FINAL EXAMINATION <br />Semester I 2007-2008 G<br />MATH-301 (Calculus III) <br />Question 1.<br />         <br />Suppose that each dollar introduced into the economy recirculates as follows: 90% of the <br /> original dollar is spent , then 90% of that $0.90 is spent , and so on. Find the economic impact (total amount spent) if $2,000,000 is introduced in to the economy.<br />            Economic Impact = 2,000,000[0.9+  0.92+ 0.93+ …………]<br />    <br />                                           =2,000,000 0.91-0.9=2,000,0000.90.1=$18,000,000            <br />            <br />Use the root test to determine whether the given series converges or diverges or if the test  <br />            is  inconclusive:n=1∝n55n                                                                             <br />          Apply root test.---->  limn->∞an1/n , Here an= n55n             <br />limn->∞ n55n1/n=limn->∞n5/n5n/n = limn->∞n5/nlimn->∞5 = 15  <  1<br />          <br />Therefore the series converges.          <br />     <br />   <br />Approximate  01sinx3 dx to four decimal places using:<br />sinx=x- x33!+ x55!- x77!+ ………..<br />           sinx3= x3 - x333!+ x355!- x377!+…<br />           01sinx3dx= 01x3 - x96+ x15120- x215040+ ………… dx<br />                                  = x44- x106(10)+ x16120(16) - x225040(22)+ …………01<br />                   =  14- 160+ 11920 - 1110,880+ ……………<br />          Since  1110,880=0.000009<0.00005    <br />          01sinx3dx=  14- 160+ 11920 =0.2339   (Four decimal approximation)<br />           <br />Question 2<br />(a)A basketball player shoots a ball at an angle of 60° from a point 15feet horizontally away<br />            From the center of the basket. The basket is 10ft above the floor and the player releases the <br />X             ball from a height of 8 ft. At what speed should the player shoot the ball?. Take the<br />            acceleration due to the gravity as 32 ft/s2<br />Vsin 60 <br />x= x0+ vcos60° t-------->1y= y0+ vsin60° t- g2 t2----->2x0 , y0 =0, 8 and   x,y=(15,10)           1  and  2  become15=0+ v2t-->t  = 30v and t2  = 900v2   <br />V  <br />10ft <br />60°<br />8ftV cos 60 <br />Y <br />(0,0)<br />          <br />           <br />            10=8+v 32 t -16t2    <br />             16t2- 32v t+2=0------>3 <br />            Substitution for   t  and  t2  in equation 3 yields<br />16 900v2- 32 v 30v+ 2=0 <br />            14400v2  = 153 – 2                                                      <br />           v2= 14400153 -2  =600.48                                    <br />           v= + 600.48 =24. 505  ≅  24.5 ft/s                      <br />(b)Find the area of the surface generated by revolving the curve about the x-axis.<br />            x= t2,  y=2t,    0 ≤t ≤1<br />       <br />           S= 012π y dxdt2+ dydt2  dt            <br />           dxdt=2t   and  dydt=2 <br />           S= 012π(2t) 2t2+ 22  dt              =4π 012t t2+ 1 dt                <br />                                                                   =4π t2+ 1323201<br />=  8π3 (2)32- (1)32    <br />              ≅  4.9 π ≅  15.3 Square Units<br />     Sketch the graph of the polar equation : r =6cosθ
Y
r = 6cosθ
3
36X
