SlideShare a Scribd company logo
PMB 3004: Calculus
                                       Tutorial 2


1. Change the following improper rational functions to the proper rational functions:

          a) ( x3 + 5x2 – x – 6) / (x-1)
          b) (4x3 – 2x2 - x + 3 ) / x -2
          c) (4x3 + 6x2 + 5x +3) / (2x-1)
          d) (x3 + 5x2 - 2x -1) / (x+3)



2. Simplify the following expressions:

    a )2e3 3e 7
                                                    d) e2 x (e2 x  e x  1)  e x (1  e x )
         e 1.5
   b)                                                    e2 x  e x
         5e1/ 2                                     e)         x
                                                                      1  ex
                                                             e

         4e3 3e 1                                  f) e2 x  (1  e x )2
    c)
         2 e 3 e 2



3. Simplify the following expressions:

   a ) ln x  2 ln x  3ln x
                                                    e) 4log rs 2 t  2log r 2 st 2
     1
   b) ln t  ln t                                        1    x2 1    x3
     2                                              f)     log 2  log 6
                                                         2    y   3   y
   c) log a 100  log a 10  log a 5


         10 ln x  ln x  ln x 3
   d)
              ln x 9  ln x



4. Solve the following equations:
a) 25x  1253      h) log10 4 x 2  2

b) x 5  32        i) 2ln(3t  5)  4

               1
c) 2 x 1         j) log x  log 2  1
              16
                   k) 3ln(e3 x 4 )  9
d) e ln 2 x  4

e) e2 x  3e x     l) 2log(x  2)  log(2x  5)


f)
        1
          2       m) log(x 2  6)  log(x  1)  1
     e 1
      x


                   n) eln x  2x  3
g) 10 x 6  30




                                          PMB/ NS/Jan 09

More Related Content

DOC
Tutorial 2 -_sem_a102
PPTX
حساب النهايات جبرياً
PDF
MATHS SYMBOLS - #1 - EXPONENTIALS and THEIR PROPERTIES
PPTX
Ejercicios resueltos
DOCX
Segundo teorema
PPTX
Exercise 2
PDF
Unit 7 Review A
PDF
Ch18 18
Tutorial 2 -_sem_a102
حساب النهايات جبرياً
MATHS SYMBOLS - #1 - EXPONENTIALS and THEIR PROPERTIES
Ejercicios resueltos
Segundo teorema
Exercise 2
Unit 7 Review A
Ch18 18

What's hot (17)

PDF
Guia 1
PDF
Ma6351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
DOC
P cch9 sg
PDF
Ma8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
PDF
Laplace table
PDF
LABWORK 1 : Basic Algebra
PDF
Math001 mt 061
DOC
Math activities
PPT
11 X1 T05 06 Line Through Pt Of Intersection
PPTX
December10
PDF
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
PDF
Ch02 13
PDF
Logaritmo guia5
PDF
Ee693 sept2014quiz1
PDF
Identidades
PDF
Complexos 2
PPTX
3.2 Derivative as a Function
Guia 1
Ma6351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
P cch9 sg
Ma8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
Laplace table
LABWORK 1 : Basic Algebra
Math001 mt 061
Math activities
11 X1 T05 06 Line Through Pt Of Intersection
December10
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
Ch02 13
Logaritmo guia5
Ee693 sept2014quiz1
Identidades
Complexos 2
3.2 Derivative as a Function
Ad

Similar to Calculus :Tutorial 2 (20)

PDF
2010 mathematics hsc solutions
DOCX
Answer to selected_miscellaneous_exercises
PDF
Solutions on log examples
PPTX
BBMP1103 - Sept 2011 exam workshop - Part 2
PDF
Functionworksheet1
KEY
0408 ch 4 day 8
PPTX
Alg2 lesson 10-3
DOC
09 Trial Penang S1
PDF
Exponential and logarithmic_functions
PDF
1 cb02e45d01
DOCX
Logarithm exercise
PDF
PDF
12X1 T01 03 integrating derivative on function (2010)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12X1 t01 03 integrating derivative on function (2012)
PDF
12X1 T01 03 integrating derivative on function
PDF
12 x1 t01 01 log laws (2013)
PDF
Algebra 2 Lesson 5-6
PPT
Ceramah Add Mth
2010 mathematics hsc solutions
Answer to selected_miscellaneous_exercises
Solutions on log examples
BBMP1103 - Sept 2011 exam workshop - Part 2
Functionworksheet1
0408 ch 4 day 8
Alg2 lesson 10-3
09 Trial Penang S1
Exponential and logarithmic_functions
1 cb02e45d01
Logarithm exercise
12X1 T01 03 integrating derivative on function (2010)
12 x1 t01 03 integrating derivative on function (2013)
12X1 t01 03 integrating derivative on function (2012)
12X1 T01 03 integrating derivative on function
12 x1 t01 01 log laws (2013)
Algebra 2 Lesson 5-6
Ceramah Add Mth
Ad

