SlideShare a Scribd company logo
Numerical approach for Hamilton-Jacobi equations
on a network: application to traffic
Guillaume Costeseque
(PhD with supervisors R. Monneau & J-P. Lebacque)
Universit´e Paris Est, Ecole des Ponts ParisTech & IFSTTAR
NETCO Conference - Tours,
June 24, 2014
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 1 / 51
Flows on a network
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 2 / 51
Flows on a network
A network is like a (oriented) graph
made of edges and vertices
Examples:
traffic flow,
gas pipelines,
blood vessels,
shallow water,
internet communications...
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 3 / 51
Outline
1 Introduction
2 Numerical scheme
3 Traffic interpretation
4 Numerical simulation
5 Recent developments
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 4 / 51
Introduction
Motivation
Classical approaches (see A. Bressan’s lectures):
Macroscopic modeling on (homogeneous) sections
Coupling conditions at (pointwise) junction
For instance, consider
⎧
⎪⎨
⎪⎩
ρt + (Q(ρ))x = 0, scalar conservation law,
ρ(., t = 0) = ρ0(.), initial conditions,
ψ(ρ(x = 0−, t), ρ(x = 0+, t)) = 0, coupling condition.
(1)
See Garavello, Piccoli [3], Lebacque, Khoshyaran [6] and Bressan et al. [1]
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 5 / 51
Introduction
Qmax
ρcrit ρmax
Density ρ
Flow Q(ρ)
Q(ρ) = ρV (ρ) with V (ρ) = velocity function
DFs
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 6 / 51
Introduction HJ junction model
Star-shaped junction
JN
J1
J2
branch Jα
x
x
0
x
x
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 7 / 51
Introduction HJ junction model
Junction model
Proposition (Junction model [IMZ, ’13])
That leads to the following junction model (see [5])
⎧
⎪⎨
⎪⎩
uα
t + Hα(uα
x ) = 0, x > 0, α = 1, . . . , N
uα = uβ =: u, x = 0,
ut + H(u1
x , . . . , uN
x ) = 0, x = 0
(2)
with initial condition uα(0, x) = uα
0 (x) and
H(u1
x , . . . , uN
x ) = max
α=1,...,N
H−
α (uα
x )
from optimal control
.
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 8 / 51
Introduction HJ junction model
Basic assumptions
For all α = 1, . . . , N,
(A0) The initial condition uα
0 is Lipschitz continuous.
(A1) The Hamiltonians Hα are C1(R) and convex such that:
p
H−
α (p) H+
α (p)
pα
0
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 9 / 51
Introduction HJ junction model
Numerics on networks
Godunov scheme mainly used for conservation laws:
[Bretti, Natalini, Piccoli ’06, ’07]: Godunov scheme compared to
kinetic schemes / fast algorithms
[Blandin, Bretti, Cutolo, Piccoli ’09]: Godunov scheme adapted for
Colombo model (only tested for 1 × 1 junctions)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 10 / 51
Introduction HJ junction model
Numerics on networks
Godunov scheme mainly used for conservation laws:
[Bretti, Natalini, Piccoli ’06, ’07]: Godunov scheme compared to
kinetic schemes / fast algorithms
[Blandin, Bretti, Cutolo, Piccoli ’09]: Godunov scheme adapted for
Colombo model (only tested for 1 × 1 junctions)
For Hamilton-Jacobi equations on networks:
[G¨ottlich, Ziegler, Herty ’13]: Lax-Freidrichs scheme outside the
junction + coupling conditions (density) at the junction
[Han, Piccoli, Friesz, Yao ’12]: Lax-Hopf formula for HJ equation
coupled with a Riemann solver at junction
[Camilli, Festa, Schieborn ’13]: semi-Lagrangian scheme only
designed for Eikonal equations
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 10 / 51
Numerical scheme
Outline
1 Introduction
2 Numerical scheme
3 Traffic interpretation
4 Numerical simulation
5 Recent developments
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 11 / 51
Numerical scheme Numerical scheme
Presentation of the scheme
Proposition (Numerical Scheme)
Let us consider the discrete space and time derivatives:
pα,n
i :=
Uα,n
i+1 − Uα,n
i
∆x
and (DtU)α,n
i :=
Uα,n+1
i − Uα,n
i
∆t
Then we have the following numerical scheme:
⎧
⎪⎪⎨
⎪⎪⎩
(DtU)α,n
i + max{H+
α (pα,n
i−1), H−
α (pα,n
i )} = 0, i ≥ 1
Un
0 := Uα,n
0 , i = 0, α = 1, ..., N
(DtU)n
0 + max
α=1,...,N
H−
α (pα,n
0 ) = 0, i = 0
(3)
With the initial condition Uα,0
i := uα
0 (i∆x).