- 3           <br />Question 3.<br />(a)Find the unit vector that has the same direction as the vector   a = <-1, 3, -2><br />             The unit vector of  a = a a = <-1 , 3 , -2>-12+32+ -22<br />                                                                         =  <-1 , 3 , -2>1 + 9 + 4= <-1 , 3 , -2>14 <br />P(b)Find the distance from point P to the line through Q and R :<br />           P(-1, 3, 0),  Q(0, 3, -3), R(5, 0, 1)<br />d     <br />Distanced  = QR × QPQR        Q     <br />R <br />                                                                                               QP= <-1, 3, 0>- <0, 3,-3>= <-1, 0 , 3><br />QR= <5, 0, 1> - <0, 3, -3> = <5, -3, 4><br />QR x QP= ijk5-34-103=i -3403-j 54-13+k 5-3-10<br />     = i -9-0-j 15+4+ k0-3= -9i-19j-3k<br />Distance  = QR × QPQR = -92+-192+-3252+ -32+42 = 45150 ≅3.003 ≅3.0<br />(c)Sketch the graph of  y= x2+ z2     in   an   xyz – coordinate system. <br />Z                       <br />Y  <br />X <br />Question 4. <br />         <br />(a)Test if  fx,y= x2+ xy- y2 is harmonic.<br />             <br />             fx=2x+y  ---->    fxx=2<br />             fy =x-2y---->     fyy=-2<br />            fxx+ fyy=2-2=0 --->f is harmonic<br />r (b) The radius r and altitude h of a right circular cylinder are decreasing at rates of 0.03 cm/min and 0.04 cm/min, respectively. At what rate is the curved surface area changing at the time when r =3cm and h = 4cm<br />S = Curved surface area = 2πrh <br />h Rate of change= dsdt= ∂s∂r drdt+ ∂s∂h dhdt <br />                           =2π h-0.03+ (2πr)(-0.04)<br />                           <br />                           =2π[4-0.03+(3)(-0.04) ]<br />                           = -0.48π= -1.5 cm2/min<br />(c) Find the directional derivative of fx,y= tan-1yx at the point (1,-1) in the direction of the vector a = 3i -4j<br />.<br />The directional derivative of  f  = ∇f .  u= Du f(x, y)<br />          ∇f = fxi+ fyj  =  -  yx21+yx2 i+ 1x1+ yx2 j  <br />            <br />         = -yx2+y2 i+ xx2+y2j<br />           u= a a= 3i- 4j32 + -42= 35 i- 45 j<br />       <br />Du fx, y= ∇f .  u= -3y5( x2+y2) i- 4x5(x2+y2)j = -3y-4x5(x2+y2) <br />          Du fx, y1, -1)= -3-1-4(1)512+ -12 = -110= -0.1<br />Question 5<br />           <br />(a)Sketch the region bounded by the graphs of the following equations and find its area by  using only one double integral:   y= - x2 ,       y=2,    x=0,    x=2<br />          <br />y<br />R<br />y =2<br />x=2x =0 <br />x<br />Y =   -x2<br />Area=  RdA = 02-x22dy dx  =02y-x22 dx<br /> <br />=022+ x2dx= 2x+ x3302<br />                                                                         =4+ 83-0+0= 203 =6.66 Square Units<br /> (b)Find area of the region R that lies outside the circle r =3 and inside the circle r = 6cosθ<br />Y  <br />θ=π3      <br />r=3r=6cosθ<br />θ=0<br />X <br />36<br />R <br />θ=- π3<br />Intersection points:  3=6cosθ --->   cosθ= 12 ,  θ=±π3<br />Area= RdA= Rr dr dθ<br />Using symmetry ,  Area=20π336cosθr dr dθ <br />Area= 20π3 r2236cosθdθ    =0π3(36cosθ2-9) dθ <br />         = 0π3 3621+cos2θdθ- 0π39 dθ                                                 Rule:  cos2θ= 1+cos2θ2 <br />         =  18 θ+ sin2θ20π3-9θ0π3             <br />         =18 π3+322 -0-3π=3π+ 923 ≅17.2 Square Units <br />(c)Evaluate the following triple integral:    010-2023x2z+ 2xy2dz dx dy<br />:   010-2023x2z+ 2xy2dz dx dy=  010-232 x2z2+ 2xy2z02 dx dy<br />                                                              <br />                                                     =010-26x2+4xy2 dx dy  <br />                                                       =016x33+ 42 x2 y20-2 dy  <br />                                   = 01-16+8y2 dy  <br />= -16y+ 83 y301<br />                      = -16+ 83   = - 403  ≅ -13.3<br />
Maths 301 key_sem_1_2007_2008
Maths 301 key_sem_1_2007_2008

