SlideShare a Scribd company logo
Mesoscopic multiclass traffic flow modeling
on multi-lane sections
Guillaume Costeseque∗, Aur´elien Duret
Inria Sophia-Antipolis M´editerran´ee
& Universit´e de Lyon-IFSTTAR-ENTPE, LICIT
TRB Annual Meeting 2016, Washington DC
January 12, 2016
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 1 / 23
Motivations
Example: congested off-ramp
*
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 2 / 23
Motivations
Example: congested off-ramp
*
Requirements for modeling the upstream section:
1 multiclass
2 non-FIFO
* [Richmond Bridge, c Bay Area Council]
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 2 / 23
Motivations
Outline
1 Theoretical background
2 Mesoscopic formulation of multiclass multilane models
3 Numerical scheme
4 Conclusion and perspectives
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 3 / 23
Theoretical background
Outline
1 Theoretical background
2 Mesoscopic formulation of multiclass multilane models
3 Numerical scheme
4 Conclusion and perspectives
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 4 / 23
Theoretical background Macroscopic models
Three representations of traffic flow
Moskowitz’ surface
Flow
x
t
N
x
See also [Moskowitz(1959), Makigami et al(1971), Laval and Leclercq(2013)]
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 5 / 23
Theoretical background Mesoscopic resolution
Mesoscopic resolution of the LWR model
Lagrangian-Space Eulerian
Meso Macro
n − x t − x
CL
Variables
Pace p := 1
v Density k
Headway h := 1
q = H(p) Flow q = Q(k)
Equation ∂np − ∂x H(p) = 0 ∂tk + ∂x Q(k) = 0
HJ
Variable
Passing time T Label N
T(n, x) =
x
−∞
p(n, ξ)dξ N(t, x) =
+∞
x
k(t, ξ)dξ
Equation ∂nT − H (∂x T) = 0 ∂tN − Q (−∂x N) = 0
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 6 / 23
Theoretical background Mesoscopic resolution
Mesoscopic: what for?
Strengths
1 Consistent with micro and macro representations
2 Large scale networks // spatial discontinuities OK
3 Data assimilation (from Eulerian and Lagrangian sensors)
Weakness
1 Single pipe
2 Mono class
3 No capacity drop at junctions
Developments
1 Multilane and multiclass approach
2 Relaxed FIFO assumption
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 7 / 23
Theoretical background Mesoscopic resolution
Mesoscopic: what for?
Strengths
1 Consistent with micro and macro representations
2 Large scale networks // spatial discontinuities OK
3 Data assimilation (from Eulerian and Lagrangian sensors)
Weakness
1 Single pipe
2 Mono class
3 No capacity drop at junctions
Developments
1 Multilane and multiclass approach
2 Relaxed FIFO assumption
−→ Moving bottleneck theory
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 7 / 23
Theoretical background The moving bottleneck theory
Notations
(Eulerian)
vB
−w
−w
vB
k
Q
(N − 1) lanes N lanes
R(vB, qD)
(D) (U)
ξN(t)
x
(U) (D)
vB
kD (N − 1)κ Nκ
qD
NC
Q∗
(vB)
u
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 8 / 23
Mesoscopic formulation of multiclass multilane models
Outline
1 Theoretical background
2 Mesoscopic formulation of multiclass multilane models
3 Numerical scheme
4 Conclusion and perspectives
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 9 / 23
Mesoscopic formulation of multiclass multilane models
Settings
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Density (veh/m)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Flow(veh/s)
Fundamental Diagrams
Rabbits
Slugs
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Pace (s/m)
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
Headway(s/veh)
Fundamental Diagrams
Rabbits
Slugs
Stretch of road [x0, x1] (diverge at x1)
composed by N separate lanes
Two classes of users: “rabbits” (I = I1)
and “slugs” (I = I2).
Triangular class-dependent
headway-pace FD
H : (p, I) → H(p, I)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 10 / 23
Mesoscopic formulation of multiclass multilane models Capacity drop
Capacity drop parameter
vB
k
Q
(D) (U)
kD (N − 1)κ Nκ
NC
(D)
(U)
δ = 1
δ = 0
vB
qD =
1
hB
R(vB, qD)
Introduce parameter δ ∈ [0, 1]
If δ = 0, strictly
non-FIFO
If 0 < δ < 1, reduction
of the passing rate
If δ = 1, strictly FIFO
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 11 / 23
Mesoscopic formulation of multiclass multilane models Capacity drop
Time (s)
40 60 80 100 120 140 160 180
Space(m)
0
100
200
300
400
500
600
700
800
900
1000
Trajectories
T2
(n, x)
T1
(n, x)
Time (s)
40 60 80 100 120 140 160 180
Space(m)
0
100
200
300
400
500
600
700
800
900
1000
Trajectories
T2
(n, x)
T1
(n, x)
δ = 0 δ = 0.4
Time (s)
40 60 80 100 120 140 160 180
Space(m)
0
100
200
300
400
500
600
700
800
900
1000
Trajectories
T2
(n, x)
T
1
(n, x)
Time (s)
40 60 80 100 120 140 160 180
Space(m) 0
100
200
300
400
500
600
700
800
900
1000
Trajectories
T2
(n, x)
T
1
(n, x)
δ = 0.6 δ = 1 (FIFO case)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 12 / 23
Mesoscopic formulation of multiclass multilane models Expression of the MCML model
System of coupled HJ PDEs
∂nT1 − H (∂x T1, I1) = 0, (rabbits)
∂nT2 − H (∂x T2, I2) = 0, (slugs)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
Mesoscopic formulation of multiclass multilane models Expression of the MCML model
System of coupled HJ PDEs



