SlideShare a Scribd company logo
ENZO EXPOSYTO
MATHS
SYMBOLS
PROPERTIES of EXPONENTIALS and LOGARITHMS

Enzo Exposyto 1
2X ex 2-x e-x
EXPONENTIALS
LOGARITHMS
log2(x) ln(x) log(x)

Enzo Exposyto 2


Enzo Exposyto 3
1 - Exponential - Definition 6
2 - Exponentials - Their Properties 8
3 - Exponentials and Logarithms 15
4 - Logarithm - Definition and Examples 25
5 - Logarithms - Their Properties 34
6 - log(y) and ln(y) - Properties 46
Enzo Exposyto 4
7 - logb(bx) = x - Proofs 61
8 - ylogb(y) = y - Proofs 64
9 - log of a Power - Proofs 68
10 - log of a Root - Proofs 71
11 - log of a Product - Proofs 74
12 - log of a Quotient - Proofs 77
13 - Change of Base - Proofs 82
14 - zlogb(y) = ylogb(z) - Proof 91
15 - SitoGraphy 93
Enzo Exposyto 5
EXPONENTIAL
-
DEFINITION
Enzo Exposyto 6
EXPONENTIAL - DEFINITION
DEFINITION Examples
DEFINITION
bx = y ...
2-1 = 1
2
...
20 = 1
...
21 = 2
...
b > 0 and b < > 1 (*)
x element of R
y > 0
"b" is the fixed base
x is the variable exponent
(*) The symbol < > and ≠ have the same meaning
Enzo Exposyto 7
EXPONENTIALS
-
THEIR PROPERTIES

Enzo Exposyto 8
EXPONENTIALS - THEIR PROPERTIES - 1
[b, c > 0 and b, c < > 1]
[x, y elements of R]
Z+ = {1, 2, 3, …}
Property Exponentials Exponents Exponentials Exponents Result
1st bx · by = bx + y 23 · 22 = 23 + 2 = 32
2nd
bx
=
by
bx -y
23
=
22
23 -2 = 2
3rd (bx)y = bx *y (23)2 = 23 *2 = 64
4th
n Z+ n√bx = bx : n 2√24 = 24 : 2 = 4
5th bx · cx = (b · c)x 22 · 32 = (2 · 3)2 = 36
6th
bx
———- =
cx
(_b_)x
c
43
———- =
23
(_4_)3
=
2
8
Enzo Exposyto 9
EXPONENTIALS - THEIR PROPERTIES - 2
[b, c > 0 and b, c < > 1]
[x, y elements of R]
Z+ = {1, 2, 3, …}
Property Exponents Exponentials Exponents Exponentials Result
1st bx + y = bx · by
23 + 2 = 23 · 22 = 32
2nd bx -y =
bx
———-
by
23 -2 =
23
=
22
2
3rd bx *y = (bx)y 23 *2 = (23)2 = 64
4th n Z+ bx : n = n√bx
24 : 2 = 2√24 = 4
5th (b · c)x = bx · cx (2 · 3)2 = 22 · 32 = 36
6th
(_b_)x =
c
bx
———-
cx
(_4_)3
=
2
43
———- =
23
8
Enzo Exposyto 10
Exponentials - 6 Properties - Proofs/Examples
PROOFS / EXAMPLES
[b, c > 0 and b, c < > 1]
1st b3 · b2 = (b · b · b) · (b · b) = b · b · b · b · b = b5 = b3 + 2
2nd b3 = (b · b · b) = b = b1 = b3 - 2
b2 (b · b)
3rd (b3)2 = (b · b · b) · (b · b · b) = b · b · b · b · b · b = b6 = b3 * 2
4th 2√b4 = 2√(b · b · b · b) = b · b = b2 = b4 : 2
5th b3 · c3 = (b · b · b) · (c · c · c) = b · c · b · c · b · c = … = (b·c)3
6th
b3 (b · b · b) b b b b
——- = ————— = —— . —— . —— = … = (—)3
c3 (c · c · c) c c c c
Enzo Exposyto 11
Exponentials - 2nd property - b superscript 0
EXPONENTIALS - THEIR PROPERTIES - 3
Reference Property Notice Proof Example
2nd
Property
b0 = 1
b > 0
b ≠ 1
x R
b0 = bx - x 20 = 23 - 3
= bx
bx
= 23
23
= 1 = 1
1 = b0 b > 0
b ≠ 1
1 = 20
Enzo Exposyto 12
Exponentials - 2nd property - b superscript (-x)
EXPONENTIALS - THEIR PROPERTIES - 4
Reference Property Notice Proof Example
2nd
Property
b-x = 1
bx
b > 0
b ≠ 1
x R
b-x = b0-x 2-3 = 20-3
= b0
bx
= 20
23
= 1
bx
= 1
23
1 = b-x
bx
b > 0
b ≠ 1
x R
1 = 2-3
23
Enzo Exposyto 13
Exponentials - 2nd property - Reciprocal of bx
EXPONENTIALS and THEIR PROPERTIES - 5
Reference Property Notice Proof Example
2nd
Property
bx = 1
b-x
b > 0
b ≠ 1
x R
23 = 1
2-3
1 = bx
b-x
b > 0
b ≠ 1
x R
1 = 23
2-3
Enzo Exposyto 14
EXPONENTIALS
and
LOGARITHMS

Enzo Exposyto 15
EXPONENTIAL BASE 2:
23 = 2 × 2 x 2 = 8
The LOGARITHM BASE 2 OF 8
goes the OTHER WAY:
Enzo Exposyto 16
The logarithm base 2 of 8 is 3,
BECAUSE
2 cubed is 8;
so the logarithm base 2 of 8 is 3:
Enzo Exposyto 17
THE LOGARITHM BASE 2 OF 8
IS THE OPERATION THAT ALLOWS US
OF GOING BACK TO THE EXPONENT 3
EXPONENTIAL 2x and LOGARITHM BASE 2
EXPONENT x 2x
1 2
2 4
3 8
4 16
Enzo Exposyto 18
In other words …
THE LOGARITHM BASE 2 OF 8
IS
THE EXPONENT 3
… MORE PRECISELY …
THE LOGARITHM "3"
IS THE EXPONENT
WHICH WE HAVE TO PUT ON
THE BASE “2”
TO GET “8”
Enzo Exposyto 19
Now, since
log2(8) = 3 and 8 = 23
then
log2(23) = 3
We can see that
THE LOGARITHM "3"
IS THE EXPONENT
WHICH WE HAVE TO PUT ON
THE BASE “2”
TO GET “23”

Enzo Exposyto 20
EXPONENTIAL and LOGARITHM
with the same base
CANCEL EACH OTHER.
This is true because
exponential and logarithm
with the same base
are INVERSE OPERATIONS
It is just like
Addition and Subtraction,
Multiplication and Division,
Exponentiation and Root, …
when they're
INVERSE OPERATIONS
Enzo Exposyto 21
Now, we can introduce
the ANTILOGARITHM BASE b:
antilogb(x) = bx
It's, simply, an EXPONENTIAL
and represents the antilogarithm
when we operate
with a logarithm …
It’s such that
logb(antilogb(x)) = x
The meaning is
logb(bx) = x
Enzo Exposyto 22
And, of course,
antilogb(logb(y)) = y
The meaning is
blogb(y) = y
Enzo Exposyto 23
These phrases - with 8 - are equivalent
log2(8) = 3 < = > 23 = 8
OR
23 = 8 < = > log2(8) = 3
These phrases - with 23 - are equivalent
log2(23) = 3 < = > 23 = 23
OR
23 = 23 < = > log2(23) = 3
Enzo Exposyto 24
LOGARITHM
-
DEFINITION
and
EXAMPLES
Enzo Exposyto 25
LOGARITHM - DEFINITION
DEFINITION Example
DEFINITION
logb(y) = x
iff (if and only if)
bx = y
log2(8) = 3
because
23 = 8
b > 0 and b < > 1
y > 0
x element of R
2 > 0 and 2 < > 1
8 > 0
3 element of R
The logarithm "x" is the exponent
which we have to put on
the base “b”
to get “y”
The logarithm
"3"
is the exponent
which we have
to put on
the base “2”
to get “8”
Enzo Exposyto 26
iff
bx = y
Enzo Exposyto 27
LOGARITHMS - EXAMPLES - 1
log DEFINITION because
log3(9) = 2
The logarithm "2" is the exponent
which we have to put on the base “3”
to get “9”
log3(9) = 2
because
32 = 9
log3(27) = 3
The logarithm "3" is the exponent
which we have to put on the base “3”
to get “27”
log3(27) = 3
because
33 = 27
log4(4) = 1
The logarithm "1" is the exponent
which we have to put on the base “4”
to get “(4)”
log4(4) = 1
because
41 = (4)
Enzo Exposyto 28
LOGARITHMS - EXAMPLES - 2
log DEFINITION because
log4(16) = 2
The logarithm "2" is the exponent
which we have to put on the base “4”
to get “16”
log4(16) = 2
because
42 = 16
log5(25) = 2
The logarithm "2" is the exponent
which we have to put on the base “5”
to get “25”
log5(25) = 2
because
52 = 25
log10(100) = 2
The logarithm "2" is the exponent
which we have to put on the base “10”
to get “100”
log10(100) = 2
because
102 = 100
Enzo Exposyto 29
LOGARITHMS - EXAMPLES - 3
log DEFINITION because
log4(1) = -1
4
The logarithm "-1" is the exponent
which we have to put on the base “4”
to get “1”
4
log4(1) = -1
4
because
4-1 = 1
4
log10( 1 ) = -1
10
The logarithm "-1" is the exponent
which we have to put on the base “10”
to get “ 1 ”
10
log10( 1 ) = -1
10
because
10-1 = 1
10
Enzo Exposyto 30
LOGARITHMS - EXAMPLES - 4
log DEFINITION because
log1/2(2) = -1
The logarithm "-1" is the exponent
which we have to put on the base “1”
2
to get “2”
log1/2(2) = -1
because
(1)-1 = 2
2
log1/4(4) = -1
The logarithm "-1" is the exponent
which we have to put on the base “1”
4
to get “4”
log1/4(4) = -1
because
(1)-1 = 4
4
Enzo Exposyto 31
LOGARITHMS - EXAMPLES - 5
log DEFINITION because
log1/2(4) = -2
The logarithm "-2" is the exponent
which we have to put on the base “1”
2
to get “4”
log1/2(4) = -2
because
(1)-2 = 4
2
log1/3(9) = -2
The logarithm "-2" is the exponent
which we have to put on the base “1”
3
to get “9”
log1/3(9) = -2
because
(1)-2 = 9
3
Enzo Exposyto 32
LOGARITHMS - EXAMPLES - 6
e = 2.718281828…
log DEFINITION because
loge(e) = 1
The logarithm "1" is the exponent
which we have to put on the base “e”
to get “(e)”
loge(e) = 1
because
e1 = (e)
loge(1) = 0
The logarithm "0" is the exponent
which we have to put on the base “e”
to get “1”
loge(1) = 0
because
e0 = 1
loge(e2) = 2
The logarithm "2" is the exponent
which we have to put on the base “e”
to get “(e2)”
loge(e2) = 2
because
e2 = (e2)
Enzo Exposyto 33
LOGARITHMS
-
THEIR PROPERTIES