More Related Content

PPT
Pythagorean theorem and distance formula power point
DOCX
maths Individual assignment on differentiation
PDF
Vector mechanics for engineers statics 7th chapter 5
PPT
Integration
PPTX
1.0 factoring trinomials the ac method and making lists-t
PDF
Parabola direction , vertex ,roots, minimum and maximum
DOCX
Integration SPM
PPTX
Solving Equations And Equality
Pythagorean theorem and distance formula power point
maths Individual assignment on differentiation
Vector mechanics for engineers statics 7th chapter 5
Integration
1.0 factoring trinomials the ac method and making lists-t
Parabola direction , vertex ,roots, minimum and maximum
Integration SPM
Solving Equations And Equality

What's hot (20)

PDF
Lista 9º ano resolvida
PPTX
Computer Graphic - Transformations in 3d
DOCX
Math basic
PPT
Circles
PPTX
Mid-Point Cirle Drawing Algorithm
PPT
Logic Design - Chapter 3: Boolean Algebra
PDF
Bresenhamcircle derivation
PDF
Summative Assessment Paper-1
PPT
Math Section 2.1 ECC Etudes
PDF
Dda line-algorithm
DOC
Matemática adriano - 2º ano
PPT
Pythagorean theorem and distance formula
PPTX
Mid point circle algorithm
PPTX
2.7 more parabolas a&amp; hyperbolas (optional) t
PPTX
Circle generation algorithm
PPT
2.circle
PDF
Chapter 16
DOCX
Integral
PPT
MT T4 (Bab 3: Fungsi Kuadratik)
DOC
Exercise unit 1 hum3032
Lista 9º ano resolvida
Computer Graphic - Transformations in 3d
Math basic
Circles
Mid-Point Cirle Drawing Algorithm
Logic Design - Chapter 3: Boolean Algebra
Bresenhamcircle derivation
Summative Assessment Paper-1
Math Section 2.1 ECC Etudes
Dda line-algorithm
Matemática adriano - 2º ano
Pythagorean theorem and distance formula
Mid point circle algorithm
2.7 more parabolas a&amp; hyperbolas (optional) t
Circle generation algorithm
2.circle
Chapter 16
Integral
MT T4 (Bab 3: Fungsi Kuadratik)
Exercise unit 1 hum3032
Ad

Viewers also liked (6)

PPT
canada powerpiont
PPT
Stickers
PPTX
Parag khanna
PPTX
Jessica
PPTX
Kevin starr
DOCX
Maths 301 key_sem_1_2009_2010
canada powerpiont
Stickers
Parag khanna
Jessica
Kevin starr
Maths 301 key_sem_1_2009_2010
Ad

Similar to Maths 301 key_sem_1_2007_2008 (20)

PDF
Math06reviewsheet (3)
PPT
2014 st josephs geelong spec maths
PDF
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
PDF
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
PDF
Class XII CBSE Mathematics Sample question paper with solution
PDF
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
PDF
Solution Manual : Chapter - 05 Integration
PDF
Maths05
PDF
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
PDF
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
PDF
Calculo integral - Larson
PDF
Additional mathematics
PDF
2016 10 mathematics_sample_paper_sa2_03_ans_z657f
PDF
35182797 additional-mathematics-form-4-and-5-notes
PPTX
Straight-Line-Graphs-Final -2.pptx
PPTX
CIRCLES.pptx
PDF
resposta do capitulo 15
PDF
48 circle part 1 of 2
PDF
Mock cat solutions paper no 1
PDF
Core 2 revision notes
Math06reviewsheet (3)
2014 st josephs geelong spec maths
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Class XII CBSE Mathematics Sample question paper with solution
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Solution Manual : Chapter - 05 Integration
Maths05
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Calculo integral - Larson
Additional mathematics
2016 10 mathematics_sample_paper_sa2_03_ans_z657f
35182797 additional-mathematics-form-4-and-5-notes
Straight-Line-Graphs-Final -2.pptx
CIRCLES.pptx
resposta do capitulo 15
48 circle part 1 of 2
Mock cat solutions paper no 1
Core 2 revision notes

Recently uploaded (20)

PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PPTX
Core Concepts of Personalized Learning and Virtual Learning Environments
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PPTX
Climate Change and Its Global Impact.pptx
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
PDF
Journal of Dental Science - UDMY (2020).pdf
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
semiconductor packaging in vlsi design fab
PDF
International_Financial_Reporting_Standa.pdf
PDF
LIFE & LIVING TRILOGY- PART (1) WHO ARE WE.pdf
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
PDF
English Textual Question & Ans (12th Class).pdf
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
Share_Module_2_Power_conflict_and_negotiation.pptx
B.Sc. DS Unit 2 Software Engineering.pptx
Core Concepts of Personalized Learning and Virtual Learning Environments
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
Climate Change and Its Global Impact.pptx
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
Journal of Dental Science - UDMY (2020).pdf
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
AI-driven educational solutions for real-life interventions in the Philippine...
semiconductor packaging in vlsi design fab
International_Financial_Reporting_Standa.pdf
LIFE & LIVING TRILOGY- PART (1) WHO ARE WE.pdf
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
Environmental Education MCQ BD2EE - Share Source.pdf
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
English Textual Question & Ans (12th Class).pdf
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Cambridge-Practice-Tests-for-IELTS-12.docx

Maths 301 key_sem_1_2007_2008

  • 1. FINAL EXAMINATION <br />Semester I 2007-2008 G<br />MATH-301 (Calculus III) <br />Question 1.<br /> <br />Suppose that each dollar introduced into the economy recirculates as follows: 90% of the <br /> original dollar is spent , then 90% of that $0.90 is spent , and so on. Find the economic impact (total amount spent) if $2,000,000 is introduced in to the economy.<br /> Economic Impact = 2,000,000[0.9+ 0.92+ 0.93+ …………]<br /> <br /> =2,000,000 0.91-0.9=2,000,0000.90.1=$18,000,000 <br /> <br />Use the root test to determine whether the given series converges or diverges or if the test <br /> is inconclusive:n=1∝n55n <br /> Apply root test.----> limn->∞an1/n , Here an= n55n <br />limn->∞ n55n1/n=limn->∞n5/n5n/n = limn->∞n5/nlimn->∞5 = 15 < 1<br /> <br />Therefore the series converges. <br /> <br /> <br />Approximate 01sinx3 dx to four decimal places using:<br />sinx=x- x33!+ x55!- x77!+ ………..<br /> sinx3= x3 - x333!+ x355!- x377!+…<br /> 01sinx3dx= 01x3 - x96+ x15120- x215040+ ………… dx<br /> = x44- x106(10)+ x16120(16) - x225040(22)+ …………01<br /> = 14- 160+ 11920 - 1110,880+ ……………<br /> Since 1110,880=0.000009<0.00005 <br /> 01sinx3dx= 14- 160+ 11920 =0.2339 (Four decimal approximation)<br /> <br />Question 2<br />(a)A basketball player shoots a ball at an angle of 60° from a point 15feet horizontally away<br /> From the center of the basket. The basket is 10ft above the floor and the player releases the <br />X ball from a height of 8 ft. At what speed should the player shoot the ball?. Take the<br /> acceleration due to the gravity as 32 ft/s2<br />Vsin 60 <br />x= x0+ vcos60° t-------->1y= y0+ vsin60° t- g2 t2----->2x0 , y0 =0, 8 and x,y=(15,10) 1 and 2 become15=0+ v2t-->t = 30v and t2 = 900v2 <br />V <br />10ft <br />60°<br />8ftV cos 60 <br />Y <br />(0,0)<br /> <br /> <br /> 10=8+v 32 t -16t2 <br /> 16t2- 32v t+2=0------>3 <br /> Substitution for t and t2 in equation 3 yields<br />16 900v2- 32 v 30v+ 2=0 <br /> 14400v2 = 153 – 2 <br /> v2= 14400153 -2 =600.48 <br /> v= + 600.48 =24. 