∂nT1 − H (∂x T1, I1) = 0, (rabbits)
∂nT2 − H (∂x T2, I2) = 0, (slugs)
H (∂x T1(n, ξ(n)), I1) − (1 − δ) ˙ξ (n∗
2) ∂x T1(n, ξ(n))
≥
N
N − 1
H⊠ (1 − δ) ˙ξ (n∗
2) , I1 , (2 → 1)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
Mesoscopic formulation of multiclass multilane models Expression of the MCML model
System of coupled HJ PDEs



∂nT1 − H (∂x T1, I1) = 0, (rabbits)
∂nT2 − H (∂x T2, I2) = 0, (slugs)
H (∂x T1(n, ξ(n)), I1) − (1 − δ) ˙ξ (n∗
2) ∂x T1(n, ξ(n))
≥
N
N − 1
H⊠ (1 − δ) ˙ξ (n∗
2) , I1 , (2 → 1)
where
H⊠
(s, I) = inf
p∈Dom(H(·,I))
{H(p, I) − sp}
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
Mesoscopic formulation of multiclass multilane models Expression of the MCML model
System of coupled HJ PDEs



∂nT1 − H (∂x T1, I1) = 0, (rabbits)
∂nT2 − H (∂x T2, I2) = 0, (slugs)
H (∂x T1(n, ξ(n)), I1) − (1 − δ) ˙ξ (n∗
2) ∂x T1(n, ξ(n))
≥
N
N − 1
H⊠ (1 − δ) ˙ξ (n∗
2) , I1 , (2 → 1)
where
H⊠
(s, I) = inf
p∈Dom(H(·,I))
{H(p, I) − sp}
and n∗
i = the nearest leader from class i for vehicle n of class j = i
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
Mesoscopic formulation of multiclass multilane models Expression of the MCML model
System of coupled HJ PDEs



∂nT1 − H (∂x T1, I1) = 0, (rabbits)
∂nT2 − H (∂x T2, I2) = 0, (slugs)
H (∂x T1(n, ξ(n)), I1) − (1 − δ) ˙ξ (n∗
2) ∂x T1(n, ξ(n))
≥
N
N − 1
H⊠ (1 − δ) ˙ξ (n∗
2) , I1 , (2 → 1)
T2 (n, ξ(n)) ≥ T1(n∗
1, ξ(n)) + H (∂x T1(n∗
1, ξ(n)), I2) , (1 → 2)
where
H⊠
(s, I) = inf
p∈Dom(H(·,I))
{H(p, I) − sp}
and n∗
i = the nearest leader from class i for vehicle n of class j = i
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
Numerical scheme
Outline
1 Theoretical background
2 Mesoscopic formulation of multiclass multilane models
3 Numerical scheme
4 Conclusion and perspectives
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 14 / 23
Numerical scheme Lax-Hopf formula for the meso LWR model
Lax-Hopf formula & Dynamic Programming
Finite steps (∆n, ∆x)
∆n = κ ∆x.
n
x + ∆x
x − ∆x
n − ∆n
x
1
κ
x
n
∆x
∆n
T(n, x)
Solution reads:
T(n, x) = max
= free flow
T(n, x − ∆x) +
∆x
u
,
T (n − ∆n, x + ∆x) +
∆x
w
= congested
.
See [Laval and Leclercq(2013)]
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 15 / 23
Numerical scheme Lax-Hopf formulæ for the MCML model
Representation formulæ
∆n
n
x + ∆x
x − ∆x
n − ∆n
x
1
κ
ξT (n)
Ti(n, x)
∆x
x
n
New supply constraint:
Ti (n, x) = max
= free flow
Ti (n, x − ∆x) +
∆x
ui
,
Ti (n − ∆n, x + ∆x) +
∆x
w
= congested
,
coupling condition .
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 16 / 23
Numerical scheme Lax-Hopf formulæ for the MCML model
Representation formulæ
(Coupling conditions)



