SlideShare a Scribd company logo
Road junction modelling using a scheme based on
Hamilton-Jacobi equation
Guillaume Costeseque
(PhD with supervisors R. Monneau & J-P. Lebacque)
Ecole des Ponts ParisTech, CERMICS & IFSTTAR, GRETTIA
Workshop on Traffic Modeling and Management
March 20-22, 2013 - Sophia-Antipolis
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 1 / 42
Introduction
A junction
JN
J1
J2
branch Jα
x
x
0
x
x
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 2 / 42
Introduction
Ideas of the model
JN
J1
J2
branch Jα
x
x
0
x
x



uα
t + Hα(uα
x ) = 0, x > 0, α = 1, . . . , N
uα = uβ =: u, x = 0,
ut + H(u1
x, . . . , uN
x ) = 0, x = 0
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 3 / 42
Introduction
Outline
1 Motivation
2 Junction model and adapted scheme
3 Traffic interpretation
4 Numerical simulation
5 Conclusion
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 4 / 42
Motivation
Outline
1 Motivation
2 Junction model and adapted scheme
3 Traffic interpretation
4 Numerical simulation
5 Conclusion
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 5 / 42
Motivation
The simple divergent road
x > 0
x > 0γl
γrx < 0
Il
Ir
γe
Ie



γe = 1,
0 ≤ γl, γr ≤ 1,
γl + γr = 1
LWR model [Lighthill, Whitham ’55; Richards ’56]:
ρt + (Q(ρ))x = 0
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 6 / 42
Motivation
Qmax
ρcrit ρmax
Density ρ
Flow Q(ρ)
Q(ρ) = ρV (ρ) with V (ρ) = speed of the equilibrium flow
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 7 / 42
Junction model and adapted scheme
Outline
1 Motivation
2 Junction model and adapted scheme
Getting of the HJ equations
Junction model
Numerical scheme
Mathematical results
3 Traffic interpretation
4 Numerical simulation
5 Conclusion
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 8 / 42
Junction model and adapted scheme Getting of the HJ equations
ρα
t + (Qα
(ρα
))x = 0 on branch α
Primitive:
Uα
(x, t) = Uα
(0, t) +
1
γα
x
0
ρα
(y, t)dy
and
Uα
(0, t) = g(t) = index of the single car at the junction point
x > 0
x > 09
11
8
10
12
6420 1 3 5
7
−1
x < 0
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 9 / 42
Junction model and adapted scheme Getting of the HJ equations
ρα
t + (Qα
(ρα
))x = 0 on branch α
Primitive:
Uα
(x, t) = Uα
(0, t) +
1
γα
x
0
ρα
(y, t)dy
and
Uα
(0, t) = g(t) = index of the single car at the junction point
x > 0
x > 09
11
8
10
12
6420 1 3 5
7
−1
x < 0
Uα
t +
1
γα
Qα
(γα
Uα
x ) = g′
(t) +
1
γα
Qα
(ρα
(0, t))
= 0 for a good choice of g
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 9 / 42
Junction model and adapted scheme Junction model
Junction model
New functions uα:
uα(x, t) = −Uα(x, t), x > 0, for outgoing roads
uα(x, t) = −Uα(−x, t), x > 0
J3
e3
J2
e2
e1 J1
JN
eN
Proposition (Junction model)



uα
t + Hα(uα
x ) = 0, x > 0,
uα(0, t) = u(0, t), x = 0, α = 1, ..., N
ut + max
α=1,...,N
H−
α (uα
x ) = 0, x = 0.
(3.1)
with the initial condition uα(0, x) = uα
0 (x).
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 10 / 42
Junction model and adapted scheme Junction model
Assumptions
For all α = 1, . . . , N,
(A0) The initial condition uα
0 is Lipschitz continuous.
(A1) The Hamiltonians Hα are C1(R) and convex such that:
p
H−
α (p) H+
α (p)
pα
0
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 11 / 42
Junction model and adapted scheme Numerical scheme
Presentation of the NS
Proposition (Numerical Scheme)
Let us consider the discrete space and time derivatives:
pα,n
i :=
Uα,n
i+1 − Uα,n
i
∆x
and (DtU)α,n
i :=
Uα,n+1
i − Uα,n
i
∆t
Then we have the following numerical scheme:



(DtU)α,n
i + max{H+
α (pα,n
i−1), H−
α (pα,n
i )} = 0, i ≥ 1
Un
0 := Uα,n
0 , i = 0, α = 1, ..., N
(DtU)n
0 + max
α=1,...,N
H−
α (pα,n
0 ) = 0, i = 0
(3.2)
With the initial condition Uα,0
i := uα
0 (i∆x).
∆x and ∆t = space and time steps satisfying a CFL condition
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 12 / 42
Junction model and adapted scheme Numerical scheme
CFL condition
The natural CFL condition is given by:
∆x
∆t
≥ sup
α=1,...,N
i≥0, 0≤n≤nT
|H′
α(pα,n
i )| (3.3)
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 13 / 42
Junction model and adapted scheme Mathematical results
Gradient estimates
Theorem (Time and Space Gradient estimates)
Assume (A0)-(A1). If the CFL condition (3.3) is satisfied, then we have
that:
(i) Considering Mn = sup
α,i
(DtU)α,n
i and mn = inf
α,i
(DtU)α,n
i , we have
the following time derivative estimate:
m0
≤ mn
≤ mn+1
≤ Mn+1
≤ Mn
≤ M0
(ii) Considering pα
= (H−
α )−1(−m0) and pα = (H+
α )−1(−m0), we have
the following gradient estimate:
pα
≤ pα,n
i ≤ pα, for all i ≥ 0, n ≥ 0 and α = 1, ..., N
Proof
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 14 / 42
Junction model and adapted scheme Mathematical results
Stronger CFL condition
As for any α = 1, . . . , N, we have that:
pα
≤ pα,n
i ≤ pα for all i, n ≥ 0
−m0
pα
p
Hα(p)
pα
Then the CFL condition becomes:
∆x
∆t
≥ sup
α=1,...,N
pα∈[pα
,pα]
|H′
α(pα)| (3.4)
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 15 / 42
Junction model and adapted scheme Mathematical results
Existence and uniqueness
(A2) Technical assumption (Legendre-Fenchel transform)
Hα(p) = sup
q∈R
(pq − Lα(q)) with L′′
α ≥ δ > 0, for all index α
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 16 / 42
Junction model and adapted scheme Mathematical results
Existence and uniqueness
(A2) Technical assumption (Legendre-Fenchel transform)
Hα(p) = sup
q∈R
(pq − Lα(q)) with L′′
α ≥ δ > 0, for all index α
Theorem (Existence and uniqueness [IMZ, ’11])
Under (A0)-(A1)-(A2), there exists a unique viscosity solution u of (3.1)
on the junction, satisfying for some constant CT > 0
|u(t, y) − u0(y)| ≤ CT for all (t, y) ∈ JT .
Moreover the function u is Lipschitz continuous with respect to (t, y).
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 16 / 42
Junction model and adapted scheme Mathematical results
Convergence
Theorem (Convergence from discrete to continuous [CML, ’13])
Assume that (A0)-(A1)-(A2) and the CFL condition (3.4) are satisfied.
Then the numerical solution converges uniformly to u the unique viscosity
solution of (3.1) when ε → 0, locally uniformly on any compact set K:
lim sup
ε→0
sup
(n∆t,i∆x)∈K
|uα
(n∆t, i∆x) − Uα,n
i | = 0
Proof
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 17 / 42
Traffic interpretation
Outline
1 Motivation
2 Junction model and adapted scheme
3 Traffic interpretation
Traffic notations
Links with “classical” approach
Literature review
4 Numerical simulation
5 Conclusion
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 18 / 42
Traffic interpretation Traffic notations
Setting
J1
JNI
JNI+1
JNI+NO
x < 0 x = 0 x > 0
Jβ
γβ Jλ
γλ
NI incoming and NO outgoing roads
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 19 / 42
Traffic interpretation Traffic notations
Car densities
The car density ρα solves the LWR equation on branch α:
ρα
t + (Qα
(ρα
))x = 0
By definition
ρα
= γα
∂xUα
on branch α
And
uα(x, t) = −Uα(−x, t), x > 0, for incoming roads
uα(x, t) = −Uα(x, t), x > 0, for outgoing roads
where the car index uα solves the HJ equation on branch α:
uα
t + Hα
(uα
x ) = 0, for x > 0
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 20 / 42
Traffic interpretation Traffic notations
Flow
Hα(p) :=



−
1
γα
Qα(γαp) for α = 1, ..., NI
−
1
γα
Qα(−γαp) for α = NI + 1, ..., NI + NO
Incoming roads Outgoing roads
ρcrit
γα
ρmax
γα
p
−
Qmax
γα
p
−
Qmax
γα
HαHα
H−
α H−
α H+
αH+
α
−
ρmax
γα
−
ρcrit
γα
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 21 / 42
Traffic interpretation Links with “classical” approach
Discrete car densities
Definition (Discrete car density)
The discrete car density ρα,n
i with n ≥ 0 and i ∈ Z is given by:
ρα,n
i :=



γαpα,n
|i|−1 for α = 1, ..., NI , i ≤ −1
−γαpα,n
i for α = NI + 1, ..., NI + NO, i ≥ 0
(4.5)
J1
JNI
JNI+1
JNI+NO
x < 0 x > 0
−2
−1
2
1
0
−2
−2
−1
−1
1
1
2
2
Jβ
Jλ
ρλ,n
1
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 22 / 42
Traffic interpretation Links with “classical” approach
Traffic interpretation
Proposition (Scheme for vehicles densities)
The scheme deduced from (3.2) for the discrete densities is given by:
∆x
∆t
{ρα,n+1
i − ρα,n
i } =



Fα(ρα,n
i−1, ρα,n
i ) − Fα(ρα,n
i , ρα,n
i+1) for i = 0, −1
Fα
0 (ρ·,n
0 ) − Fα(ρα,n
i , ρα,n
i+1) for i = 0
Fα(ρα,n
i−1, ρα,n
i ) − Fα
0 (ρ·,n
0 ) for i = −1
With



Fα(ρα,n
i−1, ρα,n
i ) := min Qα
D(ρα,n
i−1), Qα
S(ρα,n
i )
Fα
0 (ρ·,n
0 ) := γα min min
β≤NI
1
γβ
Qβ
D(ρβ,n
0 ), min
λ>NI
1
γλ
Qλ
S(ρλ,n
0 )
incoming outgoing
ρλ,n
0ρβ,n
−1ρβ,n
−2 ρλ,n
1
x
x = 0
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 23 / 42
Traffic interpretation Links with “classical” approach
Supply and demand functions
Remark
It recovers the seminal Godunov scheme with passing flow = minimum
between upstream demand QD and downstream supply QS.
Density ρ
ρcrit ρmax
Supply QS
Qmax
Density ρ
ρcrit ρmax
Flow Q
Qmax
Density ρ
ρcrit
Demand QD
Qmax
From [Lebacque ’93, ’96]
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 24 / 42
Traffic interpretation Links with “classical” approach
Supply and demand VS Hamiltonian
H−
α (p) =