More from Nuril Ekma (20)

PDF
Perdagangan ( nota ringkas )
PDF
Calculus :Tutorial 5
PDF
Calculus :Tutorial 4
PDF
Calculus :Tutorial 3
PDF
Seminar presentation
PDF
Calculus :Tutorial 1
PDF
Macroeconomic
PDF
Pengajian Islam
PDF
Individual counseling
PDF
Doa angin ahmar
PPT
bab 7 pelaburan
PDF
Ekonomi Asas (buku aktiviti) tingkatan 4-5
DOCX
Ekonomi Asas : Latihan Pengukuhan
PPT
contoh lesson plan
PPT
Animal smuggling
PPTX
Innovation
DOCX
Assigment management
PDF
Ekonomi Asas (buku aktiviti) tingkatan 4
PDF
Ekonomi Asas : Soalan Percubaan
PDF
Soalan Percubaan EA
Perdagangan ( nota ringkas )
Calculus :Tutorial 5
Calculus :Tutorial 4
Calculus :Tutorial 3
Seminar presentation
Calculus :Tutorial 1
Macroeconomic
Pengajian Islam
Individual counseling
Doa angin ahmar
bab 7 pelaburan
Ekonomi Asas (buku aktiviti) tingkatan 4-5
Ekonomi Asas : Latihan Pengukuhan
contoh lesson plan
Animal smuggling
Innovation
Assigment management
Ekonomi Asas (buku aktiviti) tingkatan 4
Ekonomi Asas : Soalan Percubaan
Soalan Percubaan EA

Recently uploaded (20)

PPTX
GDM (1) (1).pptx small presentation for students
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
master seminar digital applications in india
PDF
Classroom Observation Tools for Teachers
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Pre independence Education in Inndia.pdf
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
RMMM.pdf make it easy to upload and study
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
GDM (1) (1).pptx small presentation for students
Anesthesia in Laparoscopic Surgery in India
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
master seminar digital applications in india
Classroom Observation Tools for Teachers
Renaissance Architecture: A Journey from Faith to Humanism
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPH.pptx obstetrics and gynecology in nursing
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
VCE English Exam - Section C Student Revision Booklet
Pre independence Education in Inndia.pdf
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Microbial diseases, their pathogenesis and prophylaxis
O5-L3 Freight Transport Ops (International) V1.pdf
RMMM.pdf make it easy to upload and study
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...

Calculus :Tutorial 2

  • 1. PMB 3004: Calculus Tutorial 2 1. Change the following improper rational functions to the proper rational functions: a) ( x3 + 5x2 – x – 6) / (x-1) b) (4x3 – 2x2 - x + 3 ) / x -2 c) (4x3 + 6x2 + 5x +3) / (2x-1) d) (x3 + 5x2 - 2x -1) / (x+3) 2. Simplify the following expressions: a )2e3 3e 7 d) e2 x (e2 x  e x  1)  e x (1  e x ) e 1.5 b) e2 x  e x 5e1/ 2 e) x  1  ex e 4e3 3e 1 f) e2 x  (1  e x )2 c) 2 e 3 e 2 3. Simplify the following expressions: a ) ln x  2 ln x  3ln x e) 4log rs 2 t  2log r 2 st 2 1 b) ln t  ln t 1 x2 1 x3 2 f) log 2  log 6 2 y 3 y c) log a 100  log a 10  log a 5 10 ln x  ln x  ln x 3 d) ln x 9  ln x 4. Solve the following equations:
  • 2. a) 25x  1253 h) log10 4 x 2  2 b) x 5  32 i) 2ln(3t  5)  4 1 c) 2 x 1  j) log x  log 2  1 16 k) 3ln(e3 x 4 )  9 d) e ln 2 x  4 e) e2 x  3e x l) 2log(x  2)  log(2x  5) f) 1 2 m) log(x 2  6)  log(x  1)  1 e 1 x n) eln x  2x  3 g) 10 x 6  30 PMB/ NS/Jan 09