∆x and ∆t = space and time steps satisfying a CFL condition
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 12 / 51
Numerical scheme Numerical scheme
CFL condition
The natural CFL condition is given by:
∆x
∆t
≥ sup
α=1,...,N
i≥0, 0≤n≤nT
|H′
α(pα,n
i )| (4)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 13 / 51
Numerical scheme Mathematical results
Gradient estimates
Theorem (Time and Space Gradient estimates)
Assume (A0)-(A1). If the CFL condition (4) is satisfied, then we have
that:
(i) Considering Mn = sup
α,i
(DtU)α,n
i and mn = inf
α,i
(DtU)α,n
i , we have the
following time derivative estimate:
m0
≤ mn
≤ mn+1
≤ Mn+1
≤ Mn
≤ M0
(ii) Considering pα
= (H−
α )−1(−m0) and pα = (H+
α )−1(−m0), we have
the following gradient estimate:
pα
≤ pα,n
i ≤ pα, for all i ≥ 0, n ≥ 0 and α = 1, ..., N
Proof
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 14 / 51
Numerical scheme Mathematical results
Stronger CFL condition
−m0
pα
p
Hα(p)
pα
As for any α = 1, . . . , N, we have that:
pα
≤ pα,n
i ≤ pα for all i, n ≥ 0
Then the CFL condition becomes:
∆x
∆t
≥ sup
α=1,...,N
pα∈[pα
,pα]
|H′
α(pα)| (5)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 15 / 51
Numerical scheme Mathematical results
Existence and uniqueness
(A2) Technical assumption (Legendre-Fenchel transform)
Hα(p) = sup
q∈R
(pq − Lα(q)) with L′′
α ≥ δ > 0, for all index α
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 16 / 51
Numerical scheme Mathematical results
Existence and uniqueness
(A2) Technical assumption (Legendre-Fenchel transform)
Hα(p) = sup
q∈R
(pq − Lα(q)) with L′′
α ≥ δ > 0, for all index α
Theorem (Existence and uniqueness [IMZ, ’13])
Under (A0)-(A1)-(A2), there exists a unique viscosity solution u of (2) on
the junction, satisfying for some constant CT > 0
|u(t, y) − u0(y)| ≤ CT for all (t, y) ∈ JT .
Moreover the function u is Lipschitz continuous with respect to (t, y).
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 16 / 51
Numerical scheme Mathematical results
Convergence
Theorem (Convergence from discrete to continuous [CML, ’13])
Assume that (A0)-(A1)-(A2) and the CFL condition (5) are satisfied.
Then the numerical solution converges uniformly to u the unique viscosity
solution of (2) when ε → 0, locally uniformly on any compact set K:
lim sup
ε→0
sup
(n∆t,i∆x)∈K
|uα
(n∆t, i∆x) − Uα,n
i | = 0
Proof
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 17 / 51
Traffic interpretation
Outline
1 Introduction
2 Numerical scheme
3 Traffic interpretation
4 Numerical simulation
5 Recent developments
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 18 / 51
Traffic interpretation
Setting
J1
JNI
JNI +1
JNI +NO
x < 0 x = 0 x > 0
Jβ
γβ Jλ
γλ
NI incoming and NO outgoing roads
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 19 / 51
Traffic interpretation
Car densities
The car density ρα solves the LWR equation on branch α:
ρα
t + (Qα
(ρα
))x = 0
By definition
ρα
= γα
∂x Uα
on branch α
And
uα(x, t) = −Uα(−x, t), x > 0, for incoming roads
uα(x, t) = −Uα(x, t), x > 0, for outgoing roads
where the car index uα solves the HJ equation on branch α:
uα
t + Hα
(uα
x ) = 0, for x > 0
Setting
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 20 / 51
Traffic interpretation
Flow
Hα(p) :=
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
−
1
γα
Qα(γαp) for α = 1, ..., NI
−
1
γα
Qα(−γαp) for α = NI + 1, ..., NI + NO
Incoming roads Outgoing roads
ρcrit
γα
ρmax
γα
p
−
Qmax
γα
p
−
Qmax
γα
HαHα
H−
α H−
α H+
αH+
α
−
ρmax
γα
−
ρcrit
γα
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 21 / 51
Traffic interpretation
Links with “classical” approach