−
1
γα
Qα
D(γαp) for α = 1, ..., NI
−
1
γα
Qα
S(−γαp) for α = NI + 1, ..., NI + NO
And
H+
α (p) =



−
1
γα
Qα
S(γαp) for α = 1, ..., NI
−
1
γα
Qα
D(−γαp) for α = NI + 1, ..., NI + NO
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 25 / 42
Traffic interpretation Literature review
Some references for conservation laws
ρt + (Q(x, ρ))x = 0 with Q(x, p) = 1{x<0}Qin
(p) + 1{x≥0}Qout
(p)
Uniqueness results only for restricted configurations:
See [Garavello, Natalini, Piccoli, Terracina ’07]
and [Andreianov, Karlsen, Risebro ’11]
Book of [Garavello, Piccoli ’06] for conservation laws on networks:
Construction of a solution using the “wave front tracking method”
No proof of the uniqueness of the solution on a general network
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 26 / 42
Traffic interpretation Literature review
Numerics on networks
Godunov scheme mainly used for conservation laws:
[Bretti, Natalini, Piccoli ’06, ’07]: Godunov scheme compared to
kinetic schemes / fast algorithms
[Blandin, Bretti, Cutolo, Piccoli ’09]: Godunov scheme adapted for
Colombo model (only tested for 1 × 1 junctions)
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 27 / 42
Traffic interpretation Literature review
Numerics on networks
Godunov scheme mainly used for conservation laws:
[Bretti, Natalini, Piccoli ’06, ’07]: Godunov scheme compared to
kinetic schemes / fast algorithms
[Blandin, Bretti, Cutolo, Piccoli ’09]: Godunov scheme adapted for
Colombo model (only tested for 1 × 1 junctions)
[Han, Piccoli, Friesz, Yao ’12]: Lax-Hopf formula for HJ equation coupled
with a Riemann solver at junction
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 27 / 42
Traffic interpretation Literature review
Junction modelling
State-of-the-art review:
[Lebacque, Khoshyaran ’02, ’05, ’09]
[Tamp`ere, Corthout, Cattrysse, Immers ’11],
[Fl¨otter¨od, Rohde ’11]
Calibration of γα for realistic models:
[Cassidy and Ahn ’05]
[Bar-Gera and Ahn ’10],
[Ni and Leonard ’05] (small data set)
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 28 / 42
Numerical simulation
Outline
1 Motivation
2 Junction model and adapted scheme
3 Traffic interpretation
4 Numerical simulation
5 Conclusion
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 29 / 42
Numerical simulation
Example of a Diverge
An off-ramp:
J1
ρ1
J2
ρ2
ρ3
J3
Branch Number of lanes Maximal speed γα
1 2 90 km/h 1
2 2 90 km/h 0.75
3 1 50 km/h 0.25
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 30 / 42
Numerical simulation
Diverge: Fundamental Diagrams
0 50 100 150 200 250 300 350
0
500
1000
1500
2000
2500
3000
3500
4000
(15, 1772)(15, 1772)
(20, 2250)
(11, 1329)
(5, 344)
(7, 443)
Density (veh/km)
Flow(veh/h)
Fundamental diagrams per branch
1
2
3
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 31 / 42
Numerical simulation
Initial conditions (t=0s)
−200 −150 −100 −50 0
0
10
20
30
40
50
60
70
Road n° 1 (t= 0s)
Position (m)
Density(veh/km)
0 50 100 150 200
0
10
20
30
40
50
60
70
Road n° 2 (t= 0s)
Position (m)
Density(veh/km)
0 50 100 150 200
0
10
20
30
40
50
60
70
Road n° 3 (t= 0s)
Position (m)
Density(veh/km)
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 32 / 42
Numerical simulation
Trajectories
1
2
3
4
5
6
7
78
8
9
9
10
10
11
11
12
12
13
13
Trajectories on road n° 1
Position (m)
Time(s)
−200 −150 −100 −50 0
0
5
10
15
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10
11
12
Trajectories on road n° 2
Position (m)
Time(s)
0 50 100 150 200
0
5
10
15
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
10
11
12
Trajectories on road n° 3
Position (m)
Time(s)
0 50 100 150 200
0
5
10
15
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 33 / 42
Numerical simulation
Cumulative Vehicles Count
0 10 20 30 40
0
5
10
15
20
25
Time (s)
CumulativeNumberofVehicles
CVC on road n°1
Up. st.
Down. st.
0 10 20 30 40
−5
0
5
10
15
20
Time (s)
CumulativeNumberofVehicles
CVC on road n°2
Up. st.
Down. st.
0 10 20 30 40
−2
0
2
4
6
Time (s)
CumulativeNumberofVehicles
CVC on road n°3
Up. st.
Down. st.
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 34 / 42
Numerical simulation
Gradient estimates
0 10 20 30
0
50
100
150
200
250
Time (s)
Density(veh/km)
Density time evolution on road n° 1
0 10 20 30
0
50
100
150
200
250
300
Time (s)
Density(veh/km)
Density time evolution on road n° 2
0 10 20 30
0
50
100
150
Time (s)
Density(veh/km)
Density time evolution on road n° 3
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 35 / 42
Conclusion
Outline
1 Motivation
2 Junction model and adapted scheme
3 Traffic interpretation
4 Numerical simulation
5 Conclusion
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 36 / 42
Conclusion
Complementary results [CML ’13]:
Generalization for weaker assumptions on the Hamiltonians
Numerical simulation for other junction configurations (merge)
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 37 / 42
Conclusion
Complementary results [CML ’13]:
Generalization for weaker assumptions on the Hamiltonians
Numerical simulation for other junction configurations (merge)
Open questions:
Error estimate
Non-fixed coefficients γα
Other link models (GSOM)
Other junction condition
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 37 / 42
Conclusion
The End
Thanks for your attention
guillaume.costeseque@cermics.enpc.fr
guillaume.costeseque@ifsttar.fr
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 38 / 42
Complements
Some references
G. Costeseque, R. Monneau, J-P. Lebacque, A convergent numerical
scheme for Hamilton-Jacobi equations on a junction: application to
traffic, Working paper, (2013).
C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach to
junction problems and application to traffic flows, ESAIM: COCV,
(2011), 38 pages.
J.P. Lebacque and M.M. Koshyaran, First-order macroscopic traffic
flow models: intersection modeling, network modeling, 16th ISTTT
(2005), pp. 365-386.
C. Tamp`ere, R. Corthout, D. Cattrysse and L. Immers, A generic class
of first order node models for dynamic macroscopic simulations of
traffic flows, Transp. Res. Part B, 45 (1) (2011), pp. 289-309.
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 39 / 42
Proofs of the main results
Sketch of the proof (gradient estimates):
Time derivative estimate:
1. Estimate on mα,n = inf
i
(DtU)α,n
i and partial result for mn = inf
α
mα,n
2. Similar estimate for Mn
3. Conclusion
Space derivative estimate:
1. New bounded Hamiltonian ˜Hα(p) for p ≤ pα
and p ≥ pα
2. Time derivative estimate from above
3. Lemma: if for any (i, n, α), (DtU)α,n
i ≥ m0 then
pα
≤ pα,n
i ≤ pα
4. Conclusion as ˜Hα = Hα on [pα
, pα]
Back
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 40 / 42
Proofs of the main results
Convergence with uniqueness assumption
Sketch of the proof: (Comparison principle very helpful)
1. uα(t, x) := lim sup
ε
Uα,n
i is a subsolution of (3.1) (contradiction on
Definition inequality with a test function ϕ)
2. Similarly, uα is a supersolution of (3.1)
3. Conclusion: uα = uα viscosity solution of (3.1)
Back
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 41 / 42
Proofs of the main results
Convergence without uniqueness assumption
Sketch of the proof: (No comparison principle)
1. Discrete Lipschitz bounds on uα
ε (n∆t, i∆x) := Uα,n
i
2. Extension by continuity of uα
ε
3. Ascoli theorem (convergent subsequence on every compact set)
4. The limit of one convergent subsequence (uα
ε )ε is super and
sub-solution of (3.1)
G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 42 / 42

