SlideShare a Scribd company logo
Integrating Derivative
     on Function
Integrating Derivative
     on Function
          f  x 
         f x
                   dx  log f  x   c
Integrating Derivative
       on Function
                             f  x 
                            f x
                                      dx  log f  x   c


               1
e.g. (i)    7  3x dx
Integrating Derivative
       on Function
                             f  x 
                            f x
                                      dx  log f  x   c


                1
e.g. (i)     7  3x dx
               1 3
                     dx
               3 7  3x
Integrating Derivative
       on Function
                              f  x 
                             f x
                                       dx  log f  x   c


                 1
e.g. (i)     7  3x dx
               1 3
                     dx
               3 7  3x
               1
             log7  3 x   c
               3
Integrating Derivative
       on Function
                              f  x 
                             f x
                                       dx  log f  x   c


                 1                              dx
e.g. (i)     7  3x dx              ii     8x  5
               1 3
                     dx
               3 7  3x
               1
             log7  3 x   c
               3
Integrating Derivative
       on Function
                              f  x 
                             f x
                                       dx  log f  x   c


                 1                           dx
e.g. (i)     7  3x dx              ii  8x  5
               1 3                       1 8dx
                     dx                
               3 7  3x                   8 8x  5
               1
             log7  3 x   c
               3
Integrating Derivative
       on Function
                              f  x 
                             f x
                                       dx  log f  x   c


                 1                           dx
e.g. (i)     7  3x dx              ii  8x  5
               1 3                       1 8dx
                     dx                
               3 7  3x                   8 8x  5
               1                          1
             log7  3 x   c          log8 x  5  c
               3                          8
Integrating Derivative
       on Function
                           f  x 
                          f x
                                    dx  log f  x   c


e.g. (i)  1 dx                   ii  
                                           dx                        x5
                                                           iii   6 dx
           7  3x                         8x  5                   x 2
            1 3                        1 8dx
                  dx                
            3 7  3x                    8 8x  5
            1                           1
          log7  3 x   c          log8 x  5  c
            3                           8
Integrating Derivative
       on Function
                           f  x 
                          f x
                                    dx  log f  x   c


e.g. (i)  1 dx                   ii  
                                           dx                        x5
                                                           iii   6 dx
           7  3x                         8x  5                   x 2
            1 3                        1 8dx                     1 6 x5
                  dx                                        6     dx
            3 7  3x                    8 8x  5                  6 x 2
            1                           1
          log7  3 x   c          log8 x  5  c
            3                           8
Integrating Derivative
       on Function
                           f  x 
                          f x
                                    dx  log f  x   c


e.g. (i)  1 dx                   ii  
                                           dx                        x5
                                                           iii   6 dx
           7  3x                         8x  5                    x 2
            1 3                        1 8dx                     1 6 x5
                  dx                                        6      dx
            3 7  3x                    8 8x  5                  6 x 2
                                                                logx 6  2   c
            1                           1                         1
          log7  3 x   c          log8 x  5  c
            3                           8                         6
1
iv   dx
       5x
1
iv   dx
       5x
      1 5
     dx
      5 5x
1
iv   dx
        5x
      1 5
     dx
      5 5x
      1
    log 5 x  c
      5
1
iv   dx         OR   1 1
                           x dx
        5x              5
      1 5
     dx
      5 5x
      1
    log 5 x  c
      5
1
iv   dx         OR    1 1
                            x dx
        5x               5
      1 5
     dx                 1
                         log x  c
      5 5x                5
      1
    log 5 x  c
      5
1
iv   dx         OR    1 1
                            x dx
        5x               5
      1 5
     dx                 1
                         log x  c
      5 5x                5
      1
    log 5 x  c
      5

        4x 1
 v         dx
        2x 1
1
iv   dx           OR          1 1
                                    x dx
        5x                       5
      1 5
     dx                         1
                                 log x  c
      5 5x                        5
      1
    log 5 x  c
      5

        4x 1      order numerator  order denominator
 v         dx
        2x 1
1
iv   dx           OR          1 1
                                    x dx
        5x                       5
      1 5
     dx                         1
                                 log x  c
      5 5x                        5
      1
    log 5 x  c
      5

        4x 1      order numerator  order denominator
 v         dx
                           polynomial division
        2x 1
1
iv   dx           OR          1 1
                                    x dx
        5x                       5
      1 5
     dx                         1
                                 log x  c
      5 5x                        5
      1
    log 5 x  c
      5