Enzo Exposyto 34
LOGARITHMS - THEIR PROPERTIES - 1
Name Property Example
base = 0
log0(y) is undefined log0(2) is undefined
y > 0
For any x R-{0}, 0x ≠ 2
(really 0x = 0) and, then,
log0(2) Does Not Exist
base = 1
log1(y) is undefined log1(2) is undefined
y > 0
For any x R, 1x ≠ 2
(really 1x = 1) and, then,
log1(2) Does Not Exist
logb(0)
logb(0) is undefined log2(0) is undefined
b > 0 and b < > 1
For any x R, 2x ≠ 0
(really 2x > 0) and, then,
log2(0) Does Not Exist
Enzo Exposyto 35
LOGARITHMS - THEIR PROPERTIES - 2
Name Property Examples
logb(1)
logb(1) = 0 log2(1) = 0
because
20 = 1b > 0 and b < > 1
logb(b)
logb(b) = 1 log4(4) = 1
because
41 = (4)b > 0 and b < > 1
Enzo Exposyto 36
LOGARITHMS - THEIR PROPERTIES - 3
Name Property Example
logb(bx)
logb(bx) = x log2(23) = 3
because
23 = (23)
b > 0 and b < > 1
x element of R
blogb(y)
blogb(y) = y 2log2(8) = 8
because
23 = 8
b > 0 and b < > 1
y > 0
Enzo Exposyto 37
LOGARITHMS - THEIR PROPERTIES - 4
Name Property Examples
log of
a Power
logb(yz) = z logb(y) log2(42) = 2 log2(4)
b > 0 and b < > 1
y > 0
z element of R
b = 2
y = 4
z = 2
log of
a Reciprocal
logb(1) = logb(y-1) = - logb(y)
y
log2(1) = log2(4-1) = - log2(4)
4
b > 0 and b < > 1
y > 0
b = 2
y = 4
Enzo Exposyto 38
LOGARITHMS - THEIR PROPERTIES - 5
Name Property Examples
log of
a Root - 1
logb(n√y) = logb(y)
n
log2(3√8) = log2(8)
3
b > 0 and b < > 1
y > 0
n Z+
Z+ = {1, 2, 3, …}
b = 2
y = 8
n = 3
log of
a Root - 2
logb(n√yz) = z logb(y)
n
log2(3√26) = 6 log2(2)
3
b > 0 and b < > 1
y > 0
z element of R
n Z+
Z+ = {1, 2, 3, …}
b = 2
y = 2
z = 6
n = 3
Enzo Exposyto 39
LOGARITHMS - THEIR PROPERTIES - 6
Name Property Examples
log of a
Product - 1
logb(y z) = logb(y) + logb(z) log2(4 2) = log2(4) + log2(2)
b > 0 and b < > 1
y, z > 0
b = 2
y = 4; z = 2
log of a
Product - 2
logb(yn . zp) = n.logb(y)+p.logb(z) log2(43 . 24) = 3.log2(4)+4.log2(2)
b > 0 and b < > 1
y, z > 0
n, p elements of R
b = 2
y = 4; z = 2
n = 3; p = 4
Enzo Exposyto 40
LOGARITHMS - THEIR PROPERTIES - 7
Name Property Examples
log of a
Quotient - 1
logb(y) = logb(y.z-1) = logb(y)-logb(z)
z
log2(8) = log2(8.4-1) = log2(8) - log2(4)
4
b > 0 and b < > 1
y, z > 0
b = 2
y = 8; z = 4
log of a
Quotient - 2
logb(y) = logb(y) - logb(z)
z
log2(4) = log2(4) - log2(2)
2
b > 0 and b < > 1
y, z > 0
b = 2
y = 4; z = 2
log of a
Quotient - 3
logb(yn) = n.logb(y)-p.logb(z)
zp
log2(43) = 3.log2(4)-4.log2(2)
24
b > 0 and b < > 1
y, z > 0
n, p elements of R
b = 2
y = 4; z = 2
n = 3; p = 4
Enzo Exposyto 41
LOGARITHMS - THEIR PROPERTIES - 8
Name Property Examples
Base Change - 1
logb(y) = logc(y)
logc(b) log2(16) = log4(16) = 2 = 4
log4(2) 1
2b, c > 0 and b, c < > 1
y > 0
Base Switch - 1
logb(c) = logc(c) = 1
logc(b) logc(b)
log2(4) = log4(4) = 1
log4(2) log4(2)
logc(c) = 1 log4(4) = 1
b, c > 0 and b, c < > 1 b = 2; c= 4
Base Switch - 2 logb(c) * logc(b) = 1 log2(4) * log4(2) = 1
Enzo Exposyto 42
LOGARITHMS - THEIR PROPERTIES - 9
Name Property Examples
Base Change - 2
logbn(y) = logb(y)
n
log2-3(8) = log2(8)
-3
b > 0 and b < > 1
n element of R, n < > 0
y > 0
b = 2
n = -3
y = 8
Base Change - 3a
n . logbn(y) = logb(y) -3 . log2-3(8) = log2(8)
n element of R, n < > 0
b > 0 and b < > 1
y > 0
n = -3
b = 2
y = 8
Base Change - 3b
logb(y) = n . logbn(y) log2(4) = 2 . log22(4)
b > 0 and b < > 1
y > 0
n element of R, n < > 0
b = 2
y = 4
n = 2
Enzo Exposyto 43
LOGARITHMS - THEIR PROPERTIES - 10
Name Property Examples
Base Change - 4
log1/b(y) = - logb(y) log1/8(8) = - log8(8)
b > 0 and b < > 1
y > 0
b = 8
y = 8
Base Change - 5
logb(1) = log1/b(y)
y
log2(1) = log1/2(4)
4
b > 0 and b < > 1
y > 0
b = 2
y = 4
Enzo Exposyto 44
LOGARITHMS - THEIR PROPERTIES - 11
Name Property Examples
zlogb(y)
zlogb(y) = ylogb(z) 2log2(8) = 8log2(2)
z > 0
b > 0 and b < > 1
y > 0
z = 2
b = 2
y = 8
Enzo Exposyto 45
log(y) AND ln(y)
-
THEIR
PROPERTIES

Enzo Exposyto 46
log(y) AND ln(y) - THEIR PROPERTIES
REMARKS:
• log(y) always refers to log base 10,
i. e.,
log(y) = log10(y)
Therefore,
log(y) = x
if and only if
10x = y
Enzo Exposyto 47
• ln(y) is called the natural logarithm
and is used to represent loge(y),
where the irrational number e 2.718281828:
ln(y) = loge(y)
Therefore,
ln(y) = x
if and only if
ex = y
Enzo Exposyto 48
• Most calculators can directly compute
logs base 10
and/or
the natural log.
For any other base
it is necessary to use
the change of the base formula:
logb(y) = log10(y) = log(y) log2(8) = log(8)
log10(b) log(b). log(2)
or
logb(y) = ln(y) log2(8) = ln(8)
ln(b) ln(2)