More Related Content

PDF
Numerical approach for Hamilton-Jacobi equations on a network: application to...
PDF
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
PDF
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
PDF
Analytic construction of points on modular elliptic curves
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
Intro to Approximate Bayesian Computation (ABC)
PDF
Accelerated approximate Bayesian computation with applications to protein fol...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Analytic construction of points on modular elliptic curves
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Intro to Approximate Bayesian Computation (ABC)
Accelerated approximate Bayesian computation with applications to protein fol...

What's hot (20)

PDF
Approximate Bayesian computation for the Ising/Potts model
PDF
ABC with data cloning for MLE in state space models
PDF
My data are incomplete and noisy: Information-reduction statistical methods f...
PDF
A likelihood-free version of the stochastic approximation EM algorithm (SAEM)...
PDF
Non-sampling functional approximation of linear and non-linear Bayesian Update
PDF
Inference for stochastic differential equations via approximate Bayesian comp...
PDF
Divergence clustering
PPT
Chap8 new
PDF
Absorbing Random Walk Centrality
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
Stratified sampling and resampling for approximate Bayesian computation
PDF
Approximation Algorithms
PDF
The dual geometry of Shannon information
PDF
Computational Information Geometry: A quick review (ICMS)
PDF
Core–periphery detection in networks with nonlinear Perron eigenvectors
PPTX
Presentation of daa on approximation algorithm and vertex cover problem
PDF
Numerical integration based on the hyperfunction theory
PDF
AINL 2016: Goncharov
PDF
A copula model to analyze minimum admission scores
PDF
Optimal L-shaped matrix reordering, aka graph's core-periphery
Approximate Bayesian computation for the Ising/Potts model
ABC with data cloning for MLE in state space models
My data are incomplete and noisy: Information-reduction statistical methods f...
A likelihood-free version of the stochastic approximation EM algorithm (SAEM)...
Non-sampling functional approximation of linear and non-linear Bayesian Update
Inference for stochastic differential equations via approximate Bayesian comp...
Divergence clustering
Chap8 new
Absorbing Random Walk Centrality
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Stratified sampling and resampling for approximate Bayesian computation
Approximation Algorithms
The dual geometry of Shannon information
Computational Information Geometry: A quick review (ICMS)
Core–periphery detection in networks with nonlinear Perron eigenvectors
Presentation of daa on approximation algorithm and vertex cover problem
Numerical integration based on the hyperfunction theory
AINL 2016: Goncharov
A copula model to analyze minimum admission scores
Optimal L-shaped matrix reordering, aka graph's core-periphery
Ad