Definition (Discrete car density)
The discrete car density ρα,n
i with n ≥ 0 and i ∈ Z is given by:
ρα,n
i :=
⎧
⎪⎨
⎪⎩
γαpα,n
|i|−1 for α = 1, ..., NI , i ≤ −1
−γαpα,n
i for α = NI + 1, ..., NI + NO, i ≥ 0
(6)
J1
JNI
JNI +1
JNI +NO
x < 0 x > 0
−2
−1
2
1
0
−2
−2
−1
−1
1
1
2
2
Jβ
Jλ
ρλ,n
1
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 22 / 51
Traffic interpretation
Traffic interpretation
Proposition (Scheme for vehicles densities)
The scheme deduced from (3) for the discrete densities is given by:
∆x
∆t
{ρα,n+1
i − ρα,n
i } =
⎧
⎪⎨
⎪⎩
Fα(ρα,n
i−1, ρα,n
i ) − Fα(ρα,n
i , ρα,n
i+1) for i ̸= 0, −1
Fα
0 (ρ·,n
0 ) − Fα(ρα,n
i , ρα,n
i+1) for i = 0
Fα(ρα,n
i−1, ρα,n
i ) − Fα
0 (ρ·,n
0 ) for i = −1
With
⎧
⎨
⎩
Fα(ρα,n
i−1, ρα,n
i ) := min Qα
D(ρα,n
i−1), Qα
S (ρα,n
i )
Fα
0 (ρ·,n
0 ) := γα min min
β≤NI
1
γβ
Qβ
D(ρβ,n
0 ), min
λ>NI
1
γλ
Qλ
S (ρλ,n
0 )
incoming outgoing
ρλ,n
0ρβ,n
−1ρβ,n
−2 ρλ,n
1
x
x = 0
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 23 / 51
Traffic interpretation
Supply and demand functions
Remark
It recovers the seminal Godunov scheme with passing flow = minimum
between upstream demand QD and downstream supply QS.
Density ρ
ρcrit ρmax
Supply QS
Qmax
Density ρ
ρcrit ρmax
Flow Q
Qmax
Density ρ
ρcrit
Demand QD
Qmax
From [Lebacque ’93, ’96]
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 24 / 51
Traffic interpretation
Supply and demand VS Hamiltonian
H−
α (p) =
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
−
1
γα
Qα
D(γαp) for α = 1, ..., NI
−
1
γα
Qα
S (−γαp) for α = NI + 1, ..., NI + NO
And
H+
α (p) =
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
−
1
γα
Qα
S (γαp) for α = 1, ..., NI
−
1
γα
Qα
D(−γαp) for α = NI + 1, ..., NI + NO
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 25 / 51
Numerical simulation
Outline
1 Introduction
2 Numerical scheme
3 Traffic interpretation
4 Numerical simulation
5 Recent developments
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 26 / 51
Numerical simulation
Example of a Diverge
An off-ramp:
J1
ρ1
J2
ρ2
ρ3
J3
with ⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
γe = 1,
γl = 0.75,
γr = 0.25
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 27 / 51
Numerical simulation
Fundamental Diagrams
0 50 100 150 200 250 300 350
0
500
1000
1500
2000
2500
3000
3500
4000
(ρ
c
,f
max
)
(ρ
c
,f
max
)
Density (veh/km)
Flow(veh/h)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 28 / 51
Numerical simulation
Initial conditions (t=0s)
−200 −150 −100 −50 0
0
10
20
30
40
50
60
70
Road n° 1 (t= 0s)
Position (m)
Density(veh/km)
0 50 100 150 200
0
10
20
30
40
50
60
70
Road n° 2 (t= 0s)
Position (m)
Density(veh/km)
0 50 100 150 200
0
10
20
30
40
50
60
70
Road n° 3 (t= 0s)
Position (m)
Density(veh/km)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 29 / 51
Numerical simulation
Numerical solution: densities
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 30 / 51
Numerical simulation
Numerical solution: Hamilton-Jacobi
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 31 / 51
Numerical simulation
Trajectories
1
2
3
4
56
7
78
8
9
9
10
10
11
11
12
12
13
13
Trajectories on road n° 1
Position (m)
Time(s)
−200 −150 −100 −50 0
0
5
10
15
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10
11
12
Trajectories on road n° 2
Position (m)
Time(s)
0 50 100 150 200
0
5
10
15
0
0
1
1
2
2
3
3
4
4
5
56
6
7
7
8
8
9
10
11
12
Trajectories on road n° 3
Position (m)
Time(s)
0 50 100 150 200
0
5
10
15
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 32 / 51
Numerical simulation
Gradient estimates
0 10 20 30
0
50
100
150
200
250
Time (s)
Density(veh/km)
Density time evolution on road n° 1