Enzo Exposyto 49
log(y) AND ln(y) - THEIR PROPERTIES - 1
Property log ln
base = 0
base = 10 base = e
base = 1
base = 10 base = e
logb(0)
log(0) is undefined ln(0) is undefined
For any x R, 10x ≠ 0
(really 10x > 0) and, then,
log(0) Does Not Exist
For any x R, ex ≠ 0
(really ex > 0) and, then,
ln(0) Does Not Exist
Enzo Exposyto 50
log(x) AND ln(x) - THEIR PROPERTIES - 2
Property log ln
logb(1)
log(1) = 0 ln(1) = 0
because
100 = 1
because
e0 = 1
logb(b)
log(10) = 1 ln(e) = 1
because
101 = 10
because
e1 = e
Enzo Exposyto 51
log(y) AND ln(y) - THEIR PROPERTIES - 3
Property log ln
logb(bx)
log(10x) = x ln(ex) = x
x element of R x R
blogb(y)
10log(y) = y eln(y) = y
y > 0 y > 0
Enzo Exposyto 52
log(y) AND ln(y) - THEIR PROPERTIES - 4
Property log ln
log of a
Power
log(yz) = z log(y) ln(yz) = z ln(y)
y > 0
z element of R
y > 0
z element of R
log of
a Reciprocal
log(1) = log(y-1) = - log(y)
y
ln(1) = ln(y-1) = - ln(y)
y
y > 0 y > 0
Enzo Exposyto 53
log(y) AND ln(y) - THEIR PROPERTIES - 5
Property log ln
log of
a Root - 1
log(n√y) = log(y)
n
ln(n√y) = ln(y)
n
n Z+
Z+ = {1, 2, 3, …}
y > 0
n Z+
Z+ = {1, 2, 3, …}
y > 0
log of
a Root - 2
log(n√yz) = z log(y)
n
ln(n√yz) = z ln(y)
n
n element of Z+
Z+ = {1, 2, 3, …}
y > 0
z element of R
n element of Z+
Z+ = {1, 2, 3, …}
y > 0
z element of R
Enzo Exposyto 54
log(y) AND ln(y) - THEIR PROPERTIES - 6
Property log ln
log of a
Product - 1
log(y z) = log(y) + log(z) ln(y z) = ln(y) + ln(z)
y, z > 0 y, z > 0
log of a
Product - 2
log(yn . zp) = n.log(y)+p.log(z) ln(yn . zp) = n.ln(y)+p.ln(z)
y, z > 0
n, p elements of R
y, z > 0
n, p elements of R
Enzo Exposyto 55
log(y) AND ln(y) - THEIR PROPERTIES - 7
Property log ln
log of a
Quotient - 1
log(y) = log(y.z-1) = log(y)-log(z)
z
ln(y) = ln(y.z-1) = ln(y)-ln(z)
z
y, z > 0 y, z > 0
log of a
Quotient - 2
log(y) = log(y) - log(z)
z
ln(y) = ln(y) - ln(z)
z
y, z > 0 y, z > 0
log of a
Quotient - 3
log(yn) = n.log(y)-p.log(z)
zp
ln(yn) = n.ln(y)-p.ln(z)
zp
y, z > 0
n, p elements of R
y, z > 0
n, p elements of R
Enzo Exposyto 56
log(y) AND ln(y) - THEIR PROPERTIES - 8
Property log ln
Base Change - 1
log(y) = logc(y)
logc(10)
ln(y) = logc(y)
logc(e)
y > 0
c > 0 and c < > 1
y > 0
c > 0 and c < > 1
Base Switch - 1
log(c) = logc(c) = 1
logc(10) logc(10)
ln(c) = logc(c) = 1
logc(e) logc(e)
logc(c) = 1 logc(c) = 1
c > 0 and c < > 1 c > 0 and c < > 1
Base Switch - 2
log(c) * logc(10) = 1 ln(c) * logc(e) = 1
c > 0 and c < > 1 c > 0 and c < > 1
Enzo Exposyto 57
log10(y) AND loge(y) - THEIR PROPERTIES - 9
Property log10 loge
Base Change - 2
log10n(y) = log10(y)
n
logen(y) = loge(y)
n
n element of R, n < > 0
y > 0
n element of R, n < > 0
y > 0
Base Change - 3a
n . log10n(y) = log10(y) n . logen(y) = loge(y)
n element of R, n < > 0
y > 0
n element of R, n < > 0
y > 0
Base Change - 3b
log10(y) = n . log10n(y) loge(y) = n . logen(y)
y > 0
n element of R, n < > 0
y > 0
n element of R, n < > 0
Enzo Exposyto 58
log10(y) AND loge(y) - THEIR PROPERTIES - 10
Property log10 loge
Base Change - 4
log1/10(y) = - log10(y) log1/e(y) = - loge(y)
y > 0 y > 0
Base Change - 5
log10(1) = log1/10(y)
y
loge(1) = log1/e(y)
y
y > 0 y > 0
Enzo Exposyto 59
log10(y) AND loge(y) - THEIR PROPERTIES - 11
Property log10 loge
zlogb(y)
zlog10(y) = ylog10(z) zloge(y) = yloge(z)
z > 0
y > 0
z > 0
y > 0
Enzo Exposyto 60
logb(bx) = x
PROOFS

Enzo Exposyto 61
logb(bx) = x
a) The log of bx is the exponent which we have to put on the
base b to get bx itself and, therefore, it’s “x”
b) If,
from x, we ‘go’ to bx
and, then,
from bx, we ‘go’ to logb(bx),
since
logb(bx) is the inverse operation of bx,
we go back to x …
therefore,
logb(bx) = x
In other words
(remembering that bx = antilogb(x)):
logb(antilogb(x)) = x 

Enzo Exposyto 62
logb(bx) = x
c) Let's set
bx = y
and, then, we ‘do’ the logarithms in base b of both sides;
we get
logb(bx) = logb(y)
Since
bx = y <=> logb(y) = x
we can write
logb(bx) = logb(y)
= x
Therefore,
logb(bx) = x
Q.E.D.
Enzo Exposyto 63
blogb(y) = y
PROOFS


Enzo Exposyto 64
blogb(y) = y
a) If
from y, we ‘go’ to logb(y)
and, then,
from logb(y), we ‘go’ to blogb(y),
since
blogb(y) is the inverse operation of logb(y),
we go back to y …
therefore,
blogb(y) = y
In other words
(remembering that blogb(y) = antilogb(logb(y))):
antilogb(logb(y)) = y 

Enzo Exposyto 65
blogb(y) = y
b) Let's set
bx = y
and, then, we ‘do’ the log in base b of both sides; we get
logb(bx) = logb(y)
Remembering that (pages 62-63)
logb(bx) = x
we can write
logb(bx) = logb(y)
x = logb(y)
or
logb(y) = x
Now, we ‘do’ the exponentials in base b of both sides and we get
blogb(y) = bx
Since
bx = y
we get
blogb(y) = y
Q.E.D.
Enzo Exposyto 66
blogb(y) = y
c) Let's set
logb(y) = x
and, then,
on the left hand side of the equation,
we get
blogb(y) = bx
Since
logb(y) = x <=> bx = y
it's
blogb(y) = bx = y
and, therefore,
blogb(y) = y
Q.E.D.
Enzo Exposyto 67
log of
a POWER
PROOFS

Enzo Exposyto 68
logb(yz) = z . logb(y)
1) Let's set
logb(y) = l
and, then, the right hand side of the equation becomes
z . logb(y) = z . l
2) Since
logb(y) = l <=> bl = y
or y = bl
the left hand side of the equation becomes
logb(yz) = logb((bl)z)
= logb(blz)
Remembering that (pages 62-63)
logb(bx) = x
it's
logb(blz) = lz = z . l
and we can write
logb(yz) = logb(blz) = z . l
3) Since the left hand side and the right hand side are equal to z . l, they are equal:
logb(yz) = z . logb(y)
Q.E.D.
Enzo Exposyto 69
logb(1) = - logb(y)
y
OR
- logb(y) = logb(1)
y
Remembering that
logb(yz) = z . logb(y) [log of a Power, previous page]
we get
logb(1) = logb(y-1)
y
= (-1) . logb(y)
= - logb(y)
Q.E.D.

Enzo Exposyto 70
log of
a ROOT
PROOFS

Enzo Exposyto 71
logb(n√y) = logb(y)
n
Remembering that
logb(yz) = z . logb(y) [log of a Power, page 69]
we get
logb(n√y) = logb(y1/n)
= 1 logb(y)
n
= logb(y)
n
Q.E.D.

Enzo Exposyto 72
logb(n√yz) = z . logb(y)
n
Remembering that
logb(yz) = z . logb(y) [log of a Power, page 69]
we get
logb(n√yz) = logb(yz/n)
= z logb(y)
n
= z . logb(y)
n
Q.E.D.

Enzo Exposyto 73
log of
a PRODUCT
PROOFS

Enzo Exposyto 74
logb(y . z) = logb(y) + logb(z)
1) Let's set
logb(y) = l
logb(z) = m
and, then, the right hand side of the equation becomes
logb(y) + logb(z) = l + m
2) Since
logb(y) = l <=> bl = y or y = bl
logb(z) = m <=> bm = z or z = bm
the left hand side of the equation becomes
logb(y . z) = logb(bl . bm) = logb(bl+m)
Remembering that (pages 62-63)
logb(bx) = x
it's
logb(bl+m) = l + m
and we can write
logb(y . z) = logb(bl+m) = l + m
3) Since the left hand side and the right hand side are equal to l + m, they are equal:
logb(y . z) = logb(y) + logb(z)
Q.E.D.
Enzo Exposyto 75
logb(yn . zp) = n . logb(y) + p . logb(z)
Remembering that
logb(y . z) = logb(y) + logb(z) [previous page]
and
logb(yz) = z . logb(y) [log of a Power, page 69]
we get
logb(yn . zp) = logb(yn) + logb(zp)
= n . logb(y) + p . logb(z)
Q.E.D.

