SlideShare a Scribd company logo
ENZO EXPOSYTO
MATHS
SYMBOLS
PROPERTIES of EXPONENTIALS and LOGARITHMS

Enzo Exposyto 1
2X ex 2-x e-x
EXPONENTIALS
LOGARITHMS
log2(x) ln(x) log(x)

Enzo Exposyto 2


Enzo Exposyto 3
1 - Exponential - Definition 6
2 - Exponentials - Their Properties 8
3 - Exponentials and Logarithms 15
4 - Logarithm - Definition and Examples 25
5 - Logarithms - Their Properties 34
6 - log(y) and ln(y) - Properties 46
Enzo Exposyto 4
7 - logb(bx) = x - Proofs 61
8 - ylogb(y) = y - Proofs 64
9 - log of a Power - Proofs 68
10 - log of a Root - Proofs 71
11 - log of a Product - Proofs 74
12 - log of a Quotient - Proofs 77
13 - Change of Base - Proofs 82
14 - zlogb(y) = ylogb(z) - Proof 91
15 - SitoGraphy 93
Enzo Exposyto 5
logb(bx) = x
PROOFS

Enzo Exposyto 61
logb(bx) = x
a) The log of bx is the exponent which we have to put on the
base b to get bx itself and, therefore, it’s “x”
b) If,
from x, we ‘go’ to bx
and, then,
from bx, we ‘go’ to logb(bx),
since
logb(bx) is the inverse operation of bx,
we go back to x …
therefore,
logb(bx) = x
In other words
(remembering that bx = antilogb(x)):
logb(antilogb(x)) = x 

Enzo Exposyto 62
logb(bx) = x
c) Let's set
bx = y
and, then, we ‘do’ the logarithms in base b of both sides;
we get
logb(bx) = logb(y)
Since
bx = y <=> logb(y) = x
we can write
logb(bx) = logb(y)
= x
Therefore,
logb(bx) = x
Q.E.D.
Enzo Exposyto 63
blogb(y) = y
PROOFS


Enzo Exposyto 64
blogb(y) = y
a) If
from y, we ‘go’ to logb(y)
and, then,
from logb(y), we ‘go’ to blogb(y),
since
blogb(y) is the inverse operation of logb(y),
we go back to y …
therefore,
blogb(y) = y
In other words
(remembering that blogb(y) = antilogb(logb(y))):
antilogb(logb(y)) = y 

Enzo Exposyto 65
blogb(y) = y
b) Let's set
bx = y
and, then, we ‘do’ the log in base b of both sides; we get
logb(bx) = logb(y)
Remembering that (pages 62-63)
logb(bx) = x
we can write
logb(bx) = logb(y)
x = logb(y)
or
logb(y) = x
Now, we ‘do’ the exponentials in base b of both sides and we get
blogb(y) = bx
Since
bx = y
we get
blogb(y) = y
Q.E.D.
Enzo Exposyto 66
blogb(y) = y
c) Let's set
logb(y) = x
and, then,
on the left hand side of the equation,
we get
blogb(y) = bx
Since
logb(y) = x <=> bx = y
it's
blogb(y) = bx = y
and, therefore,
blogb(y) = y
Q.E.D.
Enzo Exposyto 67
log of
a POWER
PROOFS

Enzo Exposyto 68
logb(yz) = z . logb(y)
1) Let's set
logb(y) = l
and, then, the right hand side of the equation becomes
z . logb(y) = z . l
2) Since
logb(y) = l <=> bl = y
or y = bl
the left hand side of the equation becomes
logb(yz) = logb((bl)z)
= logb(blz)
Remembering that (pages 62-63)
logb(bx) = x
it's
logb(blz) = lz = z . l
and we can write
logb(yz) = logb(blz) = z . l
3) Since the left hand side and the right hand side are equal to z . l, they are equal:
logb(yz) = z . logb(y)
Q.E.D.
Enzo Exposyto 69
logb(1) = - logb(y)
y
OR
- logb(y) = logb(1)
y
Remembering that
logb(yz) = z . logb(y) [log of a Power, previous page]
we get
logb(1) = logb(y-1)
y
= (-1) . logb(y)
= - logb(y)
Q.E.D.