0 10 20 30
0
50
100
150
200
250
300
Time (s)
Density(veh/km)
Density time evolution on road n° 2
0 10 20 30
0
50
100
150
Time (s)
Density(veh/km)
Density time evolution on road n° 3
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 33 / 51
Recent developments
Outline
1 Introduction
2 Numerical scheme
3 Traffic interpretation
4 Numerical simulation
5 Recent developments
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 34 / 51
Recent developments
New junction model
Proposition (Junction model [IM, ’14])
From [4], we have
⎧
⎪⎨
⎪⎩
uα
t + Hα(uα
x ) = 0, x > 0, α = 1, . . . , N
uα = uβ =: u, x = 0,
ut + H(u1
x , . . . , uN
x ) = 0, x = 0
(7)
with initial condition uα(0, x) = uα
0 (x) and
H(u1
x , . . . , uN
x ) = max
flux limiter
L , max
α=1,...,N
H−
α (uα
x )
minimum between
demand and supply
.
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 35 / 51
Recent developments
Weaker assumptions on the Hamiltonians
For all α = 1, . . . , N,
(A0) The initial condition uα
0 is Lipschitz continuous.
(A1) The Hamiltonians Hα are continuous and quasi-convex i.e.
there exists points pα
0 such that
⎧
⎪⎨
⎪⎩
Hα is non-increasing on (−∞, pα
0 ],
Hα is non-decreasing on [pα
0 , +∞).
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 36 / 51
Recent developments
Homogenization on a network
Proposition (Homogenization on a periodic network [IM’14])
Assume (A0)-(A1). Consider a periodic network.
If uε satisfies (oscillating) HJ equation on network,
then uε converges uniformly towards u0 when ε → 0,
with u0 solution of
u0
t + H ∇x u0
= 0, t > 0, x ∈ Rd
(8)
See Prof. R. Monneau’s lecture and [4]
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 37 / 51
Recent developments
Numerical homogenization on a network
Numerical scheme adapted to the cell problem
Traffic
Traffic eH
γH
eV
γH
γV
γV
i = 0
i =
N
2
i = −
N
2
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 38 / 51
Recent developments
First example
Proposition (Effective Hamiltonian for fixed coefficients [IM’14])
If (γH , γV ) are fixed, then the
(Hamiltonian) effective Hamiltonian H is given by
H(uH,x , uV ,x ) = max L, max
i={H,V }
H(ui,x ) ,
(traffic flow) effective flow Q is given by
Q(ρH , ρV ) = min −L,
Q(ρH)
γH
,
Q(ρV )
γV
.
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 39 / 51
Recent developments
First example
Numerics: assume Q(ρ) = 4ρ(1 − ρ) and L = −1.5,
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 40 / 51
Recent developments
Second example
Two consecutive traffic signals on a 1D road
flow
l LL
x1 x2xE
E
xS
S
Homogenization theory by [G. Galise, C. Imbert, R. Monneau, ’14]
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 41 / 51
Recent developments
Second example
Effective flux limiter −L (numerics only)
0 5 10 15 20 25 30
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Offset (s)
Fluxlimiter
l=0 m
l=5 m
l=10 m
l=20 m
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 42 / 51
Recent developments
Thanks for your attention
guillaume.costeseque@cermics.enpc.fr
guillaume.costeseque@ifsttar.fr
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 43 / 51
Complements References
Some references I
A. Bressan, S. Canic, M. Garavello, M. Herty, and B. Piccoli, Flows
on networks: recent results and perspectives, EMS Surveys in Mathematical
Sciences, (2014).
G. Costeseque, J.-P. Lebacque, and R. Monneau, A convergent scheme for
hamilton-jacobi equations on a junction: application to traffic, arXiv preprint
arXiv:1306.0329, (2013).
M. Garavello and B. Piccoli, Traffic flow on networks, American institute of
mathematical sciences Springfield, MO, USA, 2006.