Enzo Exposyto 76
log of
a QUOTIENT
PROOFS

Enzo Exposyto 77
logb(y) = logb(y) - logb(z)
z
Remembering that
logb(y . z) = logb(y) + logb(z) [page 75]
and
logb(yz) = z . logb(y) [log of a Power, page 69]
we get
logb(y) = logb(y . 1) = logb(y . z-1)
z z
= logb(y) + logb(z-1)
= logb(y) + (-1) . logb(z)
= logb(y) - logb(z)
Q.E.D.
Enzo Exposyto 78
logb(y) = logb(y) - logb(z)
z
1) Let's set
logb(y) = l
logb(z) = m
and, then, the right hand side of the equation becomes
logb(y) - logb(z) = l - m
2) Since
logb(y) = l <=> bl = y or y = bl
logb(z) = m <=> bm = z or z = bm
the left hand side of the equation becomes
logb(y) = logb(bl ) = logb(bl-m)
z bm
Remembering that (pages 62-63)
logb(bx) = x
it's
logb(bl-m) = l - m
and we can write
logb(y) = logb(bl-m) = l - m
z
Enzo Exposyto 79
logb(y) = logb(y) - logb(z)
z
3) Since the left hand side and the right hand side are equal to l - m, they are equal:
logb(y) = logb(y) - logb(z)
z
Q.E.D.
Enzo Exposyto 80
logb(yn) = n . logb(y) - p . logb(z)
zp
Remembering that
logb(y) = logb(y) - logb(z) [previous page]
z
and
logb(yz) = z . logb(y) [log of a Power, page 69]
we get
logb(yn) = logb(yn) - logb(zp)
zp
= n . logb(y) - p . logb(z)
Q.E.D.

Enzo Exposyto 81
CHANGE
of BASE
PROOFS

Enzo Exposyto 82
logb(y) = logc(y)
logc(b)
1) On the left hand side of the equation,
let's set
logb(y) = x
2) On the right hand side of the equation,
since
logb(y) = x <=> bx = y or y = bx
we substitute y by bx
logc(y) = logc(bx)
= x . logc(b) [log of a Power, page 69]
and we get
logc(y) = x . logc(b) = x
logc(b) logc(b)
3) Since the left hand side and the right hand side are equal to x, they are equal:
logb(y) = logc(y)
logc(b)
Q.E.D.
Enzo Exposyto 83
logb(c) = 1
logc(b)
It's
logb(c) = logc(c)
logc(b)
Since
logc(c) = 1
we get
logb(c) = logc(c)
logc(b)
= 1
logc(b)
and, then,
logb(c) = 1
logc(b)
Q.E.D.
Enzo Exposyto 84
logb(c) . logc(b) = 1
From
logb(c) = 1
logc(b)
multiplying both sides by logc(b), it’s
logb(c) logc(b) = 1 logc(b)
logc(b)
and, then,
logb(c) logc(b) = 1
Q.E.D.
Enzo Exposyto 85
logbn(y) = logb(y)
n
Let's change the base bn by b:
logbn(y) = logb(y)
logb(bn) [log of a Power, page 69]
= logb(y)
n logb(b) [remember: logb(b) = 1]
= logb(y)
n
Therefore:
logbn(y) = logb(y)
n
Q.E.D.
Enzo Exposyto 86
n . logbn(y) = logb(y)
OR
logb(y) = n . logbn(y)
From
logbn(y) = logb(y) [previous page]
n
multiplying both sides by n, it’s
n . logbn(y) = logb(y) . n
n
and, then,
n . logbn(y) = logb(y)
Q.E.D.

Enzo Exposyto 87
log1/b(y) = - logb(y)
a) From
logb(y) = n . logbn(y) [previous page]
if n = -1 we get
logb(y) = (-1) . logb-1(y) [remember: b-1 = 1]
b
logb(y) = - log1/b(y) [multiplying both sides by (-1)]
- logb(y) = log1/b(y)
and, then,
log1/b(y) = - logb(y)
Q.E.D.
Enzo Exposyto 88
log1/b(y) = - logb(y)
b) Let's change the base 1 by b:
b
log1/b(y) = logb(y)
logb(1) [remember: 1 = b-1]
b b
= logb(y)
logb(b-1) [log of a Power, page 69]
= logb(y)
(-1) logb(b) [remember: logb(b) = 1]
= logb(y)
(-1)
= - logb(y)
Q.E.D.
Enzo Exposyto 89
logb(1) = log1/b(y)
y
OR
log1/b(y) = logb(1)
y
1) From page 70:
logb(1) = - logb(y)
y
2) From previous page:
log1/b(y) = - logb(y)
3) Since the first and the second left hand side are equal to - logb(y), they are equal:
logb(1) = log1/b(y)
y
Q.E.D.
Enzo Exposyto 90
zlogb(y) = ylogb(z)
PROOF

Enzo Exposyto 91
zlogb(y) = ylogb(z)
1) On the left hand side of the equation,
let's set
logb(y) = x
and we get
zlogb(y) = zx
2) On the right hand side of the equation,
since
logb(y) = x <=> bx = y or y = bx
we substitute y by bx and we get
ylogb(z) = (bx)logb(z)
= bxlogb(z)
= blogb(zx) [log of a Power, page 69]
= zx [blogb(zx) = zx See blogb(y) = y (pages 65-67)]
3) Since the left hand side and the right hand side are equal to zx, they are equal:
zlogb(y) = ylogb(z)
Q.E.D.


Enzo Exposyto 92
SitoGraphy

Enzo Exposyto 93
https://en.m.wikipedia.org/wiki/List_of_logarithmic_identities
https://www.andrews.edu/~calkins/math/webtexts/numb17.htm
http://dl.uncw.edu/digilib/mathematics/algebra/mat111hb/eandl/logprop/logprop.html#sec2
Enzo Exposyto 94

More Related Content

PDF
Rangkuman Rumus Parabola, Elips, Hiperbola
PPTX
PPT 3.3 BARISAN MONOTON (ARINI ANSAR DAN NURUL FITRIH).pptx
PPTX
Power point pr matematika 7
PPTX
PPT KAIDAH PENCACAHAN-PELUANG-XII IPS.pptx
PDF
1.transformasi
PPTX
Kelas X Fungsi kuadrat
PPTX
Fungsi Invers
DOC
Lks elips lengkap
Rangkuman Rumus Parabola, Elips, Hiperbola
PPT 3.3 BARISAN MONOTON (ARINI ANSAR DAN NURUL FITRIH).pptx
Power point pr matematika 7
PPT KAIDAH PENCACAHAN-PELUANG-XII IPS.pptx
1.transformasi
Kelas X Fungsi kuadrat
Fungsi Invers
Lks elips lengkap

What's hot (20)

PPT
Analisis real
DOCX
Makalah Persamaan Diferensial
DOCX
Fungsi kuadrat (2)
PPTX
lingkaran kelas XI.pptx
PPTX
Matematika diskrit
PPTX
Matematika Diskrit part 1
PPTX
PPT SPLDV dengan 3 metode penyelesaian
DOCX
Bahan Ajar Materi Bilangan Berpangkat K13 untuk Kelas VII SMP
PPT
Ppt persamaan trigonometri
DOCX
Rencana Pelaksanaan Pembelajaran Transformasi
PPTX
himpunan kelas 7 semester 1 kurikulum merdeka
DOCX
Fungsi Komposisi dan Fungsi Invers
PPT
Relasi rekursif linier homogen koefisien konstan
DOCX
Modul Ajar Matematika Tingkat Lanjut SMA Kelas 11 Kurikulum Merdeka
PPTX
PPT Aritmatika Sosial Kelas 7 SMP .pptx
PDF
Lingkaran dan persamaan lingkaran
DOC
Soal eksponen-logaritma
PPTX
materi bentuk aljabar smp kelas 7 semester 1
PDF
22. modul persamaan parabola pak sukani
PPTX
Ring faktor dan homomorfisma
Analisis real
Makalah Persamaan Diferensial
Fungsi kuadrat (2)
lingkaran kelas XI.pptx
Matematika diskrit
Matematika Diskrit part 1
PPT SPLDV dengan 3 metode penyelesaian
Bahan Ajar Materi Bilangan Berpangkat K13 untuk Kelas VII SMP
Ppt persamaan trigonometri
Rencana Pelaksanaan Pembelajaran Transformasi
himpunan kelas 7 semester 1 kurikulum merdeka
Fungsi Komposisi dan Fungsi Invers
Relasi rekursif linier homogen koefisien konstan
Modul Ajar Matematika Tingkat Lanjut SMA Kelas 11 Kurikulum Merdeka
PPT Aritmatika Sosial Kelas 7 SMP .pptx
Lingkaran dan persamaan lingkaran
Soal eksponen-logaritma
materi bentuk aljabar smp kelas 7 semester 1
22. modul persamaan parabola pak sukani
Ring faktor dan homomorfisma
Ad