Enzo Exposyto 70
log of
a ROOT
PROOFS

Enzo Exposyto 71
logb(n√y) = logb(y)
n
Remembering that
logb(yz) = z . logb(y) [log of a Power, page 69]
we get
logb(n√y) = logb(y1/n)
= 1 logb(y)
n
= logb(y)
n
Q.E.D.

Enzo Exposyto 72
logb(n√yz) = z . logb(y)
n
Remembering that
logb(yz) = z . logb(y) [log of a Power, page 69]
we get
logb(n√yz) = logb(yz/n)
= z logb(y)
n
= z . logb(y)
n
Q.E.D.

Enzo Exposyto 73

More Related Content

DOC
Membuat rumus
DOCX
Answer to selected_miscellaneous_exercises
PPTX
Pratikum 2 urai wira s
PPTX
Pratikum 1 hardiansyah
PDF
MATHS SYMBOLS - #2 - EXPONENTIALS and LOGARITHMS
PDF
MATHS SYMBOLS - #4 - LOGARITHMS - THEIR PROPERTIES
PDF
MATHS SYMBOLS - #1 - EXPONENTIALS and THEIR PROPERTIES
PPTX
Ejercicios resueltos
Membuat rumus
Answer to selected_miscellaneous_exercises
Pratikum 2 urai wira s
Pratikum 1 hardiansyah
MATHS SYMBOLS - #2 - EXPONENTIALS and LOGARITHMS
MATHS SYMBOLS - #4 - LOGARITHMS - THEIR PROPERTIES
MATHS SYMBOLS - #1 - EXPONENTIALS and THEIR PROPERTIES
Ejercicios resueltos

What's hot (19)

PDF
110617 lt
PDF
11X1 T01 09 completing the square (2011)
PDF
Calculus :Tutorial 2
PDF
MATHS SYMBOLS - #5 - LOGARITHMS - LOG(y) - LN(y) - THEIR PROPERTIES
PDF
PDF
Funções 7
PDF
Day 4 examples
PPTX
Quadratic equations 7
PDF
Day 3 examples u6f13
PPT
Finding exponential equations
PDF
New day 3 examples
PDF
Ah unit 1 differentiation
DOC
Tutorial 2 -_sem_a102
DOCX
Make up test
PDF
Properties of-logarithms
KEY
「Frama-Cによるソースコード検証」 (mzp)
PDF
Exercise #22
PDF
Pre-Cal 40S Slides April 9, 2008
110617 lt
11X1 T01 09 completing the square (2011)
Calculus :Tutorial 2
MATHS SYMBOLS - #5 - LOGARITHMS - LOG(y) - LN(y) - THEIR PROPERTIES
Funções 7
Day 4 examples
Quadratic equations 7
Day 3 examples u6f13
Finding exponential equations
New day 3 examples
Ah unit 1 differentiation
Tutorial 2 -_sem_a102
Make up test
Properties of-logarithms
「Frama-Cによるソースコード検証」 (mzp)
Exercise #22
Pre-Cal 40S Slides April 9, 2008
Ad

Similar to MATHS SYMBOLS - #6 - LOGARITHMS, LOG of a POWER, LOG of a ROOT - PROOFS (20)

PDF
MATHS SYMBOLS - #7 - LOGARITHMS, LOG of a PRODUCT, LOG of a QUOTIENT - PROOFS
PDF
MATHS SYMBOLS - #8 - LOGARITHMS, CHANGE of BASE - PROOFS
PDF
MATHS SYMBOLS - EXPONENTIALS + LOGARITHMS and THEIR PROPERTIES
PDF
MATHS SYMBOLS - #3 - LOGARITHMS - DEFINITION - EXAMPLES
PPT
Logarithmic Functions
PDF
Chapter 31 logarithms
PPT
3.1 properties of logarithm
PDF
Module 4 exponential and logarithmic functions
PDF
090601 logs
PPT
1528 exponential-log
PPTX
Exponential and logarithmic functions
PPTX
Logarithmic functions (2)
PPT
Business Math Chapter 2
PPT
1.4 review on log exp-functions
PPT
Exponents and logarithms
PPTX
8.4 logarithmic functions
PPT
Properties of logarithms
PDF
4.3 Logarithmic Functions
PDF
4.3 Logarithmic Functions
PPTX
Logarithm
MATHS SYMBOLS - #7 - LOGARITHMS, LOG of a PRODUCT, LOG of a QUOTIENT - PROOFS
MATHS SYMBOLS - #8 - LOGARITHMS, CHANGE of BASE - PROOFS
MATHS SYMBOLS - EXPONENTIALS + LOGARITHMS and THEIR PROPERTIES
MATHS SYMBOLS - #3 - LOGARITHMS - DEFINITION - EXAMPLES
Logarithmic Functions
Chapter 31 logarithms
3.1 properties of logarithm
Module 4 exponential and logarithmic functions
090601 logs
1528 exponential-log
Exponential and logarithmic functions
Logarithmic functions (2)
Business Math Chapter 2
1.4 review on log exp-functions
Exponents and logarithms
8.4 logarithmic functions
Properties of logarithms
4.3 Logarithmic Functions
4.3 Logarithmic Functions
Logarithm
Ad