C. Imbert and R. Monneau, Level-set convex hamilton-jacobi equations on
networks, (2014).
C. Imbert, R. Monneau, and H. Zidani, A hamilton-jacobi approach to
junction problems and application to traffic flows, ESAIM: Control, Optimisation
and Calculus of Variations, 19 (2013), pp. 129–166.
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 44 / 51
Complements References
Some references II
J.-P. Lebacque and M. M. Khoshyaran, First-order macroscopic traffic flow
models: Intersection modeling, network modeling, in Transportation and Traffic
Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on
Transportation and Traffic Theory, 2005.
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 45 / 51
Complements References
Fundamental diagram
Fundamental diagram: multi-valued in congested case
[S. Fan, M. Herty, B. Seibold, 2013], NGSIM dataset
Back
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 46 / 51
Complements Hamilton-Jacobi model
Motivation: the simple divergent road
x > 0
x > 0γl
γrx < 0
Il
Ir
γe
Ie
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
γe = 1,
0 ≤ γl , γr ≤ 1,
γl + γr = 1
LWR model [Lighthill, Whitham ’55; Richards ’56] on each branch α:
ρα
t + (Qα
(ρα
))x = 0
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 47 / 51
Complements Hamilton-Jacobi model
Getting the Hamilton-Jacobi equation
LWR model on each branch (outside the junction point)
ρα
t + (Qα
(ρα
))x = 0 on branch α
Primitive:
⎧
⎨
⎩
Uα(x, t) = Uα(0, t) +
1
γα
x
0
ρα
(y, t)dy,
Uα(0, t) = g(t) = index of the single car at the junction point
x > 0
x > 09
11
8
10
12
6420 1 3 5
7
−1
x < 0
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 48 / 51
Complements Hamilton-Jacobi model
Getting the Hamilton-Jacobi equation
LWR model on each branch (outside the junction point)
ρα
t + (Qα
(ρα
))x = 0 on branch α
Primitive:
⎧
⎨
⎩
Uα(x, t) = Uα(0, t) +
1
γα
x
0
ρα
(y, t)dy,
Uα(0, t) = g(t) = index of the single car at the junction point
x > 0
x > 09
11
8
10
12
6420 1 3 5
7
−1
x < 0
Uα
t +
1
γα
Qα
(γα
Uα
x ) = g′
(t) +
1
γα
Qα
(ρα
(0, t))
= 0 for a good choice of g
Back
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 48 / 51
Complements Proofs of the main results
Sketch of the proof (gradient estimates):
Time derivative estimate:
1. Estimate on mα,n = inf
i
(DtU)α,n
i and partial result for mn = inf
α
mα,n
2. Similar estimate for Mn
3. Conclusion
Space derivative estimate:
1. New bounded Hamiltonian ˜Hα(p) for p ≤ pα
and p ≥ pα
2. Time derivative estimate from above
3. Lemma: if for any (i, n, α), (DtU)α,n
i ≥ m0 then
pα
≤ pα,n
i ≤ pα
4. Conclusion as ˜Hα = Hα on [pα
, pα]
See [2]
Back
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 49 / 51
Complements Proofs of the main results
Convergence with uniqueness assumption
Sketch of the proof: (Comparison principle very helpful)
1. uα(t, x) := lim sup
ε
Uα,n
i is a subsolution of (2) (contradiction on
Definition inequality with a test function ϕ)
2. Similarly, uα is a supersolution of (2)
3. Conclusion: uα = uα viscosity solution of (2)
See [2]
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 50 / 51
Complements Proofs of the main results
Convergence without uniqueness assumption
Sketch of the proof: (No comparison principle)
1. Discrete Lipschitz bounds on uα
ε (n∆t, i∆x) := Uα,n
i
2. Extension by continuity of uα
ε
3. Ascoli theorem (convergent subsequence on every compact set)
4. The limit of one convergent subsequence (uα
ε )ε is super and
sub-solution of (2)
See [2]
Back
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 51 / 51

More Related Content

PDF
Numerical approach for Hamilton-Jacobi equations on a network: application to...
PDF
Madrid easy
PDF
ABC: How Bayesian can it be?
PDF
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
PDF
ABC-Xian
PDF
Small updates of matrix functions used for network centrality
PDF
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
PDF
A new Perron-Frobenius theorem for nonnegative tensors
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Madrid easy
ABC: How Bayesian can it be?