Similar to MATHS SYMBOLS - EXPONENTIALS + LOGARITHMS and THEIR PROPERTIES (20)

PDF
MATHS SYMBOLS - #4 - LOGARITHMS - THEIR PROPERTIES
PDF
MATHS SYMBOLS - #1 - EXPONENTIALS and THEIR PROPERTIES
PDF
MATHS SYMBOLS - #3 - LOGARITHMS - DEFINITION - EXAMPLES
PDF
MATHS SYMBOLS - #2 - EXPONENTIALS and LOGARITHMS
PPTX
Algebra 2 06 Exponential and Logarithmic Functions 2.pptx
PDF
MATHS SYMBOLS - #8 - LOGARITHMS, CHANGE of BASE - PROOFS
PDF
MATHS SYMBOLS - #6 - LOGARITHMS, LOG of a POWER, LOG of a ROOT - PROOFS
PPT
Logarithmic Functions
PDF
MATHS SYMBOLS - #5 - LOGARITHMS - LOG(y) - LN(y) - THEIR PROPERTIES
PDF
6.5 Logarithmic Properties
PPTX
Exponential and logarithmic functions
PPTX
Logarithmic functions (2)
PPT
Properties of logarithms
PPT
Business Math Chapter 2
PPSX
Exponential & Logarithmic Functions--.ppsx
PDF
MATHS SYMBOLS - #7 - LOGARITHMS, LOG of a PRODUCT, LOG of a QUOTIENT - PROOFS
PDF
Module 4 exponential and logarithmic functions
PDF
4.3 Logarithmic Functions
PDF
4.3 Logarithmic Functions
PPT
Exponents and Logs
MATHS SYMBOLS - #4 - LOGARITHMS - THEIR PROPERTIES
MATHS SYMBOLS - #1 - EXPONENTIALS and THEIR PROPERTIES
MATHS SYMBOLS - #3 - LOGARITHMS - DEFINITION - EXAMPLES
MATHS SYMBOLS - #2 - EXPONENTIALS and LOGARITHMS
Algebra 2 06 Exponential and Logarithmic Functions 2.pptx
MATHS SYMBOLS - #8 - LOGARITHMS, CHANGE of BASE - PROOFS
MATHS SYMBOLS - #6 - LOGARITHMS, LOG of a POWER, LOG of a ROOT - PROOFS
Logarithmic Functions
MATHS SYMBOLS - #5 - LOGARITHMS - LOG(y) - LN(y) - THEIR PROPERTIES
6.5 Logarithmic Properties
Exponential and logarithmic functions
Logarithmic functions (2)
Properties of logarithms
Business Math Chapter 2
Exponential & Logarithmic Functions--.ppsx
MATHS SYMBOLS - #7 - LOGARITHMS, LOG of a PRODUCT, LOG of a QUOTIENT - PROOFS
Module 4 exponential and logarithmic functions
4.3 Logarithmic Functions
4.3 Logarithmic Functions
Exponents and Logs
Ad

More from Ist. Superiore Marini-Gioia - Enzo Exposyto (20)

PDF
Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...
PDF
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
PDF
Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...
PDF
Valori della Frazione 4 su 3 - Due Formule con Tante Dimostrazioni e Molti E...
PDF
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
PDF
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
PDF
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...
PDF
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
PDF
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
PDF
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
PDF
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
PDF
ESEMPIO 2a - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 2 MET...
PDF
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ...
PDF
EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ANALITICO - ...
PDF
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - METODO...
PDF
EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 3 METODI ANALITICI...
PDF
ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...
PDF
DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...
PDF
DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...
PDF
ESEMPIO 2 - QUARTICA - EQUAZIONE e PUNTI di FLESSO
Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...
Valori della Frazione 4 su 3 - Due Formule con Tante Dimostrazioni e Molti E...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ESEMPIO 2a - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 2 MET...
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ...
EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ANALITICO - ...
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - METODO...
EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 3 METODI ANALITICI...
ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...
DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...
DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...
ESEMPIO 2 - QUARTICA - EQUAZIONE e PUNTI di FLESSO

Recently uploaded (20)

PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
GDM (1) (1).pptx small presentation for students
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
Institutional Correction lecture only . . .
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Computing-Curriculum for Schools in Ghana
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Sports Quiz easy sports quiz sports quiz
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
Classroom Observation Tools for Teachers
PDF
Microbial disease of the cardiovascular and lymphatic systems
Abdominal Access Techniques with Prof. Dr. R K Mishra
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
GDM (1) (1).pptx small presentation for students
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPH.pptx obstetrics and gynecology in nursing
Microbial diseases, their pathogenesis and prophylaxis
O5-L3 Freight Transport Ops (International) V1.pdf
Institutional Correction lecture only . . .
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
2.FourierTransform-ShortQuestionswithAnswers.pdf
Final Presentation General Medicine 03-08-2024.pptx
Computing-Curriculum for Schools in Ghana
Supply Chain Operations Speaking Notes -ICLT Program
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Sports Quiz easy sports quiz sports quiz
O7-L3 Supply Chain Operations - ICLT Program
Classroom Observation Tools for Teachers
Microbial disease of the cardiovascular and lymphatic systems