T1(n, x) = max T1(n, x − ∆x) +
∆x
u1
, T1(n − ∆n, x + ∆x) +
∆x
w
,
T2(n∗
2, x) +
1
1 − δ
hB
T2(n, x) = max T2(n, x − ∆x) +
∆x
u2
, T2(n − ∆n, x + ∆x) +
∆x
w
,
T1(n∗
1, x) + H
T1(n∗
1, x) − T1(n∗
1, x − ∆x)
∆x
, I2
(1)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 17 / 23
Numerical scheme Simulation with a mixed traffic
Distribution per class: class 1 = 60% and class 2 = 40%
Capacity drop: δ = 0.8
50 100 150 200 250 300 350 400 450 500 550
Time (s)
0
100
200
300
400
500
600
700
800
900
1000Space(m) (alpha, delta) = (0.6, 0.8)
T2
(n, x)
T1
(n, x)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 18 / 23
Numerical scheme Simulation with a mixed traffic
50 100 150 200 250 300 350 400 450 500 550
Time (s)
0
100
200
300
400
500
600
700
800
900
1000
Space(m)
(alpha, delta) = (0.6, 0.8)
T
1
(n, x)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 19 / 23
Numerical scheme Simulation with a mixed traffic
Individual travel times
20 40 60 80 100 120 140 160 180 200 220 240
Vehicle label
40
60
80
100
120
140
160
180
Traveltime(s)
Class 1
20 40 60 80 100 120 140 160
Vehicle label
40
60
80
100
120
140
160
180
Traveltime(s)
Class 2
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 20 / 23
Conclusion and perspectives
Outline
1 Theoretical background
2 Mesoscopic formulation of multiclass multilane models
3 Numerical scheme
4 Conclusion and perspectives
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 21 / 23
Conclusion and perspectives
A new event-based mesoscopic model for multi-class traffic flow on
multi-lane sections
Use of theory of moving bottlenecks
Among the perspectives:
Sensitivity analysis w.r.t. δ
Validation with real traffic data
Data assimilation for real-time applications
(→ Aur´elien’s presentation)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 22 / 23
Conclusion and perspectives
Thanks for your attention
Any question?
guillaume.costeseque@inria.fr
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 23 / 23
References
Some references I
Laval, J. A., Leclercq, L., 2013. The Hamilton–Jacobi partial differential equation
and the three representations of traffic flow. Transportation Research Part B:
Methodological 52, 17–30.
Leclercq, L., B´ecarie, C., 2012. A meso LWR model designed for network
applications. In: Transportation Research Board 91th Annual Meeting. Vol. 118. p.
238.
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 24 / 23
Complements
Mesoscopic resolution of the LWR model
Speed
Time
(i − 1)Space
x
Spacing
Headway
t
(i) Introduce
the pace p :=
1
v
the headway h = H(p)
the passing time
T(n, x) :=
x
−∞
p(n, ξ)dξ.
∂nT = h, (headway)
∂x T = p, (pace)
[Leclercq and B´ecarie(2012), Laval and Leclercq(2013)]
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 25 / 23
Complements
Lax-Hopf formula
1
u
H
p
1
κ
1
C
1
wκ
Assume
H(p) =



1
κ
p +
1
wκ
, if p ≥
1
u
,
+∞, otherwise,
Proposition (Representation formula (Lax-Hopf))
The solution under smooth boundary conditions is given by
T(n, x) = max T(n, 0) +
x
u
= free flow
, T 0, x +
n
κ
+
n
wκ
= congested
. (2)
See [Laval and Leclercq(2013)]
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 26 / 23
Complements
Lax-Hopf formula
0
1
κ
x
n
n
x T(n, x)
T(n, 0)
T(0, x)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 27 / 23
Complements
Math problem in Eulerian framework
Coupled ODE-PDE problem



∂tk + ∂x (Q(k)) = 0,
Q(k(t, ξN(t))) − ˙ξN(t)k(t, ξN (t)) ≤
N − 1
N
Q∗ ˙ξN(t) ,
˙ξN(t) = min {vb, V (k(t, ξN(t)+))} ,
(3)
with
k(0, x) = k0(x), on R,
ξN(0) = ξ0.
(4)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 28 / 23
Complements
Math problem in Eulerian framework
Coupled ODE-PDE problem