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
ABC-Xian
Small updates of matrix functions used for network centrality
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
A new Perron-Frobenius theorem for nonnegative tensors

What's hot (20)

PDF
Zap Q-Learning - ISMP 2018
PDF
The dual geometry of Shannon information
PDF
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
PDF
On the Jensen-Shannon symmetrization of distances relying on abstract means
PDF
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms
PDF
sada_pres
PDF
Introducing Zap Q-Learning
PDF
Representation formula for traffic flow estimation on a network
PDF
Hamilton-Jacobi approach for second order traffic flow models
PDF
k-MLE: A fast algorithm for learning statistical mixture models
PDF
Macrocanonical models for texture synthesis
PDF
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
PDF
Micro to macro passage in traffic models including multi-anticipation effect
PDF
Comparing estimation algorithms for block clustering models
PDF
Montpellier Math Colloquium
PDF
Continuous and Discrete-Time Analysis of SGD
PDF
Simplified Runtime Analysis of Estimation of Distribution Algorithms
PDF
ABC-Gibbs
PDF
Lec04 min cost linear problems
Zap Q-Learning - ISMP 2018
The dual geometry of Shannon information
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
On the Jensen-Shannon symmetrization of distances relying on abstract means
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms
sada_pres
Introducing Zap Q-Learning
Representation formula for traffic flow estimation on a network
Hamilton-Jacobi approach for second order traffic flow models
k-MLE: A fast algorithm for learning statistical mixture models
Macrocanonical models for texture synthesis
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
Micro to macro passage in traffic models including multi-anticipation effect
Comparing estimation algorithms for block clustering models
Montpellier Math Colloquium
Continuous and Discrete-Time Analysis of SGD
Simplified Runtime Analysis of Estimation of Distribution Algorithms
ABC-Gibbs
Lec04 min cost linear problems
Ad

Similar to Numerical approach for Hamilton-Jacobi equations on a network: application to traffic (20)

PDF
Road junction modeling using a scheme based on Hamilton-Jacobi equations
PDF
Nested sampling
PDF
Upm etsiccp-seminar-vf
PDF
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
PDF
DPPs everywhere: repulsive point processes for Monte Carlo integration, signa...
PDF
Approximation Methods Of Solutions For Equilibrium Problem In Hilbert Spaces
PDF
STATE SPACE REPRESENTATION OF A CLASS OF MIMO SYSTEMS VIA POSITIVE SYSTEMS
PDF
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
PDF
Diffusion Schrödinger bridges for score-based generative modeling
PDF
A brief introduction to Gaussian process
PDF
Diffusion Schrödinger bridges for score-based generative modeling
PDF
Distributed solution of stochastic optimal control problem on GPUs
PDF
A new axisymmetric finite element
PDF
Patch Matching with Polynomial Exponential Families and Projective Divergences
PDF
Unbiased Hamiltonian Monte Carlo
PDF
DissertationSlides169
PDF
QMC: Operator Splitting Workshop, Compactness Estimates for Nonlinear PDEs - ...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
Low rank tensor approximation of probability density and characteristic funct...
PDF
CLIM: Transition Workshop - Projected Data Assimilation - Erik Van Vleck, Ma...
Road junction modeling using a scheme based on Hamilton-Jacobi equations
Nested sampling
Upm etsiccp-seminar-vf
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
DPPs everywhere: repulsive point processes for Monte Carlo integration, signa...
Approximation Methods Of Solutions For Equilibrium Problem In Hilbert Spaces
STATE SPACE REPRESENTATION OF A CLASS OF MIMO SYSTEMS VIA POSITIVE SYSTEMS
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
Diffusion Schrödinger bridges for score-based generative modeling
A brief introduction to Gaussian process
Diffusion Schrödinger bridges for score-based generative modeling
Distributed solution of stochastic optimal control problem on GPUs
A new axisymmetric finite element
Patch Matching with Polynomial Exponential Families and Projective Divergences
Unbiased Hamiltonian Monte Carlo
DissertationSlides169
QMC: Operator Splitting Workshop, Compactness Estimates for Nonlinear PDEs - ...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
Low rank tensor approximation of probability density and characteristic funct...
CLIM: Transition Workshop - Projected Data Assimilation - Erik Van Vleck, Ma...
Ad

More from Guillaume Costeseque (20)

PDF
Impacts de la "Ville 30" sur les trafics, les vitesses et les temps de parcou...