MATHS SYMBOLS - EXPONENTIALS + LOGARITHMS and THEIR PROPERTIES

  • 1. ENZO EXPOSYTO MATHS SYMBOLS PROPERTIES of EXPONENTIALS and LOGARITHMS
 Enzo Exposyto 1
  • 2. 2X ex 2-x e-x EXPONENTIALS LOGARITHMS log2(x) ln(x) log(x)
 Enzo Exposyto 2
  • 4. 1 - Exponential - Definition 6 2 - Exponentials - Their Properties 8 3 - Exponentials and Logarithms 15 4 - Logarithm - Definition and Examples 25 5 - Logarithms - Their Properties 34 6 - log(y) and ln(y) - Properties 46 Enzo Exposyto 4
  • 5. 7 - logb(bx) = x - Proofs 61 8 - ylogb(y) = y - Proofs 64 9 - log of a Power - Proofs 68 10 - log of a Root - Proofs 71 11 - log of a Product - Proofs 74 12 - log of a Quotient - Proofs 77 13 - Change of Base - Proofs 82 14 - zlogb(y) = ylogb(z) - Proof 91 15 - SitoGraphy 93 Enzo Exposyto 5
  • 7. EXPONENTIAL - DEFINITION DEFINITION Examples DEFINITION bx = y ... 2-1 = 1 2 ... 20 = 1 ... 21 = 2 ... b > 0 and b < > 1 (*) x element of R y > 0 "b" is the fixed base x is the variable exponent (*) The symbol < > and ≠ have the same meaning Enzo Exposyto 7
  • 9. EXPONENTIALS - THEIR PROPERTIES - 1 [b, c > 0 and b, c < > 1] [x, y elements of R] Z+ = {1, 2, 3, …} Property Exponentials Exponents Exponentials Exponents Result 1st bx · by = bx + y 23 · 22 = 23 + 2 = 32 2nd bx = by bx -y 23 = 22 23 -2 = 2 3rd (bx)y = bx *y (23)2 = 23 *2 = 64 4th n Z+ n√bx = bx : n 2√24 = 24 : 2 = 4 5th bx · cx = (b · c)x 22 · 32 = (2 · 3)2 = 36 6th bx ———- = cx (_b_)x c 43 ———- = 23 (_4_)3 = 2 8 Enzo Exposyto 9
  • 10. EXPONENTIALS - THEIR PROPERTIES - 2 [b, c > 0 and b, c < > 1] [x, y elements of R] Z+ = {1, 2, 3, …} Property Exponents Exponentials Exponents Exponentials Result 1st bx + y = bx · by 23 + 2 = 23 · 22 = 32 2nd bx -y = bx ———- by 23 -2 = 23 = 22 2 3rd bx *y = (bx)y 23 *2 = (23)2 = 64 4th n Z+ bx : n = n√bx 24 : 2 = 2√24 = 4 5th (b · c)x = bx · cx (2 · 3)2 = 22 · 32 = 36 6th (_b_)x = c bx ———- cx (_4_)3 = 2 43 ———- = 23 8 Enzo Exposyto 10
  • 11. Exponentials - 6 Properties - Proofs/Examples PROOFS / EXAMPLES [b, c > 0 and b, c < > 1] 1st b3 · b2 = (b · b · b) · (b · b) = b · b · b · b · b = b5 = b3 + 2 2nd b3 = (b · b · b) = b = b1 = b3 - 2 b2 (b · b) 3rd (b3)2 = (b · b · b) · (b · b · b) = b · b · b · b · b · b = b6 = b3 * 2 4th 2√b4 = 2√(b · b · b · b) = b · b = b2 = b4 : 2 5th b3 · c3 = (b · b · b) · (c · c · c) = b · c · b · c · b · c = … = (b·c)3 6th b3 (b · b · b) b b b b ——- = ————— = —— . —— . —— = … = (—)3 c3 (c · c · c) c c c c Enzo Exposyto 11
  • 12. Exponentials - 2nd property - b superscript 0 EXPONENTIALS - THEIR PROPERTIES - 3 Reference Property Notice Proof Example 2nd Property b0 = 1 b > 0 b ≠ 1 x R b0 = bx - x 20 = 23 - 3 = bx bx = 23 23 = 1 = 1 1 = b0 b > 0 b ≠ 1 1 = 20 Enzo Exposyto 12
  • 13. Exponentials - 2nd property - b superscript (-x) EXPONENTIALS - THEIR PROPERTIES - 4 Reference Property Notice Proof Example 2nd Property b-x = 1 bx b > 0 b ≠ 1 x R b-x = b0-x 2-3 = 20-3 = b0 bx = 20 23 = 1 bx = 1 23 1 = b-x bx b > 0 b ≠ 1 x R 1 = 2-3 23 Enzo Exposyto 13
  • 14. Exponentials - 2nd property - Reciprocal of bx EXPONENTIALS and THEIR PROPERTIES - 5 Reference Property Notice Proof Example 2nd Property bx = 1 b-x b > 0 b ≠ 1 x R 23 = 1 2-3 1 = bx b-x b > 0 b ≠ 1 x R 1 = 23 2-3 Enzo Exposyto 14
  • 16. EXPONENTIAL BASE 2: 23 = 2 × 2 x 2 = 8 The LOGARITHM BASE 2 OF 8 goes the OTHER WAY: Enzo Exposyto 16
  • 17. The logarithm base 2 of 8 is 3, BECAUSE 2 cubed is 8; so the logarithm base 2 of 8 is 3: Enzo Exposyto 17
  • 18. THE LOGARITHM BASE 2 OF 8 IS THE OPERATION THAT ALLOWS US OF GOING BACK TO THE EXPONENT 3 EXPONENTIAL 2x and LOGARITHM BASE 2 EXPONENT x 2x 1 2 2 4 3 8 4 16 Enzo Exposyto 18
  • 19. In other words … THE LOGARITHM BASE 2 OF 8 IS THE EXPONENT 3 … MORE PRECISELY … THE LOGARITHM "3" IS THE EXPONENT WHICH WE HAVE TO PUT ON THE BASE “2” TO GET “8” Enzo Exposyto 19
  • 20. Now, since log2(8) = 3 and 8 = 23 then log2(23) = 3 We can see that THE LOGARITHM "3" IS THE EXPONENT WHICH WE HAVE TO PUT ON THE BASE “2” TO GET “23”
 Enzo Exposyto 20
  • 21. EXPONENTIAL and LOGARITHM with the same base CANCEL EACH OTHER. This is true because exponential and logarithm with the same base are INVERSE OPERATIONS It is just like Addition and Subtraction, Multiplication and Division, Exponentiation and Root, … when they're INVERSE OPERATIONS Enzo Exposyto 21
  • 22. Now, we can introduce the ANTILOGARITHM BASE b: antilogb(x) = bx It's, simply, an EXPONENTIAL and represents the antilogarithm when we operate with a logarithm … It’s such that logb(antilogb(x)) = x The meaning is logb(bx) = x Enzo Exposyto 22
  • 23. And, of course, antilogb(logb(y)) = y The meaning is blogb(y) = y Enzo Exposyto 23
  • 24. These phrases - with 8 - are equivalent log2(8) = 3 < = > 23 = 8 OR 23 = 8 < = > log2(8) = 3 These phrases - with 23 - are equivalent log2(23) = 3 < = > 23 = 23 OR 23 = 23 < = > log2(23) = 3 Enzo Exposyto 24
  • 26. LOGARITHM - DEFINITION DEFINITION Example DEFINITION logb(y) = x iff (if and only if) bx = y log2(8) = 3 because 23 = 8 b > 0 and b < > 1 y > 0 x element of R 2 > 0 and 2 < > 1 8 > 0 3 element of R The logarithm "x" is the exponent which we have to put on the base “b” to get “y” The logarithm "3" is the exponent which we have to put on the base “2” to get “8” Enzo Exposyto 26
  • 27. iff bx = y
Enzo Exposyto 27
  • 28. LOGARITHMS - EXAMPLES - 1 log DEFINITION because log3(9) = 2 The logarithm "2" is the exponent which we have to put on the base “3” to get “9” log3(9) = 2 because 32 = 9 log3(27) = 3 The logarithm "3" is the exponent which we have to put on the base “3” to get “27” log3(27) = 3 because 33 = 27 log4(4) = 1 The logarithm "1" is the exponent which we have to put on the base “4” to get “(4)” log4(4) = 1 because 41 = (4) Enzo Exposyto 28
  • 29. LOGARITHMS - EXAMPLES - 2 log DEFINITION because log4(16) = 2 The logarithm "2" is the exponent which we have to put on the base “4” to get “16” log4(16) = 2 because 42 = 16 log5(25) = 2 The logarithm "2" is the exponent which we have to put on the base “5” to get “25” log5(25) = 2 because 52 = 25 log10(100) = 2 The logarithm "2" is the exponent which we have to put on the base “10” to get “100” log10(100) = 2 because 102 = 100 Enzo Exposyto 29
  • 30. LOGARITHMS - EXAMPLES - 3 log DEFINITION because log4(1) = -1 4 The logarithm "-1" is the exponent which we have to put on the base “4” to get “1” 4 log4(1) = -1 4 because 4-1 = 1 4 log10( 1 ) = -1 10 The logarithm "-1" is the exponent which we have to put on the base “10” to get “ 1 ” 10 log10( 1 ) = -1 10 because 10-1 = 1 10 Enzo Exposyto 30
  • 31. LOGARITHMS - EXAMPLES - 4 log DEFINITION because log1/2(2) = -1 The logarithm "-1" is the exponent which we have to put on the base “1” 2 to get “2” log1/2(2) = -1 because (1)-1 = 2 2 log1/4(4) = -1 The logarithm "-1" is the exponent which we have to put on the base “1” 4 to get “4” log1/4(4) = -1 because (1)-1 = 4 4 Enzo Exposyto 31
  • 32. LOGARITHMS - EXAMPLES - 5 log DEFINITION because log1/2(4) = -2 The logarithm "-2" is the exponent which we have to put on the base “1” 2 to get “4” log1/2(4) = -2 because (1)-2 = 4 2 log1/3(9) = -2 The logarithm "-2" is the exponent which we have to put on the base “1” 3 to get “9” log1/3(9) = -2 because (1)-2 = 9 3 Enzo Exposyto 32
  • 33. LOGARITHMS - EXAMPLES - 6 e = 2.718281828… log DEFINITION because loge(e) = 1 The logarithm "1" is the exponent which we have to put on the base “e” to get “(e)” loge(e) = 1 because e1 = (e) loge(1) = 0 The logarithm "0" is the exponent which we have to put on the base “e” to get “1” loge(1) = 0 because e0 = 1 loge(e2) = 2 The logarithm "2" is the exponent which we have to put on the base “e” to get “(e2)” loge(e2) = 2 because e2 = (e2) Enzo Exposyto 33