More from Guillaume Costeseque (20)

PDF
Impacts de la "Ville 30" sur les trafics, les vitesses et les temps de parcou...
PDF
Présentation aux RFTM 2024 sur l'estimation des débits à partir des données FCD
PDF
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
PDF
Nouvelles mobilités, nouveaux usages, évolutions des marchés
PDF
Cours its-ecn-2021
PDF
Cours its-ecn-2020
PDF
A multi-objective optimization framework for a second order traffic flow mode...
PDF
Evaluation d'une navette autonome à Nantes 2019
PDF
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
PDF
A new solver for the ARZ traffic flow model on a junction
PDF
Some recent developments in the traffic flow variational formulation
PDF
Representation formula for traffic flow estimation on a network
PDF
Hamilton-Jacobi approach for second order traffic flow models
PDF
Numerical approach for Hamilton-Jacobi equations on a network: application to...
PDF
Numerical methods for variational principles in traffic
PDF
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
PDF
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
PDF
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
PDF
Mesoscopic multiclass traffic flow modeling on multi-lane sections
PDF
The moving bottleneck problem: a Hamilton-Jacobi approach
Impacts de la "Ville 30" sur les trafics, les vitesses et les temps de parcou...
Présentation aux RFTM 2024 sur l'estimation des débits à partir des données FCD
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Cours its-ecn-2021
Cours its-ecn-2020
A multi-objective optimization framework for a second order traffic flow mode...
Evaluation d'une navette autonome à Nantes 2019
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
A new solver for the ARZ traffic flow model on a junction
Some recent developments in the traffic flow variational formulation
Representation formula for traffic flow estimation on a network
Hamilton-Jacobi approach for second order traffic flow models
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical methods for variational principles in traffic
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Mesoscopic multiclass traffic flow modeling on multi-lane sections
The moving bottleneck problem: a Hamilton-Jacobi approach
Ad

Recently uploaded (20)

PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
Current and future trends in Computer Vision.pptx
PDF
composite construction of structures.pdf
PDF
Well-logging-methods_new................
PPTX
web development for engineering and engineering
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
UNIT 4 Total Quality Management .pptx
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
Geodesy 1.pptx...............................................
DOCX
573137875-Attendance-Management-System-original
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
additive manufacturing of ss316l using mig welding
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Current and future trends in Computer Vision.pptx
composite construction of structures.pdf
Well-logging-methods_new................
web development for engineering and engineering
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Internet of Things (IOT) - A guide to understanding
UNIT-1 - COAL BASED THERMAL POWER PLANTS
UNIT 4 Total Quality Management .pptx
R24 SURVEYING LAB MANUAL for civil enggi
Geodesy 1.pptx...............................................
573137875-Attendance-Management-System-original
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
additive manufacturing of ss316l using mig welding
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
CYBER-CRIMES AND SECURITY A guide to understanding