        4x 1      order numerator  order denominator
 v         dx
                           polynomial division
        2x 1
                                           2
                                 2x 1 4x 1
                                       4x  2
                                           1
1
iv   dx             OR          1 1
                                      x dx
        5x                         5
      1 5
     dx                           1
                                   log x  c
      5 5x                          5
      1
    log 5 x  c
      5

        4x 1        order numerator  order denominator
 v         dx
                             polynomial division
        2x 1
    2  1  dx                           2
        2 x  1                 2x 1 4x 1
                                         4x  2
                                             1
1
iv   dx                OR         1 1
                                        x dx
        5x                           5
      1 5
     dx                             1
                                     log x  c
      5 5x                            5
      1
    log 5 x  c
      5

        4x 1            order numerator  order denominator
 v         dx
                                 polynomial division
        2x 1
    2  1  dx                                 2
        2 x  1                     2x 1 4x 1
           1                                  4x  2
    2 x  log2 x  1  c
           2                                      1
2
            2x
vi     x 2  1dx
        1
2
            2x
vi     x 2  1dx
        1


    logx  11
              2       2
2
            2x
vi     x 2  1dx
        1


    logx  11
              2       2



    log 5  log 2
2
            2x
vi     x 2  1dx
        1


    logx  11
              2       2



    log 5  log 2

    log 
         5
         
        2
2
vi        2x
         x 2  1dx       vii  Differentiate x 3 log x and hence
        1
                                integrate x 2 log x
    logx  11
              2       2



    log 5  log 2

    log 
         5
         
        2
2
vi        2x
         x 2  1dx       vii  Differentiate x 3 log x and hence
        1
                                integrate x 2 log x
    logx  11
                      2

                                  x log x  x    log x 3x 2 
                                                 3 1
              2
                               d 3
                               dx                   x
    log 5  log 2

    log 
         5
         
        2
2
vi        2x
         x 2  1dx       vii  Differentiate x 3 log x and hence
        1
                                integrate x 2 log x
    logx  11
                      2

                                  x log x  x    log x 3x 2 
                                                  3 1
              2
                               d 3
                               dx                    x
    log 5  log 2
                                              x 2  3 x 2 log x
    log 
         5
         
        2
2
vi        2x
         x 2  1dx       vii  Differentiate x 3 log x and hence
        1
                               integrate x 2 log x
    logx  11
                      2

                                 x log x  x    log x 3x 2 
                                                 3 1
              2
                              d 3
                              dx                    x
    log 5  log 2
                                             x 2  3 x 2 log x
    log 
         5
                                 x        3 x 2 log x dx  x 3 log x  c
                                     2
        2
2
vi        2x
         x 2  1dx       vii  Differentiate x 3 log x and hence
        1
                               integrate x 2 log x
    logx  11
                      2

                                 x log x  x    log x 3x 2 
                                                 3 1
              2
                              d 3
                              dx                    x
    log 5  log 2
                                             x 2  3 x 2 log x
    log 
         5
                                 x        3 x 2 log x dx  x 3 log x  c
                                     2
        2
                              3 x 2 log xdx  x 3 log x   x 2 dx  c
2
vi        2x
         x 2  1dx       vii  Differentiate x 3 log x and hence
        1
                               integrate x 2 log x
    logx  11
                      2

                                 x log x  x    log x 3x 2 
                                                 3 1
              2
                              d 3
                              dx                    x
    log 5  log 2
                                             x 2  3 x 2 log x
    log 
         5
                                 x        3 x 2 log x dx  x 3 log x  c
                                     2
        2
                              3 x 2 log xdx  x 3 log x   x 2 dx  c
                                             1 3         1 3
                                x log xdx  3 x log x  9 x  c
                                  2
2
vi        2x
         x 2  1dx       vii  Differentiate x 3 log x and hence
        1
                               integrate x 2 log x
    logx  11
                      2

                                 x log x  x    log x 3x 2 
                                                 3 1
              2
                              d 3
                              dx                    x
    log 5  log 2
                                             x 2  3 x 2 log x
    log 
         5
                                 x        3 x 2 log x dx  x 3 log x  c
                                     2
        2
                              3 x 2 log xdx  x 3 log x   x 2 dx  c
                                             1 3         1 3
                                x log xdx  3 x log x  9 x  c
                                  2




        Exercise 12D; 1 to 12 ace in all, 14a*

        Exercise 12E; 1 to 6 all, 7 to 21 odds, 22abc*, 23*

More Related Content

PPT
Cursor implementation
PDF
Pc12 sol c04_review
PPTX
Class list data structure
PDF
Real world cats
PDF
PDF
Javascript engine performance
PDF
Pc12 sol c04_cp
Cursor implementation
Pc12 sol c04_review
Class list data structure
Real world cats
Javascript engine performance
Pc12 sol c04_cp