  • 35. LOGARITHMS - THEIR PROPERTIES - 1 Name Property Example base = 0 log0(y) is undefined log0(2) is undefined y > 0 For any x R-{0}, 0x ≠ 2 (really 0x = 0) and, then, log0(2) Does Not Exist base = 1 log1(y) is undefined log1(2) is undefined y > 0 For any x R, 1x ≠ 2 (really 1x = 1) and, then, log1(2) Does Not Exist logb(0) logb(0) is undefined log2(0) is undefined b > 0 and b < > 1 For any x R, 2x ≠ 0 (really 2x > 0) and, then, log2(0) Does Not Exist Enzo Exposyto 35
  • 36. LOGARITHMS - THEIR PROPERTIES - 2 Name Property Examples logb(1) logb(1) = 0 log2(1) = 0 because 20 = 1b > 0 and b < > 1 logb(b) logb(b) = 1 log4(4) = 1 because 41 = (4)b > 0 and b < > 1 Enzo Exposyto 36
  • 37. LOGARITHMS - THEIR PROPERTIES - 3 Name Property Example logb(bx) logb(bx) = x log2(23) = 3 because 23 = (23) b > 0 and b < > 1 x element of R blogb(y) blogb(y) = y 2log2(8) = 8 because 23 = 8 b > 0 and b < > 1 y > 0 Enzo Exposyto 37
  • 38. LOGARITHMS - THEIR PROPERTIES - 4 Name Property Examples log of a Power logb(yz) = z logb(y) log2(42) = 2 log2(4) b > 0 and b < > 1 y > 0 z element of R b = 2 y = 4 z = 2 log of a Reciprocal logb(1) = logb(y-1) = - logb(y) y log2(1) = log2(4-1) = - log2(4) 4 b > 0 and b < > 1 y > 0 b = 2 y = 4 Enzo Exposyto 38
  • 39. LOGARITHMS - THEIR PROPERTIES - 5 Name Property Examples log of a Root - 1 logb(n√y) = logb(y) n log2(3√8) = log2(8) 3 b > 0 and b < > 1 y > 0 n Z+ Z+ = {1, 2, 3, …} b = 2 y = 8 n = 3 log of a Root - 2 logb(n√yz) = z logb(y) n log2(3√26) = 6 log2(2) 3 b > 0 and b < > 1 y > 0 z element of R n Z+ Z+ = {1, 2, 3, …} b = 2 y = 2 z = 6 n = 3 Enzo Exposyto 39
  • 40. LOGARITHMS - THEIR PROPERTIES - 6 Name Property Examples log of a Product - 1 logb(y z) = logb(y) + logb(z) log2(4 2) = log2(4) + log2(2) b > 0 and b < > 1 y, z > 0 b = 2 y = 4; z = 2 log of a Product - 2 logb(yn . zp) = n.logb(y)+p.logb(z) log2(43 . 24) = 3.log2(4)+4.log2(2) b > 0 and b < > 1 y, z > 0 n, p elements of R b = 2 y = 4; z = 2 n = 3; p = 4 Enzo Exposyto 40
  • 41. LOGARITHMS - THEIR PROPERTIES - 7 Name Property Examples log of a Quotient - 1 logb(y) = logb(y.z-1) = logb(y)-logb(z) z log2(8) = log2(8.4-1) = log2(8) - log2(4) 4 b > 0 and b < > 1 y, z > 0 b = 2 y = 8; z = 4 log of a Quotient - 2 logb(y) = logb(y) - logb(z) z log2(4) = log2(4) - log2(2) 2 b > 0 and b < > 1 y, z > 0 b = 2 y = 4; z = 2 log of a Quotient - 3 logb(yn) = n.logb(y)-p.logb(z) zp log2(43) = 3.log2(4)-4.log2(2) 24 b > 0 and b < > 1 y, z > 0 n, p elements of R b = 2 y = 4; z = 2 n = 3; p = 4 Enzo Exposyto 41
  • 42. LOGARITHMS - THEIR PROPERTIES - 8 Name Property Examples Base Change - 1 logb(y) = logc(y) logc(b) log2(16) = log4(16) = 2 = 4 log4(2) 1 2b, c > 0 and b, c < > 1 y > 0 Base Switch - 1 logb(c) = logc(c) = 1 logc(b) logc(b) log2(4) = log4(4) = 1 log4(2) log4(2) logc(c) = 1 log4(4) = 1 b, c > 0 and b, c < > 1 b = 2; c= 4 Base Switch - 2 logb(c) * logc(b) = 1 log2(4) * log4(2) = 1 Enzo Exposyto 42
  • 43. LOGARITHMS - THEIR PROPERTIES - 9 Name Property Examples Base Change - 2 logbn(y) = logb(y) n log2-3(8) = log2(8) -3 b > 0 and b < > 1 n element of R, n < > 0 y > 0 b = 2 n = -3 y = 8 Base Change - 3a n . logbn(y) = logb(y) -3 . log2-3(8) = log2(8) n element of R, n < > 0 b > 0 and b < > 1 y > 0 n = -3 b = 2 y = 8 Base Change - 3b logb(y) = n . logbn(y) log2(4) = 2 . log22(4) b > 0 and b < > 1 y > 0 n element of R, n < > 0 b = 2 y = 4 n = 2 Enzo Exposyto 43
  • 44. LOGARITHMS - THEIR PROPERTIES - 10 Name Property Examples Base Change - 4 log1/b(y) = - logb(y) log1/8(8) = - log8(8) b > 0 and b < > 1 y > 0 b = 8 y = 8 Base Change - 5 logb(1) = log1/b(y) y log2(1) = log1/2(4) 4 b > 0 and b < > 1 y > 0 b = 2 y = 4 Enzo Exposyto 44
  • 45. LOGARITHMS - THEIR PROPERTIES - 11 Name Property Examples zlogb(y) zlogb(y) = ylogb(z) 2log2(8) = 8log2(2) z > 0 b > 0 and b < > 1 y > 0 z = 2 b = 2 y = 8 Enzo Exposyto 45
  • 47. log(y) AND ln(y) - THEIR PROPERTIES REMARKS: • log(y) always refers to log base 10, i. e., log(y) = log10(y) Therefore, log(y) = x if and only if 10x = y Enzo Exposyto 47
  • 48. • ln(y) is called the natural logarithm and is used to represent loge(y), where the irrational number e 2.718281828: ln(y) = loge(y) Therefore, ln(y) = x if and only if ex = y Enzo Exposyto 48
  • 49. • Most calculators can directly compute logs base 10 and/or the natural log. For any other base it is necessary to use the change of the base formula: logb(y) = log10(y) = log(y) log2(8) = log(8) log10(b) log(b). log(2) or logb(y) = ln(y) log2(8) = ln(8) ln(b) ln(2)
 Enzo Exposyto 49
  • 50. log(y) AND ln(y) - THEIR PROPERTIES - 1 Property log ln base = 0 base = 10 base = e base = 1 base = 10 base = e logb(0) log(0) is undefined ln(0) is undefined For any x R, 10x ≠ 0 (really 10x > 0) and, then, log(0) Does Not Exist For any x R, ex ≠ 0 (really ex > 0) and, then, ln(0) Does Not Exist Enzo Exposyto 50
  • 51. log(x) AND ln(x) - THEIR PROPERTIES - 2 Property log ln logb(1) log(1) = 0 ln(1) = 0 because 100 = 1 because e0 = 1 logb(b) log(10) = 1 ln(e) = 1 because 101 = 10 because e1 = e Enzo Exposyto 51
  • 52. log(y) AND ln(y) - THEIR PROPERTIES - 3 Property log ln logb(bx) log(10x) = x ln(ex) = x x element of R x R blogb(y) 10log(y) = y eln(y) = y y > 0 y > 0 Enzo Exposyto 52
  • 53. log(y) AND ln(y) - THEIR PROPERTIES - 4 Property log ln log of a Power log(yz) = z log(y) ln(yz) = z ln(y) y > 0 z element of R y > 0 z element of R log of a Reciprocal log(1) = log(y-1) = - log(y) y ln(1) = ln(y-1) = - ln(y) y y > 0 y > 0 Enzo Exposyto 53
  • 54. log(y) AND ln(y) - THEIR PROPERTIES - 5 Property log ln log of a Root - 1 log(n√y) = log(y) n ln(n√y) = ln(y) n n Z+ Z+ = {1, 2, 3, …} y > 0 n Z+ Z+ = {1, 2, 3, …} y > 0 log of a Root - 2 log(n√yz) = z log(y) n ln(n√yz) = z ln(y) n n element of Z+ Z+ = {1, 2, 3, …} y > 0 z element of R n element of Z+ Z+ = {1, 2, 3, …} y > 0 z element of R Enzo Exposyto 54
  • 55. log(y) AND ln(y) - THEIR PROPERTIES - 6 Property log ln log of a Product - 1 log(y z) = log(y) + log(z) ln(y z) = ln(y) + ln(z) y, z > 0 y, z > 0 log of a Product - 2 log(yn . zp) = n.log(y)+p.log(z) ln(yn . zp) = n.ln(y)+p.ln(z) y, z > 0 n, p elements of R y, z > 0 n, p elements of R Enzo Exposyto 55
  • 56. log(y) AND ln(y) - THEIR PROPERTIES - 7 Property log ln log of a Quotient - 1 log(y) = log(y.z-1) = log(y)-log(z) z ln(y) = ln(y.z-1) = ln(y)-ln(z) z y, z > 0 y, z > 0 log of a Quotient - 2 log(y) = log(y) - log(z) z ln(y) = ln(y) - ln(z) z y, z > 0 y, z > 0 log of a Quotient - 3 log(yn) = n.log(y)-p.log(z) zp ln(yn) = n.ln(y)-p.ln(z) zp y, z > 0 n, p elements of R y, z > 0 n, p elements of R Enzo Exposyto 56
  • 57. log(y) AND ln(y) - THEIR PROPERTIES - 8 Property log ln Base Change - 1 log(y) = logc(y) logc(10) ln(y) = logc(y) logc(e) y > 0 c > 0 and c < > 1 y > 0 c > 0 and c < > 1 Base Switch - 1 log(c) = logc(c) = 1 logc(10) logc(10) ln(c) = logc(c) = 1 logc(e) logc(e) logc(c) = 1 logc(c) = 1 c > 0 and c < > 1 c > 0 and c < > 1 Base Switch - 2 log(c) * logc(10) = 1 ln(c) * logc(e) = 1 c > 0 and c < > 1 c > 0 and c < > 1 Enzo Exposyto 57
  • 58. log10(y) AND loge(y) - THEIR PROPERTIES - 9 Property log10 loge Base Change - 2 log10n(y) = log10(y) n logen(y) = loge(y) n n element of R, n < > 0 y > 0 n element of R, n < > 0 y > 0 Base Change - 3a n . log10n(y) = log10(y) n . logen(y) = loge(y) n element of R, n < > 0 y > 0 n element of R, n < > 0 y > 0 Base Change - 3b log10(y) = n . log10n(y) loge(y) = n . logen(y) y > 0 n element of R, n < > 0 y > 0 n element of R, n < > 0 Enzo Exposyto 58