PDF
Présentation aux RFTM 2024 sur l'estimation des débits à partir des données FCD
PDF
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
PDF
Nouvelles mobilités, nouveaux usages, évolutions des marchés
PDF
Cours its-ecn-2021
PDF
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
PDF
Cours its-ecn-2020
PDF
A multi-objective optimization framework for a second order traffic flow mode...
PDF
Evaluation d'une navette autonome à Nantes 2019
PDF
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
PDF
A new solver for the ARZ traffic flow model on a junction
PDF
Some recent developments in the traffic flow variational formulation
PDF
Numerical methods for variational principles in traffic
PDF
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
PDF
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
PDF
Mesoscopic multiclass traffic flow modeling on multi-lane sections
PDF
The moving bottleneck problem: a Hamilton-Jacobi approach
PDF
The impact of source terms in the variational representation of traffic flow
PDF
Second order traffic flow models on networks
PDF
Queue length estimation on urban corridors
Impacts de la "Ville 30" sur les trafics, les vitesses et les temps de parcou...
Présentation aux RFTM 2024 sur l'estimation des débits à partir des données FCD
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Cours its-ecn-2021
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Cours its-ecn-2020
A multi-objective optimization framework for a second order traffic flow mode...
Evaluation d'une navette autonome à Nantes 2019
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
A new solver for the ARZ traffic flow model on a junction
Some recent developments in the traffic flow variational formulation
Numerical methods for variational principles in traffic
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Mesoscopic multiclass traffic flow modeling on multi-lane sections
The moving bottleneck problem: a Hamilton-Jacobi approach
The impact of source terms in the variational representation of traffic flow
Second order traffic flow models on networks
Queue length estimation on urban corridors

Recently uploaded (20)

PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPT
Project quality management in manufacturing
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PDF
Well-logging-methods_new................
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
additive manufacturing of ss316l using mig welding
R24 SURVEYING LAB MANUAL for civil enggi
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
bas. eng. economics group 4 presentation 1.pptx
Operating System & Kernel Study Guide-1 - converted.pdf
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
CYBER-CRIMES AND SECURITY A guide to understanding
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Project quality management in manufacturing
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
UNIT-1 - COAL BASED THERMAL POWER PLANTS
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Well-logging-methods_new................
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
Automation-in-Manufacturing-Chapter-Introduction.pdf
additive manufacturing of ss316l using mig welding

Numerical approach for Hamilton-Jacobi equations on a network: application to traffic

  • 1. Numerical approach for Hamilton-Jacobi equations on a network: application to traffic Guillaume Costeseque (PhD with supervisors R. Monneau & J-P. Lebacque) Universit´e Paris Est, Ecole des Ponts ParisTech & IFSTTAR NETCO Conference - Tours, June 24, 2014 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 1 / 51
  • 2. Flows on a network G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 2 / 51
  • 3. Flows on a network A network is like a (oriented) graph made of edges and vertices Examples: traffic flow, gas pipelines, blood vessels, shallow water, internet communications... G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 3 / 51
  • 4. Outline 1 Introduction 2 Numerical scheme 3 Traffic interpretation 4 Numerical simulation 5 Recent developments G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 4 / 51
  • 5. Introduction Motivation Classical approaches (see A. Bressan’s lectures): Macroscopic modeling on (homogeneous) sections Coupling conditions at (pointwise) junction For instance, consider ⎧ ⎪⎨ ⎪⎩ ρt + (Q(ρ))x = 0, scalar conservation law, ρ(., t = 0) = ρ0(.), initial conditions, ψ(ρ(x = 0−, t), ρ(x = 0+, t)) = 0, coupling condition. (1) See Garavello, Piccoli [3], Lebacque, Khoshyaran [6] and Bressan et al. [1] G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 5 / 51