What's hot (15)

PDF
Lesson 6: The derivative as a function
KEY
openFrameworks 007 - utils
PDF
개발 과정 최적화 하기 내부툴로 더욱 강력한 개발하기 Stephen kennedy _(11시40분_103호)
PPTX
Class 17: Golden Sneezewort
PDF
Java, Up to Date Sources
PDF
Lesson 8: Basic Differentiation Rules
PPTX
TCO in Python via bytecode manipulation.
PDF
Tiramisu をちょっと、味見してみました。
KEY
ggplot2できれいなグラフ
PDF
Python opcodes
PDF
Python for Scientific Computing -- Ricardo Cruz
PDF
25 Years of C++ History Flashed in Front of My Eyes
PDF
Extend R with Rcpp!!!
PDF
Jscex: Write Sexy JavaScript
KEY
openFrameworks 007 - GL
Lesson 6: The derivative as a function
openFrameworks 007 - utils
개발 과정 최적화 하기 내부툴로 더욱 강력한 개발하기 Stephen kennedy _(11시40분_103호)
Class 17: Golden Sneezewort
Java, Up to Date Sources
Lesson 8: Basic Differentiation Rules
TCO in Python via bytecode manipulation.
Tiramisu をちょっと、味見してみました。
ggplot2できれいなグラフ
Python opcodes
Python for Scientific Computing -- Ricardo Cruz
25 Years of C++ History Flashed in Front of My Eyes
Extend R with Rcpp!!!
Jscex: Write Sexy JavaScript
openFrameworks 007 - GL
Ad

Viewers also liked (20)

PDF
X2 T05 06 partial fractions (2010)
PDF
11 X1 T07 01 angle theorems (2010)
PDF
11X1 T09 04 chain rule (2010)
PDF
11X1 T14 11 some different types (2010)
PDF
X2 T07 01 acceleration (2010)
PDF
11X1 T08 05 t results (2010)
PDF
11X1 T12 01 first derivative (2010)
PDF
11 x1 t04 01 trigonometric ratios (2012)
PDF
X2 T04 03 t results (2011)
PDF
X2 T06 02 resisted motion (2011)
PDF
11 x1 t08 05 similar triangles
PDF
12X1 T08 01 binomial expansions (2011)
PDF
11X1 T13 02 sketching polynomials
PDF
11X1 T14 06 sum of a geometric series (2011)
PDF
X2 t07 01 features calculus (2012)
PDF
12 x1 t03 01 arcs & sectors (2013)
PDF
X2 T01 06 conjugate properties (2011)
PDF
X2 t07 05 powers of functions (2013)
PDF
12 x1 t05 03 graphing inverse trig (2012)
PDF
11 x1 t11 04 chords of a parabola (2012)
X2 T05 06 partial fractions (2010)
11 X1 T07 01 angle theorems (2010)
11X1 T09 04 chain rule (2010)
11X1 T14 11 some different types (2010)
X2 T07 01 acceleration (2010)
11X1 T08 05 t results (2010)
11X1 T12 01 first derivative (2010)
11 x1 t04 01 trigonometric ratios (2012)
X2 T04 03 t results (2011)
X2 T06 02 resisted motion (2011)
11 x1 t08 05 similar triangles
12X1 T08 01 binomial expansions (2011)
11X1 T13 02 sketching polynomials
11X1 T14 06 sum of a geometric series (2011)
X2 t07 01 features calculus (2012)
12 x1 t03 01 arcs & sectors (2013)
X2 T01 06 conjugate properties (2011)
X2 t07 05 powers of functions (2013)
12 x1 t05 03 graphing inverse trig (2012)
11 x1 t11 04 chords of a parabola (2012)
Ad

Similar to 12X1 T01 03 integrating derivative on function (2010) (20)

PDF
12 x1 t01 03 integrating derivative on function (2013)
PPTX
Cea0001 ppt project
PDF
11 x1 t16 02 definite integral (2012)
PDF
11X1 T17 02 definite integral
PDF
11X1 T16 02 definite integral (2011)
PDF
11X1 T14 02 definite integral
DOC
Applications of derivatives
PPTX
Antiderivatives nako sa calculus official
POT
PDF
PDF
Formula List Math 1230
PPT
X2 T05 06 Partial Fractions
DOC
C3 January 2012 QP
PPTX
Integral calculus
PDF
Functionworksheet1
PDF
Pc12 sol c04_ptest
PPT
125 5.1
PDF
Business math
PDF
Common derivatives integrals_reduced
PDF
2010 mathematics hsc solutions
12 x1 t01 03 integrating derivative on function (2013)
Cea0001 ppt project
11 x1 t16 02 definite integral (2012)
11X1 T17 02 definite integral
11X1 T16 02 definite integral (2011)
11X1 T14 02 definite integral
Applications of derivatives
Antiderivatives nako sa calculus official
Formula List Math 1230
X2 T05 06 Partial Fractions
C3 January 2012 QP
Integral calculus
Functionworksheet1
Pc12 sol c04_ptest
125 5.1
Business math
Common derivatives integrals_reduced
2010 mathematics hsc solutions