∂tk + ∂x (Q(k)) = 0,
Q(k(t, ξN(t))) − ˙ξN(t)k(t, ξN (t)) ≤
N − 1
N
Q∗ ˙ξN(t) ,
˙ξN(t) = min {vb, V (k(t, ξN(t)+))} ,
(3)
with
k(0, x) = k0(x), on R,
ξN(0) = ξ0.
(4)
and Q∗ is the Legendre-Fenchel transform of Q
Q∗
(v) := sup
k∈Dom(Q)
{Q(k) − vk} .
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 28 / 23
Complements
Capacity drop parameter
ξN(t)
x
(U) (D)
vB
vB
k
Q
(D) (U)
kD (N − 1)κ Nκ
NC
u
(D)
(U)
δ = 1
δ = 0
vB
qD =
1
hB
R(vB, qD)
−w
−w
Case non−FIFO Case FIFO
(D)
(U)
(U) (D)
Flow
(MB)
(U)
pB =
1
vB
δ = 0 δ = 1
H
1
κ
1
u
hB =
1
qD
1
R(vB, qD)
vB
1
C
1
wκ
vB
R(vB, qD)
p
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 29 / 23
Complements
Mixed Neumann-Dirichlet boundary conditions



∂nTi (n, x0) = ˇgi (n), on [n0, +∞),
∂nTi (n, x1) = ˆgi (n), on [n0, +∞),
Ti (n0, x) = Gi (x), on [x0, x1],
for i ∈ {1, 2} . (5)
x
n
n0
x1
x0
Downstream Supply
Upstream Demand
First trajectory
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 30 / 23

More Related Content

PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
S. Duplij, A q-deformed generalization of the Hosszu-Gluskin theorem
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
S. Duplij, A q-deformed generalization of the Hosszu-Gluskin theorem

What's hot (20)

PDF
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
PDF
On Twisted Paraproducts and some other Multilinear Singular Integrals
PDF
Trilinear embedding for divergence-form operators
PDF
Micro to macro passage in traffic models including multi-anticipation effect
PDF
CLIM Fall 2017 Course: Statistics for Climate Research, Estimating Curves and...
PDF
Bellman functions and Lp estimates for paraproducts
PDF
Andreas Eberle
PDF
Multilinear singular integrals with entangled structure
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
Multilinear Twisted Paraproducts
PDF
Quantitative norm convergence of some ergodic averages
PDF
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
PDF
Hosoya polynomial, wiener and hyper wiener indices of some regular graphs
PDF
On generalized dislocated quasi metrics
PDF
11.on generalized dislocated quasi metrics
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
On Twisted Paraproducts and some other Multilinear Singular Integrals
Trilinear embedding for divergence-form operators
Micro to macro passage in traffic models including multi-anticipation effect
CLIM Fall 2017 Course: Statistics for Climate Research, Estimating Curves and...
Bellman functions and Lp estimates for paraproducts
Andreas Eberle
Multilinear singular integrals with entangled structure
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Multilinear Twisted Paraproducts
Quantitative norm convergence of some ergodic averages
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Hosoya polynomial, wiener and hyper wiener indices of some regular graphs
On generalized dislocated quasi metrics
11.on generalized dislocated quasi metrics
Ad

Similar to Mesoscopic multiclass traffic flow modeling on multi-lane sections (20)

PDF
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
PDF
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
PDF
Computing f-Divergences and Distances of High-Dimensional Probability Density...
PDF
Common fixed point and weak commuting mappings
PDF
Low-rank tensor approximation (Introduction)
PDF
The moving bottleneck problem: a Hamilton-Jacobi approach
PDF
orlando_fest
PDF
On estimating the integrated co volatility using
PDF
QMC Error SAMSI Tutorial Aug 2017
PDF
International journal of engineering and mathematical modelling vol2 no3_2015_2
PDF
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
PDF
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
PDF
PDF
Speed-accuracy trade-off for the diffusion models
PDF
Climate Extremes Workshop - Extreme Value Theory and the Re-assessment in th...
PDF
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
PDF
A common fixed point theorem in cone metric spaces
PDF
離散値ベクトル再構成手法とその通信応用
PDF
A Note on “   Geraghty contraction type mappings”
PDF
New Contraction Mappings in Dislocated Quasi - Metric Spaces
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Common fixed point and weak commuting mappings
Low-rank tensor approximation (Introduction)
The moving bottleneck problem: a Hamilton-Jacobi approach
orlando_fest
On estimating the integrated co volatility using
QMC Error SAMSI Tutorial Aug 2017
International journal of engineering and mathematical modelling vol2 no3_2015_2
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Speed-accuracy trade-off for the diffusion models
Climate Extremes Workshop - Extreme Value Theory and the Re-assessment in th...
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
A common fixed point theorem in cone metric spaces
離散値ベクトル再構成手法とその通信応用
A Note on “   Geraghty contraction type mappings”
New Contraction Mappings in Dislocated Quasi - Metric Spaces
Ad