Road junction modeling using a scheme based on Hamilton-Jacobi equations

  • 1. Road junction modelling using a scheme based on Hamilton-Jacobi equation Guillaume Costeseque (PhD with supervisors R. Monneau & J-P. Lebacque) Ecole des Ponts ParisTech, CERMICS & IFSTTAR, GRETTIA Workshop on Traffic Modeling and Management March 20-22, 2013 - Sophia-Antipolis G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 1 / 42
  • 2. Introduction A junction JN J1 J2 branch Jα x x 0 x x G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 2 / 42
  • 3. Introduction Ideas of the model JN J1 J2 branch Jα x x 0 x x    uα t + Hα(uα x ) = 0, x > 0, α = 1, . . . , N uα = uβ =: u, x = 0, ut + H(u1 x, . . . , uN x ) = 0, x = 0 G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 3 / 42
  • 4. Introduction Outline 1 Motivation 2 Junction model and adapted scheme 3 Traffic interpretation 4 Numerical simulation 5 Conclusion G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 4 / 42
  • 5. Motivation Outline 1 Motivation 2 Junction model and adapted scheme 3 Traffic interpretation 4 Numerical simulation 5 Conclusion G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 5 / 42
  • 6. Motivation The simple divergent road x > 0 x > 0γl γrx < 0 Il Ir γe Ie    γe = 1, 0 ≤ γl, γr ≤ 1, γl + γr = 1 LWR model [Lighthill, Whitham ’55; Richards ’56]: ρt + (Q(ρ))x = 0 G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 6 / 42
  • 7. Motivation Qmax ρcrit ρmax Density ρ Flow Q(ρ) Q(ρ) = ρV (ρ) with V (ρ) = speed of the equilibrium flow G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 7 / 42
  • 8. Junction model and adapted scheme Outline 1 Motivation 2 Junction model and adapted scheme Getting of the HJ equations Junction model Numerical scheme Mathematical results 3 Traffic interpretation 4 Numerical simulation 5 Conclusion G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 8 / 42
  • 9. Junction model and adapted scheme Getting of the HJ equations ρα t + (Qα (ρα ))x = 0 on branch α Primitive: Uα (x, t) = Uα (0, t) + 1 γα x 0 ρα (y, t)dy and Uα (0, t) = g(t) = index of the single car at the junction point x > 0 x > 09 11 8 10 12 6420 1 3 5 7 −1 x < 0 G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 9 / 42
  • 10. Junction model and adapted scheme Getting of the HJ equations ρα t + (Qα (ρα ))x = 0 on branch α Primitive: Uα (x, t) = Uα (0, t) + 1 γα x 0 ρα (y, t)dy and Uα (0, t) = g(t) = index of the single car at the junction point x > 0 x > 09 11 8 10 12 6420 1 3 5 7 −1 x < 0 Uα t + 1 γα Qα (γα Uα x ) = g′ (t) + 1 γα Qα (ρα (0, t)) = 0 for a good choice of g G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 9 / 42
  • 11. Junction model and adapted scheme Junction model Junction model New functions uα: uα(x, t) = −Uα(x, t), x > 0, for outgoing roads uα(x, t) = −Uα(−x, t), x > 0 J3 e3 J2 e2 e1 J1 JN eN Proposition (Junction model)    uα t + Hα(uα x ) = 0, x > 0, uα(0, t) = u(0, t), x = 0, α = 1, ..., N ut + max α=1,...,N H− α (uα x ) = 0, x = 0. (3.1) with the initial condition uα(0, x) = uα 0 (x). G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 10 / 42
  • 12. Junction model and adapted scheme Junction model Assumptions For all α = 1, . . . , N, (A0) The initial condition uα 0 is Lipschitz continuous. (A1) The Hamiltonians Hα are C1(R) and convex such that: p H− α (p) H+ α (p) pα 0 G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 11 / 42
  • 13. Junction model and adapted scheme Numerical scheme Presentation of the NS Proposition (Numerical Scheme) Let us consider the discrete space and time derivatives: pα,n i := Uα,n i+1 − Uα,n i ∆x and (DtU)α,n i := Uα,n+1 i − Uα,n i ∆t Then we have the following numerical scheme:    (DtU)α,n i + max{H+ α (pα,n i−1), H− α (pα,n i )} = 0, i ≥ 1 Un 0 := Uα,n 0 , i = 0, α = 1, ..., N (DtU)n 0 + max α=1,...,N H− α (pα,n 0 ) = 0, i = 0 (3.2) With the initial condition Uα,0 i := uα 0 (i∆x). ∆x and ∆t = space and time steps satisfying a CFL condition G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 12 / 42
  • 14. Junction model and adapted scheme Numerical scheme CFL condition The natural CFL condition is given by: ∆x ∆t ≥ sup α=1,...,N i≥0, 0≤n≤nT |H′ α(pα,n i )| (3.3) G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 13 / 42
  • 15. Junction model and adapted scheme Mathematical results Gradient estimates Theorem (Time and Space Gradient estimates) Assume (A0)-(A1). If the CFL condition (3.3) is satisfied, then we have that: (i) Considering Mn = sup α,i (DtU)α,n i and mn = inf α,i (DtU)α,n i , we have the following time derivative estimate: m0 ≤ mn ≤ mn+1 ≤ Mn+1 ≤ Mn ≤ M0 (ii) Considering pα = (H− α )−1(−m0) and pα = (H+ α )−1(−m0), we have the following gradient estimate: pα ≤ pα,n i ≤ pα, for all i ≥ 0, n ≥ 0 and α = 1, ..., N Proof G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 14 / 42
  • 16. Junction model and adapted scheme Mathematical results Stronger CFL condition As for any α = 1, . . . , N, we have that: pα ≤ pα,n i ≤ pα for all i, n ≥ 0 −m0 pα p Hα(p) pα Then the CFL condition becomes: ∆x ∆t ≥ sup α=1,...,N pα∈[pα ,pα] |H′ α(pα)| (3.4) G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 15 / 42
  • 17. Junction model and adapted scheme Mathematical results Existence and uniqueness (A2) Technical assumption (Legendre-Fenchel transform) Hα(p) = sup q∈R (pq − Lα(q)) with L′′ α ≥ δ > 0, for all index α G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 16 / 42
