Cn2 Functions
ODP
U1 Cn3 Exponential Functions
ODP
U1 Cn1 Linear Equations And Slopes
ODP
U2 Cn2 1 D Motion Intro
ODP
Introduction to Physics
ODP
Inverse Functions
PPT
U14 Cn1 Intro To Current
PPT
U10 Cn2 Lens Intro
PPT
U10 Cn1 Refraction Intro
Standing waves in the stairwell
U9 cn3 circuits
Slope Fields For Snowy Days
U6 Cn3 Def Int And Anti Der
U3 Cn4 Implicit Differentiation
U3 Cn1 Derivatives
U2 Wiki1 09
U1 Cn5 Inverse And Log Functions
U1 Cn4 Parametric Functions
U1 Cn4 Parametric Functions
U2 Cn2 Graphing Position And Velocity
U1 Cn2 Functions
U1 Cn3 Exponential Functions
U1 Cn1 Linear Equations And Slopes
U2 Cn2 1 D Motion Intro
Introduction to Physics
Inverse Functions
U14 Cn1 Intro To Current
U10 Cn2 Lens Intro
U10 Cn1 Refraction Intro

Recently uploaded (20)

PDF
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
Journal of Dental Science - UDMY (2021).pdf
PDF
Journal of Dental Science - UDMY (2022).pdf
PDF
My India Quiz Book_20210205121199924.pdf
PDF
semiconductor packaging in vlsi design fab
PPTX
Core Concepts of Personalized Learning and Virtual Learning Environments
PDF
International_Financial_Reporting_Standa.pdf
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
IP : I ; Unit I : Preformulation Studies
PPTX
Introduction to pro and eukaryotes and differences.pptx
PPTX
What’s under the hood: Parsing standardized learning content for AI
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
Myanmar Dental Journal, The Journal of the Myanmar Dental Association (2013).pdf
PDF
Empowerment Technology for Senior High School Guide
PDF
CRP102_SAGALASSOS_Final_Projects_2025.pdf
PDF
English Textual Question & Ans (12th Class).pdf
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
Share_Module_2_Power_conflict_and_negotiation.pptx
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Journal of Dental Science - UDMY (2021).pdf
Journal of Dental Science - UDMY (2022).pdf
My India Quiz Book_20210205121199924.pdf
semiconductor packaging in vlsi design fab
Core Concepts of Personalized Learning and Virtual Learning Environments
International_Financial_Reporting_Standa.pdf
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
B.Sc. DS Unit 2 Software Engineering.pptx
IP : I ; Unit I : Preformulation Studies
Introduction to pro and eukaryotes and differences.pptx
What’s under the hood: Parsing standardized learning content for AI
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
Myanmar Dental Journal, The Journal of the Myanmar Dental Association (2013).pdf
Empowerment Technology for Senior High School Guide
CRP102_SAGALASSOS_Final_Projects_2025.pdf
English Textual Question & Ans (12th Class).pdf

U6 Cn2 Definite Integrals Intro

  • 1. Introduction to the Definite Integral Unit 6 Lesson 2 E. Alexander Burt Potomac School
  • 2. Riemann Sums We can approximate the area under a curve with rectangles. Each rectangle has a base of D x and a height of f(x)
  • 3. The area under the curve is approximately the sum of the area of those rectangles
  • 4. The more rectangles we sum (and the smaller D x gets) the closer our approximation will get to the actual area.
  • 5. Riemann Sums A larger number of sub-intervals results in a closer approximation. Note that all the approximations approach a specific value. http://commons.wikimedia.org/wiki/File:Riemann_sum_convergence.png
  • 6. The Definite Integral If we had an infinite number of rectangles of width dx, the Riemann sum would “converge” to a specific value – the “definite integral” of f(x) for the interval a to b
  • 7. Calculus Lawyer Talk: if the function is continuous from a to b, the definite integral over the interval a to b exists.
  • 8. Notation for the definite integral Pay careful attention to limits: integrating FROM a TO b – see how the a limit is on the bottom of the integral sign?
  • 9. Negative Area If f(x) is below the x-axis, the area “under” the curve (between the function and the x-axis) is negative. http://www.math.rutgers.edu/~greenfie/mill_courses/math135/gifstuff/signed_area.gif
  • 10. Evaluating Integrals Using the Graphing Calculator Later this week, we will learn how to evaluate integrals analytically. For now, we will use the calculator.
  • 11. The function is fnInt and it is in the Math menu
  • 12. The syntax is fnInt(f(x), x, a, b)
  • 13. Example: try the integral of x 2 from 0 to 4
  • 14. FnInt (x^2, x, 0, 4) = 21.33333
  • 15. Comparing Integrals to Riemann Sums Using the Riemann program we installed, calculate the approximate integral of x 2 from 0 to 4 using 4, 8, 16 and 128 sub intervals
  • 16. See that it approaches the correct value: 21.333 as we found out earlier. Subintervals Approximate Sum 4 14 8 17.5 16 19.375 128 21.08
  • 17. Easy Integrals: Geometry The integral of a constant k from a to b is just a rectangle. A=k(b-a)
  • 18. The integral of a linear function is a triangle
  • 19. The integral of a semicircle is A=1/2 p r 2
  • 20. Adding a constant to a function adds a rectangle to the integral: the integral of f(x)+k = the integral of f(x) + k(b-a)