More from Guillaume Costeseque (20)

PDF
Impacts de la "Ville 30" sur les trafics, les vitesses et les temps de parcou...
PDF
Présentation aux RFTM 2024 sur l'estimation des débits à partir des données FCD
PDF
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
PDF
Nouvelles mobilités, nouveaux usages, évolutions des marchés
PDF
Cours its-ecn-2021
PDF
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
PDF
Cours its-ecn-2020
PDF
A multi-objective optimization framework for a second order traffic flow mode...
PDF
Evaluation d'une navette autonome à Nantes 2019
PDF
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
PDF
A new solver for the ARZ traffic flow model on a junction
PDF
Some recent developments in the traffic flow variational formulation
PDF
Representation formula for traffic flow estimation on a network
PDF
Hamilton-Jacobi approach for second order traffic flow models
PDF
Numerical approach for Hamilton-Jacobi equations on a network: application to...
PDF
Numerical methods for variational principles in traffic
PDF
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
PDF
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
PDF
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
PDF
Road junction modeling using a scheme based on Hamilton-Jacobi equations
Impacts de la "Ville 30" sur les trafics, les vitesses et les temps de parcou...
Présentation aux RFTM 2024 sur l'estimation des débits à partir des données FCD
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Cours its-ecn-2021
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Cours its-ecn-2020
A multi-objective optimization framework for a second order traffic flow mode...
Evaluation d'une navette autonome à Nantes 2019
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
A new solver for the ARZ traffic flow model on a junction
Some recent developments in the traffic flow variational formulation
Representation formula for traffic flow estimation on a network
Hamilton-Jacobi approach for second order traffic flow models
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical methods for variational principles in traffic
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Road junction modeling using a scheme based on Hamilton-Jacobi equations

Recently uploaded (20)

DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
Internet of Things (IOT) - A guide to understanding
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
PPT on Performance Review to get promotions
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
Well-logging-methods_new................
PPTX
Foundation to blockchain - A guide to Blockchain Tech
DOCX
573137875-Attendance-Management-System-original
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
Digital Logic Computer Design lecture notes
PPTX
Welding lecture in detail for understanding
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
CYBER-CRIMES AND SECURITY A guide to understanding
Model Code of Practice - Construction Work - 21102022 .pdf
Internet of Things (IOT) - A guide to understanding
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPT on Performance Review to get promotions
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Embodied AI: Ushering in the Next Era of Intelligent Systems
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Well-logging-methods_new................
Foundation to blockchain - A guide to Blockchain Tech
573137875-Attendance-Management-System-original
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Digital Logic Computer Design lecture notes
Welding lecture in detail for understanding