More from Nigel Simmons (20)

PPT
Goodbye slideshare UPDATE
PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
PDF
11 x1 t16 01 area under curve (2013)
Goodbye slideshare UPDATE
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)
11 x1 t16 01 area under curve (2013)

Recently uploaded (20)

PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
RMMM.pdf make it easy to upload and study
PPTX
Lesson notes of climatology university.
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
Classroom Observation Tools for Teachers
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Computing-Curriculum for Schools in Ghana
PDF
Pre independence Education in Inndia.pdf
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
Pharma ospi slides which help in ospi learning
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
Complications of Minimal Access Surgery at WLH
VCE English Exam - Section C Student Revision Booklet
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
RMMM.pdf make it easy to upload and study
Lesson notes of climatology university.
TR - Agricultural Crops Production NC III.pdf
Renaissance Architecture: A Journey from Faith to Humanism
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Classroom Observation Tools for Teachers
102 student loan defaulters named and shamed – Is someone you know on the list?
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Computing-Curriculum for Schools in Ghana
Pre independence Education in Inndia.pdf
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Pharma ospi slides which help in ospi learning
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
O7-L3 Supply Chain Operations - ICLT Program
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Complications of Minimal Access Surgery at WLH

12X1 T01 03 integrating derivative on function (2010)

  • 2. Integrating Derivative on Function f  x   f x dx  log f  x   c
  • 3. Integrating Derivative on Function f  x   f x dx  log f  x   c 1 e.g. (i)  7  3x dx
  • 4. Integrating Derivative on Function f  x   f x dx  log f  x   c 1 e.g. (i)  7  3x dx 1 3   dx 3 7  3x
  • 5. Integrating Derivative on Function f  x   f x dx  log f  x   c 1 e.g. (i)  7  3x dx 1 3   dx 3 7  3x 1   log7  3 x   c 3
  • 6. Integrating Derivative on Function f  x   f x dx  log f  x   c 1 dx e.g. (i)  7  3x dx ii   8x  5 1 3   dx 3 7  3x 1   log7  3 x   c 3
  • 7. Integrating Derivative on Function f  x   f x dx  log f  x   c 1 dx e.g. (i)  7  3x dx ii  8x  5 1 3 1 8dx   dx   3 7  3x 8 8x  5 1   log7  3 x   c 3
  • 8. Integrating Derivative on Function f  x   f x dx  log f  x   c 1 dx e.g. (i)  7  3x dx ii  8x  5 1 3 1 8dx   dx   3 7  3x 8 8x  5 1 1   log7  3 x   c  log8 x  5  c 3 8
  • 9. Integrating Derivative on Function f  x   f x dx  log f  x   c e.g. (i)  1 dx ii   dx x5 iii   6 dx 7  3x 8x  5 x 2 1 3 1 8dx   dx   3 7  3x 8 8x  5 1 1   log7  3 x   c  log8 x  5  c 3 8
  • 10. Integrating Derivative on Function f  x   f x dx  log f  x   c e.g. (i)  1 dx ii   dx x5 iii   6 dx 7  3x 8x  5 x 2 1 3 1 8dx 1 6 x5   dx     6 dx 3 7  3x 8 8x  5 6 x 2 1 1   log7  3 x   c  log8 x  5  c 3 8