  • 59. log10(y) AND loge(y) - THEIR PROPERTIES - 10 Property log10 loge Base Change - 4 log1/10(y) = - log10(y) log1/e(y) = - loge(y) y > 0 y > 0 Base Change - 5 log10(1) = log1/10(y) y loge(1) = log1/e(y) y y > 0 y > 0 Enzo Exposyto 59
  • 60. log10(y) AND loge(y) - THEIR PROPERTIES - 11 Property log10 loge zlogb(y) zlog10(y) = ylog10(z) zloge(y) = yloge(z) z > 0 y > 0 z > 0 y > 0 Enzo Exposyto 60
  • 62. logb(bx) = x a) The log of bx is the exponent which we have to put on the base b to get bx itself and, therefore, it’s “x” b) If, from x, we ‘go’ to bx and, then, from bx, we ‘go’ to logb(bx), since logb(bx) is the inverse operation of bx, we go back to x … therefore, logb(bx) = x In other words (remembering that bx = antilogb(x)): logb(antilogb(x)) = x 
 Enzo Exposyto 62
  • 63. logb(bx) = x c) Let's set bx = y and, then, we ‘do’ the logarithms in base b of both sides; we get logb(bx) = logb(y) Since bx = y <=> logb(y) = x we can write logb(bx) = logb(y) = x Therefore, logb(bx) = x Q.E.D. Enzo Exposyto 63
  • 65. blogb(y) = y a) If from y, we ‘go’ to logb(y) and, then, from logb(y), we ‘go’ to blogb(y), since blogb(y) is the inverse operation of logb(y), we go back to y … therefore, blogb(y) = y In other words (remembering that blogb(y) = antilogb(logb(y))): antilogb(logb(y)) = y 
 Enzo Exposyto 65
  • 66. blogb(y) = y b) Let's set bx = y and, then, we ‘do’ the log in base b of both sides; we get logb(bx) = logb(y) Remembering that (pages 62-63) logb(bx) = x we can write logb(bx) = logb(y) x = logb(y) or logb(y) = x Now, we ‘do’ the exponentials in base b of both sides and we get blogb(y) = bx Since bx = y we get blogb(y) = y Q.E.D. Enzo Exposyto 66
  • 67. blogb(y) = y c) Let's set logb(y) = x and, then, on the left hand side of the equation, we get blogb(y) = bx Since logb(y) = x <=> bx = y it's blogb(y) = bx = y and, therefore, blogb(y) = y Q.E.D. Enzo Exposyto 67
  • 69. logb(yz) = z . logb(y) 1) Let's set logb(y) = l and, then, the right hand side of the equation becomes z . logb(y) = z . l 2) Since logb(y) = l <=> bl = y or y = bl the left hand side of the equation becomes logb(yz) = logb((bl)z) = logb(blz) Remembering that (pages 62-63) logb(bx) = x it's logb(blz) = lz = z . l and we can write logb(yz) = logb(blz) = z . l 3) Since the left hand side and the right hand side are equal to z . l, they are equal: logb(yz) = z . logb(y) Q.E.D. Enzo Exposyto 69
  • 70. logb(1) = - logb(y) y OR - logb(y) = logb(1) y Remembering that logb(yz) = z . logb(y) [log of a Power, previous page] we get logb(1) = logb(y-1) y = (-1) . logb(y) = - logb(y) Q.E.D.
 Enzo Exposyto 70
  • 72. logb(n√y) = logb(y) n Remembering that logb(yz) = z . logb(y) [log of a Power, page 69] we get logb(n√y) = logb(y1/n) = 1 logb(y) n = logb(y) n Q.E.D.
 Enzo Exposyto 72
  • 73. logb(n√yz) = z . logb(y) n Remembering that logb(yz) = z . logb(y) [log of a Power, page 69] we get logb(n√yz) = logb(yz/n) = z logb(y) n = z . logb(y) n Q.E.D.
 Enzo Exposyto 73
  • 75. logb(y . z) = logb(y) + logb(z) 1) Let's set logb(y) = l logb(z) = m and, then, the right hand side of the equation becomes logb(y) + logb(z) = l + m 2) Since logb(y) = l <=> bl = y or y = bl logb(z) = m <=> bm = z or z = bm the left hand side of the equation becomes logb(y . z) = logb(bl . bm) = logb(bl+m) Remembering that (pages 62-63) logb(bx) = x it's logb(bl+m) = l + m and we can write logb(y . z) = logb(bl+m) = l + m 3) Since the left hand side and the right hand side are equal to l + m, they are equal: logb(y . z) = logb(y) + logb(z) Q.E.D. Enzo Exposyto 75
  • 76. logb(yn . zp) = n . logb(y) + p . logb(z) Remembering that logb(y . z) = logb(y) + logb(z) [previous page] and logb(yz) = z . logb(y) [log of a Power, page 69] we get logb(yn . zp) = logb(yn) + logb(zp) = n . logb(y) + p . logb(z) Q.E.D.
 Enzo Exposyto 76
  • 78. logb(y) = logb(y) - logb(z) z Remembering that logb(y . z) = logb(y) + logb(z) [page 75] and logb(yz) = z . logb(y) [log of a Power, page 69] we get logb(y) = logb(y . 1) = logb(y . z-1) z z = logb(y) + logb(z-1) = logb(y) + (-1) . logb(z) = logb(y) - logb(z) Q.E.D. Enzo Exposyto 78
  • 79. logb(y) = logb(y) - logb(z) z 1) Let's set logb(y) = l logb(z) = m and, then, the right hand side of the equation becomes logb(y) - logb(z) = l - m 2) Since logb(y) = l <=> bl = y or y = bl logb(z) = m <=> bm = z or z = bm the left hand side of the equation becomes logb(y) = logb(bl ) = logb(bl-m) z bm Remembering that (pages 62-63) logb(bx) = x it's logb(bl-m) = l - m and we can write logb(y) = logb(bl-m) = l - m z Enzo Exposyto 79
  • 80. logb(y) = logb(y) - logb(z) z 3) Since the left hand side and the right hand side are equal to l - m, they are equal: logb(y) = logb(y) - logb(z) z Q.E.D. Enzo Exposyto 80
  • 81. logb(yn) = n . logb(y) - p . logb(z) zp Remembering that logb(y) = logb(y) - logb(z) [previous page] z and logb(yz) = z . logb(y) [log of a Power, page 69] we get logb(yn) = logb(yn) - logb(zp) zp = n . logb(y) - p . logb(z) Q.E.D.
 Enzo Exposyto 81
  • 83. logb(y) = logc(y) logc(b) 1) On the left hand side of the equation, let's set logb(y) = x 2) On the right hand side of the equation, since logb(y) = x <=> bx = y or y = bx we substitute y by bx logc(y) = logc(bx) = x . logc(b) [log of a Power, page 69] and we get logc(y) = x . logc(b) = x logc(b) logc(b) 3) Since the left hand side and the right hand side are equal to x, they are equal: logb(y) = logc(y) logc(b) Q.E.D. Enzo Exposyto 83
  • 84. logb(c) = 1 logc(b) It's logb(c) = logc(c) logc(b) Since logc(c) = 1 we get logb(c) = logc(c) logc(b) = 1 logc(b) and, then, logb(c) = 1 logc(b) Q.E.D. Enzo Exposyto 84
  • 85. logb(c) . logc(b) = 1 From logb(c) = 1 logc(b) multiplying both sides by logc(b), it’s logb(c) logc(b) = 1 logc(b) logc(b) and, then, logb(c) logc(b) = 1 Q.E.D. Enzo Exposyto 85
  • 86. logbn(y) = logb(y) n Let's change the base bn by b: logbn(y) = logb(y) logb(bn) [log of a Power, page 69] = logb(y) n logb(b) [remember: logb(b) = 1] = logb(y) n Therefore: logbn(y) = logb(y) n Q.E.D. Enzo Exposyto 86
  • 87. n . logbn(y) = logb(y) OR logb(y) = n . logbn(y) From logbn(y) = logb(y) [previous page] n multiplying both sides by n, it’s n . logbn(y) = logb(y) . n n and, then, n . logbn(y) = logb(y) Q.E.D.
 Enzo Exposyto 87
  • 88. log1/b(y) = - logb(y) a) From logb(y) = n . logbn(y) [previous page] if n = -1 we get logb(y) = (-1) . logb-1(y) [remember: b-1 = 1] b logb(y) = - log1/b(y) [multiplying both sides by (-1)] - logb(y) = log1/b(y) and, then, log1/b(y) = - logb(y) Q.E.D. Enzo Exposyto 88
  • 89. log1/b(y) = - logb(y) b) Let's change the base 1 by b: b log1/b(y) = logb(y) logb(1) [remember: 1 = b-1] b b = logb(y) logb(b-1) [log of a Power, page 69] = logb(y) (-1) logb(b) [remember: logb(b) = 1] = logb(y) (-1) = - logb(y) Q.E.D. Enzo Exposyto 89
  • 90. logb(1) = log1/b(y) y OR log1/b(y) = logb(1) y 1) From page 70: logb(1) = - logb(y) y 2) From previous page: log1/b(y) = - logb(y) 3) Since the first and the second left hand side are equal to - logb(y), they are equal: logb(1) = log1/b(y) y Q.E.D. Enzo Exposyto 90
  • 92. zlogb(y) = ylogb(z) 1) On the left hand side of the equation, let's set logb(y) = x and we get zlogb(y) = zx 2) On the right hand side of the equation, since logb(y) = x <=> bx = y or y = bx we substitute y by bx and we get ylogb(z) = (bx)logb(z) = bxlogb(z) = blogb(zx) [log of a Power, page 69] = zx [blogb(zx) = zx See blogb(y) = y (pages 65-67)] 3) Since the left hand side and the right hand side are equal to zx, they are equal: zlogb(y) = ylogb(z) Q.E.D. 
 Enzo Exposyto 92