Mesoscopic multiclass traffic flow modeling on multi-lane sections

  • 1. Mesoscopic multiclass traffic flow modeling on multi-lane sections Guillaume Costeseque∗, Aur´elien Duret Inria Sophia-Antipolis M´editerran´ee & Universit´e de Lyon-IFSTTAR-ENTPE, LICIT TRB Annual Meeting 2016, Washington DC January 12, 2016 G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 1 / 23
  • 2. Motivations Example: congested off-ramp * G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 2 / 23
  • 3. Motivations Example: congested off-ramp * Requirements for modeling the upstream section: 1 multiclass 2 non-FIFO * [Richmond Bridge, c Bay Area Council] G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 2 / 23
  • 4. Motivations Outline 1 Theoretical background 2 Mesoscopic formulation of multiclass multilane models 3 Numerical scheme 4 Conclusion and perspectives G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 3 / 23
  • 5. Theoretical background Outline 1 Theoretical background 2 Mesoscopic formulation of multiclass multilane models 3 Numerical scheme 4 Conclusion and perspectives G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 4 / 23
  • 6. Theoretical background Macroscopic models Three representations of traffic flow Moskowitz’ surface Flow x t N x See also [Moskowitz(1959), Makigami et al(1971), Laval and Leclercq(2013)] G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 5 / 23
  • 7. Theoretical background Mesoscopic resolution Mesoscopic resolution of the LWR model Lagrangian-Space Eulerian Meso Macro n − x t − x CL Variables Pace p := 1 v Density k Headway h := 1 q = H(p) Flow q = Q(k) Equation ∂np − ∂x H(p) = 0 ∂tk + ∂x Q(k) = 0 HJ Variable Passing time T Label N T(n, x) = x −∞ p(n, ξ)dξ N(t, x) = +∞ x k(t, ξ)dξ Equation ∂nT − H (∂x T) = 0 ∂tN − Q (−∂x N) = 0 G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 6 / 23
  • 8. Theoretical background Mesoscopic resolution Mesoscopic: what for? Strengths 1 Consistent with micro and macro representations 2 Large scale networks // spatial discontinuities OK 3 Data assimilation (from Eulerian and Lagrangian sensors) Weakness 1 Single pipe 2 Mono class 3 No capacity drop at junctions Developments 1 Multilane and multiclass approach 2 Relaxed FIFO assumption G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 7 / 23
  • 9. Theoretical background Mesoscopic resolution Mesoscopic: what for? Strengths 1 Consistent with micro and macro representations 2 Large scale networks // spatial discontinuities OK 3 Data assimilation (from Eulerian and Lagrangian sensors) Weakness 1 Single pipe 2 Mono class 3 No capacity drop at junctions Developments 1 Multilane and multiclass approach 2 Relaxed FIFO assumption −→ Moving bottleneck theory G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 7 / 23
  • 10. Theoretical background The moving bottleneck theory Notations (Eulerian) vB −w −w vB k Q (N − 1) lanes N lanes R(vB, qD) (D) (U) ξN(t) x (U) (D) vB kD (N − 1)κ Nκ qD NC Q∗ (vB) u G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 8 / 23
  • 11. Mesoscopic formulation of multiclass multilane models Outline 1 Theoretical background 2 Mesoscopic formulation of multiclass multilane models 3 Numerical scheme 4 Conclusion and perspectives G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 9 / 23
  • 12. Mesoscopic formulation of multiclass multilane models Settings 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Density (veh/m) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Flow(veh/s) Fundamental Diagrams Rabbits Slugs 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Pace (s/m) 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 Headway(s/veh) Fundamental Diagrams Rabbits Slugs Stretch of road [x0, x1] (diverge at x1) composed by N separate lanes Two classes of users: “rabbits” (I = I1) and “slugs” (I = I2). Triangular class-dependent headway-pace FD H : (p, I) → H(p, I) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 10 / 23
  • 13. Mesoscopic formulation of multiclass multilane models Capacity drop Capacity drop parameter vB k Q (D) (U) kD (N − 1)κ Nκ NC (D) (U) δ = 1 δ = 0 vB qD = 1 hB R(vB, qD) Introduce parameter δ ∈ [0, 1] If δ = 0, strictly non-FIFO If 0 < δ < 1, reduction of the passing rate If δ = 1, strictly FIFO G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 11 / 23