  • 11. Integrating Derivative on Function f  x   f x dx  log f  x   c e.g. (i)  1 dx ii   dx x5 iii   6 dx 7  3x 8x  5 x 2 1 3 1 8dx 1 6 x5   dx     6 dx 3 7  3x 8 8x  5 6 x 2  logx 6  2   c 1 1 1   log7  3 x   c  log8 x  5  c 3 8 6
  • 13. 1 iv   dx 5x 1 5   dx 5 5x
  • 14. 1 iv   dx 5x 1 5   dx 5 5x 1  log 5 x  c 5
  • 15. 1 iv   dx OR 1 1  x dx 5x 5 1 5   dx 5 5x 1  log 5 x  c 5
  • 16. 1 iv   dx OR 1 1  x dx 5x 5 1 5   dx 1  log x  c 5 5x 5 1  log 5 x  c 5
  • 17. 1 iv   dx OR 1 1  x dx 5x 5 1 5   dx 1  log x  c 5 5x 5 1  log 5 x  c 5 4x 1 v   dx 2x 1
  • 18. 1 iv   dx OR 1 1  x dx 5x 5 1 5   dx 1  log x  c 5 5x 5 1  log 5 x  c 5 4x 1 order numerator  order denominator v   dx 2x 1
  • 19. 1 iv   dx OR 1 1  x dx 5x 5 1 5   dx 1  log x  c 5 5x 5 1  log 5 x  c 5 4x 1 order numerator  order denominator v   dx  polynomial division 2x 1
  • 20. 1 iv   dx OR 1 1  x dx 5x 5 1 5   dx 1  log x  c 5 5x 5 1  log 5 x  c 5 4x 1 order numerator  order denominator v   dx  polynomial division 2x 1 2 2x 1 4x 1 4x  2 1
  • 21. 1 iv   dx OR 1 1  x dx 5x 5 1 5   dx 1  log x  c 5 5x 5 1  log 5 x  c 5 4x 1 order numerator  order denominator v   dx  polynomial division 2x 1  2  1  dx 2  2 x  1 2x 1 4x 1 4x  2 1
  • 22. 1 iv   dx OR 1 1  x dx 5x 5 1 5   dx 1  log x  c 5 5x 5 1  log 5 x  c 5 4x 1 order numerator  order denominator v   dx  polynomial division 2x 1  2  1  dx 2  2 x  1 2x 1 4x 1 1 4x  2  2 x  log2 x  1  c 2 1
  • 23. 2 2x vi   x 2  1dx 1
  • 24. 2 2x vi   x 2  1dx 1  logx  11 2 2
  • 25. 2 2x vi   x 2  1dx 1  logx  11 2 2  log 5  log 2
  • 26. 2 2x vi   x 2  1dx 1  logx  11 2 2  log 5  log 2  log  5   2
  • 27. 2 vi  2x  x 2  1dx vii  Differentiate x 3 log x and hence 1 integrate x 2 log x  logx  11 2 2  log 5  log 2  log  5   2
  • 28. 2 vi  2x  x 2  1dx vii  Differentiate x 3 log x and hence 1 integrate x 2 log x  logx  11 2 x log x  x    log x 3x 2  3 1 2 d 3 dx  x  log 5  log 2  log  5   2
  • 29. 2 vi  2x  x 2  1dx vii  Differentiate x 3 log x and hence 1 integrate x 2 log x  logx  11 2 x log x  x    log x 3x 2  3 1 2 d 3 dx  x  log 5  log 2  x 2  3 x 2 log x  log  5   2
  • 30. 2 vi  2x  x 2  1dx vii  Differentiate x 3 log x and hence 1 integrate x 2 log x  logx  11 2 x log x  x    log x 3x 2  3 1 2 d 3 dx  x  log 5  log 2  x 2  3 x 2 log x  log  5  x  3 x 2 log x dx  x 3 log x  c   2 2
  • 31. 2 vi  2x  x 2  1dx vii  Differentiate x 3 log x and hence 1 integrate x 2 log x  logx  11 2 x log x  x    log x 3x 2  3 1 2 d 3 dx  x  log 5  log 2  x 2  3 x 2 log x  log  5  x  3 x 2 log x dx  x 3 log x  c   2 2 3 x 2 log xdx  x 3 log x   x 2 dx  c
  • 32. 2 vi  2x  x 2  1dx vii  Differentiate x 3 log x and hence 1 integrate x 2 log x  logx  11 2 x log x  x    log x 3x 2  3 1 2 d 3 dx  x  log 5  log 2  x 2  3 x 2 log x  log  5  x  3 x 2 log x dx  x 3 log x  c   2 2 3 x 2 log xdx  x 3 log x   x 2 dx  c 1 3 1 3  x log xdx  3 x log x  9 x  c 2
  • 33. 2 vi  2x  x 2  1dx vii  Differentiate x 3 log x and hence 1 integrate x 2 log x  logx  11 2 x log x  x    log x 3x 2  3 1 2 d 3 dx  x  log 5  log 2  x 2  3 x 2 log x  log  5  x  3 x 2 log x dx  x 3 log x  c   2 2 3 x 2 log xdx  x 3 log x   x 2 dx  c 1 3 1 3  x log xdx  3 x log x  9 x  c 2 Exercise 12D; 1 to 12 ace in all, 14a* Exercise 12E; 1 to 6 all, 7 to 21 odds, 22abc*, 23*