More from Ist. Superiore Marini-Gioia - Enzo Exposyto (20)

PDF
Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...
PDF
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
PDF
Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...
PDF
Valori della Frazione 4 su 3 - Due Formule con Tante Dimostrazioni e Molti E...
PDF
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
PDF
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
PDF
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...
PDF
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
PDF
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
PDF
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
PDF
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
PDF
ESEMPIO 2a - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 2 MET...
PDF
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ...
PDF
EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ANALITICO - ...
PDF
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - METODO...
PDF
EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 3 METODI ANALITICI...
PDF
ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...
PDF
DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...
PDF
DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...
PDF
ESEMPIO 2 - QUARTICA - EQUAZIONE e PUNTI di FLESSO
Gli Infiniti Valori Derivanti dalla Frazione 1 su 6 - Cinque Formule - Molte ...
Gli Infiniti Valori Derivanti dalla Frazione 1 su 9 - Quattro Formule - Numer...
Gli Infiniti Valori Derivanti dalla Frazione 5 su 3 - Due Formule con Sette D...
Valori della Frazione 4 su 3 - Due Formule con Tante Dimostrazioni e Molti E...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA dei...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - SICUREZZA PER...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - VALORE delle ...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ICDL/ECDL FULL STANDARD - IT SECURITY - CONCETTI di SICUREZZA - MINACCE ai DA...
ESEMPIO 2a - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 2 MET...
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ...
EQUAZIONI e DISEQUAZIONI LOGARITMICHE - METODO GRAFICO - METODO ANALITICO - ...
ESEMPIO 2 - EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - METODO...
EQUAZIONI e DISEQUAZIONI ESPONENZIALI - METODO GRAFICO - 3 METODI ANALITICI...
ICDL/ECDL BASE - MODULO 2 - ONLINE ESSENTIALS - BROWSER - EMAIL - ICT - RETI ...
DERIVATA della FUNZIONE COSECANTE IPERBOLICA - 3 ESPRESSIONI della COSECANTE ...
DERIVATA della FUNZIONE SECANTE IPERBOLICA - 3 ESPRESSIONI della SECANTE - IN...
ESEMPIO 2 - QUARTICA - EQUAZIONE e PUNTI di FLESSO

Recently uploaded (20)

PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PPTX
Cell Structure & Organelles in detailed.
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
Complications of Minimal Access Surgery at WLH
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
Trump Administration's workforce development strategy
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Classroom Observation Tools for Teachers
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
STATICS OF THE RIGID BODIES Hibbelers.pdf
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Supply Chain Operations Speaking Notes -ICLT Program
O7-L3 Supply Chain Operations - ICLT Program
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Cell Structure & Organelles in detailed.
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Complications of Minimal Access Surgery at WLH
Weekly quiz Compilation Jan -July 25.pdf
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
human mycosis Human fungal infections are called human mycosis..pptx
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
VCE English Exam - Section C Student Revision Booklet
Microbial diseases, their pathogenesis and prophylaxis
Chinmaya Tiranga quiz Grand Finale.pdf
Trump Administration's workforce development strategy
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Classroom Observation Tools for Teachers
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx

MATHS SYMBOLS - #6 - LOGARITHMS, LOG of a POWER, LOG of a ROOT - PROOFS

  • 1. ENZO EXPOSYTO MATHS SYMBOLS PROPERTIES of EXPONENTIALS and LOGARITHMS
 Enzo Exposyto 1
  • 2. 2X ex 2-x e-x EXPONENTIALS LOGARITHMS log2(x) ln(x) log(x)
 Enzo Exposyto 2
  • 4. 1 - Exponential - Definition 6 2 - Exponentials - Their Properties 8 3 - Exponentials and Logarithms 15 4 - Logarithm - Definition and Examples 25 5 - Logarithms - Their Properties 34 6 - log(y) and ln(y) - Properties 46 Enzo Exposyto 4
  • 5. 7 - logb(bx) = x - Proofs 61 8 - ylogb(y) = y - Proofs 64 9 - log of a Power - Proofs 68 10 - log of a Root - Proofs 71 11 - log of a Product - Proofs 74 12 - log of a Quotient - Proofs 77 13 - Change of Base - Proofs 82 14 - zlogb(y) = ylogb(z) - Proof 91 15 - SitoGraphy 93 Enzo Exposyto 5
  • 7. logb(bx) = x a) The log of bx is the exponent which we have to put on the base b to get bx itself and, therefore, it’s “x” b) If, from x, we ‘go’ to bx and, then, from bx, we ‘go’ to logb(bx), since logb(bx) is the inverse operation of bx, we go back to x … therefore, logb(bx) = x In other words (remembering that bx = antilogb(x)): logb(antilogb(x)) = x 
 Enzo Exposyto 62
  • 8. logb(bx) = x c) Let's set bx = y and, then, we ‘do’ the logarithms in base b of both sides; we get logb(bx) = logb(y) Since bx = y <=> logb(y) = x we can write logb(bx) = logb(y) = x Therefore, logb(bx) = x Q.E.D. Enzo Exposyto 63
  • 10. blogb(y) = y a) If from y, we ‘go’ to logb(y) and, then, from logb(y), we ‘go’ to blogb(y), since blogb(y) is the inverse operation of logb(y), we go back to y … therefore, blogb(y) = y In other words (remembering that blogb(y) = antilogb(logb(y))): antilogb(logb(y)) = y 
 Enzo Exposyto 65
  • 11. blogb(y) = y b) Let's set bx = y and, then, we ‘do’ the log in base b of both sides; we get logb(bx) = logb(y) Remembering that (pages 62-63) logb(bx) = x we can write logb(bx) = logb(y) x = logb(y) or logb(y) = x Now, we ‘do’ the exponentials in base b of both sides and we get blogb(y) = bx Since bx = y we get blogb(y) = y Q.E.D. Enzo Exposyto 66
  • 12. blogb(y) = y c) Let's set logb(y) = x and, then, on the left hand side of the equation, we get blogb(y) = bx Since logb(y) = x <=> bx = y it's blogb(y) = bx = y and, therefore, blogb(y) = y Q.E.D. Enzo Exposyto 67
  • 14. logb(yz) = z . logb(y) 1) Let's set logb(y) = l and, then, the right hand side of the equation becomes z . logb(y) = z . l 2) Since logb(y) = l <=> bl = y or y = bl the left hand side of the equation becomes logb(yz) = logb((bl)z) = logb(blz) Remembering that (pages 62-63) logb(bx) = x it's logb(blz) = lz = z . l and we can write logb(yz) = logb(blz) = z . l 3) Since the left hand side and the right hand side are equal to z . l, they are equal: logb(yz) = z . logb(y) Q.E.D. Enzo Exposyto 69
  • 15. logb(1) = - logb(y) y OR - logb(y) = logb(1) y Remembering that logb(yz) = z . logb(y) [log of a Power, previous page] we get logb(1) = logb(y-1) y = (-1) . logb(y) = - logb(y) Q.E.D.
 Enzo Exposyto 70
  • 17. logb(n√y) = logb(y) n Remembering that logb(yz) = z . logb(y) [log of a Power, page 69] we get logb(n√y) = logb(y1/n) = 1 logb(y) n = logb(y) n Q.E.D.
 Enzo Exposyto 72
  • 18. logb(n√yz) = z . logb(y) n Remembering that logb(yz) = z . logb(y) [log of a Power, page 69] we get logb(n√yz) = logb(yz/n) = z logb(y) n = z . logb(y) n Q.E.D.
 Enzo Exposyto 73