  • 18. Junction model and adapted scheme Mathematical results Existence and uniqueness (A2) Technical assumption (Legendre-Fenchel transform) Hα(p) = sup q∈R (pq − Lα(q)) with L′′ α ≥ δ > 0, for all index α Theorem (Existence and uniqueness [IMZ, ’11]) Under (A0)-(A1)-(A2), there exists a unique viscosity solution u of (3.1) on the junction, satisfying for some constant CT > 0 |u(t, y) − u0(y)| ≤ CT for all (t, y) ∈ JT . Moreover the function u is Lipschitz continuous with respect to (t, y). G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 16 / 42
  • 19. Junction model and adapted scheme Mathematical results Convergence Theorem (Convergence from discrete to continuous [CML, ’13]) Assume that (A0)-(A1)-(A2) and the CFL condition (3.4) are satisfied. Then the numerical solution converges uniformly to u the unique viscosity solution of (3.1) when ε → 0, locally uniformly on any compact set K: lim sup ε→0 sup (n∆t,i∆x)∈K |uα (n∆t, i∆x) − Uα,n i | = 0 Proof G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 17 / 42
  • 20. Traffic interpretation Outline 1 Motivation 2 Junction model and adapted scheme 3 Traffic interpretation Traffic notations Links with “classical” approach Literature review 4 Numerical simulation 5 Conclusion G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 18 / 42
  • 21. Traffic interpretation Traffic notations Setting J1 JNI JNI+1 JNI+NO x < 0 x = 0 x > 0 Jβ γβ Jλ γλ NI incoming and NO outgoing roads G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 19 / 42
  • 22. Traffic interpretation Traffic notations Car densities The car density ρα solves the LWR equation on branch α: ρα t + (Qα (ρα ))x = 0 By definition ρα = γα ∂xUα on branch α And uα(x, t) = −Uα(−x, t), x > 0, for incoming roads uα(x, t) = −Uα(x, t), x > 0, for outgoing roads where the car index uα solves the HJ equation on branch α: uα t + Hα (uα x ) = 0, for x > 0 G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 20 / 42
  • 23. Traffic interpretation Traffic notations Flow Hα(p) :=    − 1 γα Qα(γαp) for α = 1, ..., NI − 1 γα Qα(−γαp) for α = NI + 1, ..., NI + NO Incoming roads Outgoing roads ρcrit γα ρmax γα p − Qmax γα p − Qmax γα HαHα H− α H− α H+ αH+ α − ρmax γα − ρcrit γα G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 21 / 42
  • 24. Traffic interpretation Links with “classical” approach Discrete car densities Definition (Discrete car density) The discrete car density ρα,n i with n ≥ 0 and i ∈ Z is given by: ρα,n i :=    γαpα,n |i|−1 for α = 1, ..., NI , i ≤ −1 −γαpα,n i for α = NI + 1, ..., NI + NO, i ≥ 0 (4.5) J1 JNI JNI+1 JNI+NO x < 0 x > 0 −2 −1 2 1 0 −2 −2 −1 −1 1 1 2 2 Jβ Jλ ρλ,n 1 G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 22 / 42
  • 25. Traffic interpretation Links with “classical” approach Traffic interpretation Proposition (Scheme for vehicles densities) The scheme deduced from (3.2) for the discrete densities is given by: ∆x ∆t {ρα,n+1 i − ρα,n i } =    Fα(ρα,n i−1, ρα,n i ) − Fα(ρα,n i , ρα,n i+1) for i = 0, −1 Fα 0 (ρ·,n 0 ) − Fα(ρα,n i , ρα,n i+1) for i = 0 Fα(ρα,n i−1, ρα,n i ) − Fα 0 (ρ·,n 0 ) for i = −1 With    Fα(ρα,n i−1, ρα,n i ) := min Qα D(ρα,n i−1), Qα S(ρα,n i ) Fα 0 (ρ·,n 0 ) := γα min min β≤NI 1 γβ Qβ D(ρβ,n 0 ), min λ>NI 1 γλ Qλ S(ρλ,n 0 ) incoming outgoing ρλ,n 0ρβ,n −1ρβ,n −2 ρλ,n 1 x x = 0 G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 23 / 42
  • 26. Traffic interpretation Links with “classical” approach Supply and demand functions Remark It recovers the seminal Godunov scheme with passing flow = minimum between upstream demand QD and downstream supply QS. Density ρ ρcrit ρmax Supply QS Qmax Density ρ ρcrit ρmax Flow Q Qmax Density ρ ρcrit Demand QD Qmax From [Lebacque ’93, ’96] G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 24 / 42
  • 27. Traffic interpretation Links with “classical” approach Supply and demand VS Hamiltonian H− α (p) =    − 1 γα Qα D(γαp) for α = 1, ..., NI − 1 γα Qα S(−γαp) for α = NI + 1, ..., NI + NO And H+ α (p) =    − 1 γα Qα S(γαp) for α = 1, ..., NI − 1 γα Qα D(−γαp) for α = NI + 1, ..., NI + NO G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 25 / 42
  • 28. Traffic interpretation Literature review Some references for conservation laws ρt + (Q(x, ρ))x = 0 with Q(x, p) = 1{x<0}Qin (p) + 1{x≥0}Qout (p) Uniqueness results only for restricted configurations: See [Garavello, Natalini, Piccoli, Terracina ’07] and [Andreianov, Karlsen, Risebro ’11] Book of [Garavello, Piccoli ’06] for conservation laws on networks: Construction of a solution using the “wave front tracking method” No proof of the uniqueness of the solution on a general network G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 26 / 42
  • 29. Traffic interpretation Literature review Numerics on networks Godunov scheme mainly used for conservation laws: [Bretti, Natalini, Piccoli ’06, ’07]: Godunov scheme compared to kinetic schemes / fast algorithms [Blandin, Bretti, Cutolo, Piccoli ’09]: Godunov scheme adapted for Colombo model (only tested for 1 × 1 junctions) G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 27 / 42
  • 30. Traffic interpretation Literature review Numerics on networks Godunov scheme mainly used for conservation laws: [Bretti, Natalini, Piccoli ’06, ’07]: Godunov scheme compared to kinetic schemes / fast algorithms [Blandin, Bretti, Cutolo, Piccoli ’09]: Godunov scheme adapted for Colombo model (only tested for 1 × 1 junctions) [Han, Piccoli, Friesz, Yao ’12]: Lax-Hopf formula for HJ equation coupled with a Riemann solver at junction G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 27 / 42
  • 31. Traffic interpretation Literature review Junction modelling State-of-the-art review: [Lebacque, Khoshyaran ’02, ’05, ’09] [Tamp`ere, Corthout, Cattrysse, Immers ’11], [Fl¨otter¨od, Rohde ’11] Calibration of γα for realistic models: [Cassidy and Ahn ’05] [Bar-Gera and Ahn ’10], [Ni and Leonard ’05] (small data set) G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 28 / 42