505 ≅ 24.5 ft/s <br />(b)Find the area of the surface generated by revolving the curve about the x-axis.<br /> x= t2, y=2t, 0 ≤t ≤1<br /> <br /> S= 012π y dxdt2+ dydt2 dt <br /> dxdt=2t and dydt=2 <br /> S= 012π(2t) 2t2+ 22 dt =4π 012t t2+ 1 dt <br /> =4π t2+ 1323201<br />= 8π3 (2)32- (1)32 <br /> ≅ 4.9 π ≅ 15.3 Square Units<br /> Sketch the graph of the polar equation : r =6cosθ
  • 2. Y
  • 4. 3
  • 5. 36X
  • 6. - 3 <br />Question 3.<br />(a)Find the unit vector that has the same direction as the vector a = <-1, 3, -2><br /> The unit vector of a = a a = <-1 , 3 , -2>-12+32+ -22<br /> = <-1 , 3 , -2>1 + 9 + 4= <-1 , 3 , -2>14 <br />P(b)Find the distance from point P to the line through Q and R :<br /> P(-1, 3, 0), Q(0, 3, -3), R(5, 0, 1)<br />d <br />Distanced = QR × QPQR Q <br />R <br /> QP= <-1, 3, 0>- <0, 3,-3>= <-1, 0 , 3><br />QR= <5, 0, 1> - <0, 3, -3> = <5, -3, 4><br />QR x QP= ijk5-34-103=i -3403-j 54-13+k 5-3-10<br /> = i -9-0-j 15+4+ k0-3= -9i-19j-3k<br />Distance = QR × QPQR = -92+-192+-3252+ -32+42 = 45150 ≅3.003 ≅3.0<br />(c)Sketch the graph of y= x2+ z2 in an xyz – coordinate system. <br />Z <br />Y <br />X <br />Question 4. <br /> <br />(a)Test if fx,y= x2+ xy- y2 is harmonic.<br /> <br /> fx=2x+y ----> fxx=2<br /> fy =x-2y----> fyy=-2<br /> fxx+ fyy=2-2=0 --->f is harmonic<br />r (b) The radius r and altitude h of a right circular cylinder are decreasing at rates of 0.03 cm/min and 0.04 cm/min, respectively. At what rate is the curved surface area changing at the time when r =3cm and h = 4cm<br />S = Curved surface area = 2πrh <br />h Rate of change= dsdt= ∂s∂r drdt+ ∂s∂h dhdt <br /> =2π h-0.03+ (2πr)(-0.04)<br /> <br /> =2π[4-0.03+(3)(-0.04) ]<br /> = -0.48π= -1.5 cm2/min<br />(c) Find the directional derivative of fx,y= tan-1yx at the point (1,-1) in the direction of the vector a = 3i -4j<br />.<br />The directional derivative of f = ∇f . u= Du f(x, y)<br /> ∇f = fxi+ fyj = - yx21+yx2 i+ 1x1+ yx2 j <br /> <br /> = -yx2+y2 i+ xx2+y2j<br /> u= a a= 3i- 4j32 + -42= 35 i- 45 j<br /> <br />Du fx, y= ∇f . u= -3y5( x2+y2) i- 4x5(x2+y2)j = -3y-4x5(x2+y2) <br /> Du fx, y1, -1)= -3-1-4(1)512+ -12 = -110= -0.1<br />Question 5<br /> <br />(a)Sketch the region bounded by the graphs of the following equations and find its area by using only one double integral: y= - x2 , y=2, x=0, x=2<br /> <br />y<br />R<br />y =2<br />x=2x =0 <br />x<br />Y = -x2<br />Area= RdA = 02-x22dy dx =02y-x22 dx<br /> <br />=022+ x2dx= 2x+ x3302<br /> =4+ 83-0+0= 203 =6.66 Square Units<br /> (b)Find area of the region R that lies outside the circle r =3 and inside the circle r = 6cosθ<br />Y <br />θ=π3 <br />r=3r=6cosθ<br />θ=0<br />X <br />36<br />R <br />θ=- π3<br />Intersection points: 3=6cosθ ---> cosθ= 12 , θ=±π3<br />Area= RdA= Rr dr dθ<br />Using symmetry , Area=20π336cosθr dr dθ <br />Area= 20π3 r2236cosθdθ =0π3(36cosθ2-9) dθ <br /> = 0π3 3621+cos2θdθ- 0π39 dθ Rule: cos2θ= 1+cos2θ2 <br /> = 18 θ+ sin2θ20π3-9θ0π3 <br /> =18 π3+322 -0-3π=3π+ 923 ≅17.2 Square Units <br />(c)Evaluate the following triple integral: 010-2023x2z+ 2xy2dz dx dy<br />: 010-2023x2z+ 2xy2dz dx dy= 010-232 x2z2+ 2xy2z02 dx dy<br /> <br /> =010-26x2+4xy2 dx dy <br /> =016x33+ 42 x2 y20-2 dy <br /> = 01-16+8y2 dy <br />= -16y+ 83 y301<br /> = -16+ 83 = - 403 ≅ -13.3<br />