  • 14. Mesoscopic formulation of multiclass multilane models Capacity drop Time (s) 40 60 80 100 120 140 160 180 Space(m) 0 100 200 300 400 500 600 700 800 900 1000 Trajectories T2 (n, x) T1 (n, x) Time (s) 40 60 80 100 120 140 160 180 Space(m) 0 100 200 300 400 500 600 700 800 900 1000 Trajectories T2 (n, x) T1 (n, x) δ = 0 δ = 0.4 Time (s) 40 60 80 100 120 140 160 180 Space(m) 0 100 200 300 400 500 600 700 800 900 1000 Trajectories T2 (n, x) T 1 (n, x) Time (s) 40 60 80 100 120 140 160 180 Space(m) 0 100 200 300 400 500 600 700 800 900 1000 Trajectories T2 (n, x) T 1 (n, x) δ = 0.6 δ = 1 (FIFO case) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 12 / 23
  • 15. Mesoscopic formulation of multiclass multilane models Expression of the MCML model System of coupled HJ PDEs ∂nT1 − H (∂x T1, I1) = 0, (rabbits) ∂nT2 − H (∂x T2, I2) = 0, (slugs) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
  • 16. Mesoscopic formulation of multiclass multilane models Expression of the MCML model System of coupled HJ PDEs    ∂nT1 − H (∂x T1, I1) = 0, (rabbits) ∂nT2 − H (∂x T2, I2) = 0, (slugs) H (∂x T1(n, ξ(n)), I1) − (1 − δ) ˙ξ (n∗ 2) ∂x T1(n, ξ(n)) ≥ N N − 1 H⊠ (1 − δ) ˙ξ (n∗ 2) , I1 , (2 → 1) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
  • 17. Mesoscopic formulation of multiclass multilane models Expression of the MCML model System of coupled HJ PDEs    ∂nT1 − H (∂x T1, I1) = 0, (rabbits) ∂nT2 − H (∂x T2, I2) = 0, (slugs) H (∂x T1(n, ξ(n)), I1) − (1 − δ) ˙ξ (n∗ 2) ∂x T1(n, ξ(n)) ≥ N N − 1 H⊠ (1 − δ) ˙ξ (n∗ 2) , I1 , (2 → 1) where H⊠ (s, I) = inf p∈Dom(H(·,I)) {H(p, I) − sp} G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
  • 18. Mesoscopic formulation of multiclass multilane models Expression of the MCML model System of coupled HJ PDEs    ∂nT1 − H (∂x T1, I1) = 0, (rabbits) ∂nT2 − H (∂x T2, I2) = 0, (slugs) H (∂x T1(n, ξ(n)), I1) − (1 − δ) ˙ξ (n∗ 2) ∂x T1(n, ξ(n)) ≥ N N − 1 H⊠ (1 − δ) ˙ξ (n∗ 2) , I1 , (2 → 1) where H⊠ (s, I) = inf p∈Dom(H(·,I)) {H(p, I) − sp} and n∗ i = the nearest leader from class i for vehicle n of class j = i G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
  • 19. Mesoscopic formulation of multiclass multilane models Expression of the MCML model System of coupled HJ PDEs    ∂nT1 − H (∂x T1, I1) = 0, (rabbits) ∂nT2 − H (∂x T2, I2) = 0, (slugs) H (∂x T1(n, ξ(n)), I1) − (1 − δ) ˙ξ (n∗ 2) ∂x T1(n, ξ(n)) ≥ N N − 1 H⊠ (1 − δ) ˙ξ (n∗ 2) , I1 , (2 → 1) T2 (n, ξ(n)) ≥ T1(n∗ 1, ξ(n)) + H (∂x T1(n∗ 1, ξ(n)), I2) , (1 → 2) where H⊠ (s, I) = inf p∈Dom(H(·,I)) {H(p, I) − sp} and n∗ i = the nearest leader from class i for vehicle n of class j = i G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
  • 20. Numerical scheme Outline 1 Theoretical background 2 Mesoscopic formulation of multiclass multilane models 3 Numerical scheme 4 Conclusion and perspectives G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 14 / 23
  • 21. Numerical scheme Lax-Hopf formula for the meso LWR model Lax-Hopf formula & Dynamic Programming Finite steps (∆n, ∆x) ∆n = κ ∆x. n x + ∆x x − ∆x n − ∆n x 1 κ x n ∆x ∆n T(n, x) Solution reads: T(n, x) = max = free flow T(n, x − ∆x) + ∆x u , T (n − ∆n, x + ∆x) + ∆x w = congested . See [Laval and Leclercq(2013)] G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 15 / 23
  • 22. Numerical scheme Lax-Hopf formulæ for the MCML model Representation formulæ ∆n n x + ∆x x − ∆x n − ∆n x 1 κ ξT (n) Ti(n, x) ∆x x n New supply constraint: Ti (n, x) = max = free flow Ti (n, x − ∆x) + ∆x ui , Ti (n − ∆n, x + ∆x) + ∆x w = congested , coupling condition . G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 16 / 23
  • 23. Numerical scheme Lax-Hopf formulæ for the MCML model Representation formulæ (Coupling conditions)    T1(n, x) = max T1(n, x − ∆x) + ∆x u1 , T1(n − ∆n, x + ∆x) + ∆x w , T2(n∗ 2, x) + 1 1 − δ hB T2(n, x) = max T2(n, x − ∆x) + ∆x u2 , T2(n − ∆n, x + ∆x) + ∆x w , T1(n∗ 1, x) + H T1(n∗ 1, x) − T1(n∗ 1, x − ∆x) ∆x , I2 (1) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 17 / 23
  • 24. Numerical scheme Simulation with a mixed traffic Distribution per class: class 1 = 60% and class 2 = 40% Capacity drop: δ = 0.8 50 100 150 200 250 300 350 400 450 500 550 Time (s) 0 100 200 300 400 500 600 700 800 900 1000Space(m) (alpha, delta) = (0.6, 0.8) T2 (n, x) T1 (n, x) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 18 / 23