  • 32. Numerical simulation Outline 1 Motivation 2 Junction model and adapted scheme 3 Traffic interpretation 4 Numerical simulation 5 Conclusion G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 29 / 42
  • 33. Numerical simulation Example of a Diverge An off-ramp: J1 ρ1 J2 ρ2 ρ3 J3 Branch Number of lanes Maximal speed γα 1 2 90 km/h 1 2 2 90 km/h 0.75 3 1 50 km/h 0.25 G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 30 / 42
  • 34. Numerical simulation Diverge: Fundamental Diagrams 0 50 100 150 200 250 300 350 0 500 1000 1500 2000 2500 3000 3500 4000 (15, 1772)(15, 1772) (20, 2250) (11, 1329) (5, 344) (7, 443) Density (veh/km) Flow(veh/h) Fundamental diagrams per branch 1 2 3 G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 31 / 42
  • 35. Numerical simulation Initial conditions (t=0s) −200 −150 −100 −50 0 0 10 20 30 40 50 60 70 Road n° 1 (t= 0s) Position (m) Density(veh/km) 0 50 100 150 200 0 10 20 30 40 50 60 70 Road n° 2 (t= 0s) Position (m) Density(veh/km) 0 50 100 150 200 0 10 20 30 40 50 60 70 Road n° 3 (t= 0s) Position (m) Density(veh/km) G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 32 / 42
  • 36. Numerical simulation Trajectories 1 2 3 4 5 6 7 78 8 9 9 10 10 11 11 12 12 13 13 Trajectories on road n° 1 Position (m) Time(s) −200 −150 −100 −50 0 0 5 10 15 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12 Trajectories on road n° 2 Position (m) Time(s) 0 50 100 150 200 0 5 10 15 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 10 11 12 Trajectories on road n° 3 Position (m) Time(s) 0 50 100 150 200 0 5 10 15 G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 33 / 42
  • 37. Numerical simulation Cumulative Vehicles Count 0 10 20 30 40 0 5 10 15 20 25 Time (s) CumulativeNumberofVehicles CVC on road n°1 Up. st. Down. st. 0 10 20 30 40 −5 0 5 10 15 20 Time (s) CumulativeNumberofVehicles CVC on road n°2 Up. st. Down. st. 0 10 20 30 40 −2 0 2 4 6 Time (s) CumulativeNumberofVehicles CVC on road n°3 Up. st. Down. st. G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 34 / 42
  • 38. Numerical simulation Gradient estimates 0 10 20 30 0 50 100 150 200 250 Time (s) Density(veh/km) Density time evolution on road n° 1 0 10 20 30 0 50 100 150 200 250 300 Time (s) Density(veh/km) Density time evolution on road n° 2 0 10 20 30 0 50 100 150 Time (s) Density(veh/km) Density time evolution on road n° 3 G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 35 / 42
  • 39. Conclusion Outline 1 Motivation 2 Junction model and adapted scheme 3 Traffic interpretation 4 Numerical simulation 5 Conclusion G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 36 / 42
  • 40. Conclusion Complementary results [CML ’13]: Generalization for weaker assumptions on the Hamiltonians Numerical simulation for other junction configurations (merge) G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 37 / 42
  • 41. Conclusion Complementary results [CML ’13]: Generalization for weaker assumptions on the Hamiltonians Numerical simulation for other junction configurations (merge) Open questions: Error estimate Non-fixed coefficients γα Other link models (GSOM) Other junction condition G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 37 / 42
  • 42. Conclusion The End Thanks for your attention guillaume.costeseque@cermics.enpc.fr guillaume.costeseque@ifsttar.fr G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 38 / 42
  • 43. Complements Some references G. Costeseque, R. Monneau, J-P. Lebacque, A convergent numerical scheme for Hamilton-Jacobi equations on a junction: application to traffic, Working paper, (2013). C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM: COCV, (2011), 38 pages. J.P. Lebacque and M.M. Koshyaran, First-order macroscopic traffic flow models: intersection modeling, network modeling, 16th ISTTT (2005), pp. 365-386. C. Tamp`ere, R. Corthout, D. Cattrysse and L. Immers, A generic class of first order node models for dynamic macroscopic simulations of traffic flows, Transp. Res. Part B, 45 (1) (2011), pp. 289-309. G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 39 / 42
  • 44. Proofs of the main results Sketch of the proof (gradient estimates): Time derivative estimate: 1. Estimate on mα,n = inf i (DtU)α,n i and partial result for mn = inf α mα,n 2. Similar estimate for Mn 3. Conclusion Space derivative estimate: 1. New bounded Hamiltonian ˜Hα(p) for p ≤ pα and p ≥ pα 2. Time derivative estimate from above 3. Lemma: if for any (i, n, α), (DtU)α,n i ≥ m0 then pα ≤ pα,n i ≤ pα 4. Conclusion as ˜Hα = Hα on [pα , pα] Back G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 40 / 42
  • 45. Proofs of the main results Convergence with uniqueness assumption Sketch of the proof: (Comparison principle very helpful) 1. uα(t, x) := lim sup ε Uα,n i is a subsolution of (3.1) (contradiction on Definition inequality with a test function ϕ) 2. Similarly, uα is a supersolution of (3.1) 3. Conclusion: uα = uα viscosity solution of (3.1) Back G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 41 / 42
  • 46. Proofs of the main results Convergence without uniqueness assumption Sketch of the proof: (No comparison principle) 1. Discrete Lipschitz bounds on uα ε (n∆t, i∆x) := Uα,n i 2. Extension by continuity of uα ε 3. Ascoli theorem (convergent subsequence on every compact set) 4. The limit of one convergent subsequence (uα ε )ε is super and sub-solution of (3.1) G. Costeseque (Universit´e ParisEst) Numerical scheme for traffic junction Sophia, March 2013 42 / 42