  • 25. Numerical scheme Simulation with a mixed traffic 50 100 150 200 250 300 350 400 450 500 550 Time (s) 0 100 200 300 400 500 600 700 800 900 1000 Space(m) (alpha, delta) = (0.6, 0.8) T 1 (n, x) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 19 / 23
  • 26. Numerical scheme Simulation with a mixed traffic Individual travel times 20 40 60 80 100 120 140 160 180 200 220 240 Vehicle label 40 60 80 100 120 140 160 180 Traveltime(s) Class 1 20 40 60 80 100 120 140 160 Vehicle label 40 60 80 100 120 140 160 180 Traveltime(s) Class 2 G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 20 / 23
  • 27. Conclusion and perspectives Outline 1 Theoretical background 2 Mesoscopic formulation of multiclass multilane models 3 Numerical scheme 4 Conclusion and perspectives G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 21 / 23
  • 28. Conclusion and perspectives A new event-based mesoscopic model for multi-class traffic flow on multi-lane sections Use of theory of moving bottlenecks Among the perspectives: Sensitivity analysis w.r.t. δ Validation with real traffic data Data assimilation for real-time applications (→ Aur´elien’s presentation) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 22 / 23
  • 29. Conclusion and perspectives Thanks for your attention Any question? guillaume.costeseque@inria.fr G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 23 / 23
  • 30. References Some references I Laval, J. A., Leclercq, L., 2013. The Hamilton–Jacobi partial differential equation and the three representations of traffic flow. Transportation Research Part B: Methodological 52, 17–30. Leclercq, L., B´ecarie, C., 2012. A meso LWR model designed for network applications. In: Transportation Research Board 91th Annual Meeting. Vol. 118. p. 238. G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 24 / 23
  • 31. Complements Mesoscopic resolution of the LWR model Speed Time (i − 1)Space x Spacing Headway t (i) Introduce the pace p := 1 v the headway h = H(p) the passing time T(n, x) := x −∞ p(n, ξ)dξ. ∂nT = h, (headway) ∂x T = p, (pace) [Leclercq and B´ecarie(2012), Laval and Leclercq(2013)] G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 25 / 23
  • 32. Complements Lax-Hopf formula 1 u H p 1 κ 1 C 1 wκ Assume H(p) =    1 κ p + 1 wκ , if p ≥ 1 u , +∞, otherwise, Proposition (Representation formula (Lax-Hopf)) The solution under smooth boundary conditions is given by T(n, x) = max T(n, 0) + x u = free flow , T 0, x + n κ + n wκ = congested . (2) See [Laval and Leclercq(2013)] G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 26 / 23
  • 33. Complements Lax-Hopf formula 0 1 κ x n n x T(n, x) T(n, 0) T(0, x) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 27 / 23
  • 34. Complements Math problem in Eulerian framework Coupled ODE-PDE problem    ∂tk + ∂x (Q(k)) = 0, Q(k(t, ξN(t))) − ˙ξN(t)k(t, ξN (t)) ≤ N − 1 N Q∗ ˙ξN(t) , ˙ξN(t) = min {vb, V (k(t, ξN(t)+))} , (3) with k(0, x) = k0(x), on R, ξN(0) = ξ0. (4) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 28 / 23
  • 35. Complements Math problem in Eulerian framework Coupled ODE-PDE problem    ∂tk + ∂x (Q(k)) = 0, Q(k(t, ξN(t))) − ˙ξN(t)k(t, ξN (t)) ≤ N − 1 N Q∗ ˙ξN(t) , ˙ξN(t) = min {vb, V (k(t, ξN(t)+))} , (3) with k(0, x) = k0(x), on R, ξN(0) = ξ0. (4) and Q∗ is the Legendre-Fenchel transform of Q Q∗ (v) := sup k∈Dom(Q) {Q(k) − vk} . G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 28 / 23
  • 36. Complements Capacity drop parameter ξN(t) x (U) (D) vB vB k Q (D) (U) kD (N − 1)κ Nκ NC u (D) (U) δ = 1 δ = 0 vB qD = 1 hB R(vB, qD) −w −w Case non−FIFO Case FIFO (D) (U) (U) (D) Flow (MB) (U) pB = 1 vB δ = 0 δ = 1 H 1 κ 1 u hB = 1 qD 1 R(vB, qD) vB 1 C 1 wκ vB R(vB, qD) p G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 29 / 23
  • 37. Complements Mixed Neumann-Dirichlet boundary conditions    ∂nTi (n, x0) = ˇgi (n), on [n0, +∞), ∂nTi (n, x1) = ˆgi (n), on [n0, +∞), Ti (n0, x) = Gi (x), on [x0, x1], for i ∈ {1, 2} . (5) x n n0 x1 x0 Downstream Supply Upstream Demand First trajectory G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 30 / 23