  • 6. Introduction Qmax ρcrit ρmax Density ρ Flow Q(ρ) Q(ρ) = ρV (ρ) with V (ρ) = velocity function DFs G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 6 / 51
  • 7. Introduction HJ junction model Star-shaped junction JN J1 J2 branch Jα x x 0 x x G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 7 / 51
  • 8. Introduction HJ junction model Junction model Proposition (Junction model [IMZ, ’13]) That leads to the following junction model (see [5]) ⎧ ⎪⎨ ⎪⎩ uα t + Hα(uα x ) = 0, x > 0, α = 1, . . . , N uα = uβ =: u, x = 0, ut + H(u1 x , . . . , uN x ) = 0, x = 0 (2) with initial condition uα(0, x) = uα 0 (x) and H(u1 x , . . . , uN x ) = max α=1,...,N H− α (uα x ) from optimal control . G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 8 / 51
  • 9. Introduction HJ junction model Basic assumptions For all α = 1, . . . , N, (A0) The initial condition uα 0 is Lipschitz continuous. (A1) The Hamiltonians Hα are C1(R) and convex such that: p H− α (p) H+ α (p) pα 0 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 9 / 51
  • 10. Introduction HJ junction model Numerics on networks Godunov scheme mainly used for conservation laws: [Bretti, Natalini, Piccoli ’06, ’07]: Godunov scheme compared to kinetic schemes / fast algorithms [Blandin, Bretti, Cutolo, Piccoli ’09]: Godunov scheme adapted for Colombo model (only tested for 1 × 1 junctions) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 10 / 51
  • 11. Introduction HJ junction model Numerics on networks Godunov scheme mainly used for conservation laws: [Bretti, Natalini, Piccoli ’06, ’07]: Godunov scheme compared to kinetic schemes / fast algorithms [Blandin, Bretti, Cutolo, Piccoli ’09]: Godunov scheme adapted for Colombo model (only tested for 1 × 1 junctions) For Hamilton-Jacobi equations on networks: [G¨ottlich, Ziegler, Herty ’13]: Lax-Freidrichs scheme outside the junction + coupling conditions (density) at the junction [Han, Piccoli, Friesz, Yao ’12]: Lax-Hopf formula for HJ equation coupled with a Riemann solver at junction [Camilli, Festa, Schieborn ’13]: semi-Lagrangian scheme only designed for Eikonal equations G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 10 / 51
  • 12. Numerical scheme Outline 1 Introduction 2 Numerical scheme 3 Traffic interpretation 4 Numerical simulation 5 Recent developments G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 11 / 51
  • 13. Numerical scheme Numerical scheme Presentation of the scheme Proposition (Numerical Scheme) Let us consider the discrete space and time derivatives: pα,n i := Uα,n i+1 − Uα,n i ∆x and (DtU)α,n i := Uα,n+1 i − Uα,n i ∆t Then we have the following numerical scheme: ⎧ ⎪⎪⎨ ⎪⎪⎩ (DtU)α,n i + max{H+ α (pα,n i−1), H− α (pα,n i )} = 0, i ≥ 1 Un 0 := Uα,n 0 , i = 0, α = 1, ..., N (DtU)n 0 + max α=1,...,N H− α (pα,n 0 ) = 0, i = 0 (3) With the initial condition Uα,0 i := uα 0 (i∆x). ∆x and ∆t = space and time steps satisfying a CFL condition G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 12 / 51
  • 14. Numerical scheme Numerical scheme CFL condition The natural CFL condition is given by: ∆x ∆t ≥ sup α=1,...,N i≥0, 0≤n≤nT |H′ α(pα,n i )| (4) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 13 / 51
  • 15. Numerical scheme Mathematical results Gradient estimates Theorem (Time and Space Gradient estimates) Assume (A0)-(A1). If the CFL condition (4) is satisfied, then we have that: (i) Considering Mn = sup α,i (DtU)α,n i and mn = inf α,i (DtU)α,n i , we have the following time derivative estimate: m0 ≤ mn ≤ mn+1 ≤ Mn+1 ≤ Mn ≤ M0 (ii) Considering pα = (H− α )−1(−m0) and pα = (H+ α )−1(−m0), we have the following gradient estimate: pα ≤ pα,n i ≤ pα, for all i ≥ 0, n ≥ 0 and α = 1, ..., N Proof G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 14 / 51
  • 16. Numerical scheme Mathematical results Stronger CFL condition −m0 pα p Hα(p) pα As for any α = 1, . . . , N, we have that: pα ≤ pα,n i ≤ pα for all i, n ≥ 0 Then the CFL condition becomes: ∆x ∆t ≥ sup α=1,...,N pα∈[pα ,pα] |H′ α(pα)| (5) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 15 / 51
  • 17. Numerical scheme Mathematical results Existence and uniqueness (A2) Technical assumption (Legendre-Fenchel transform) Hα(p) = sup q∈R (pq − Lα(q)) with L′′ α ≥ δ > 0, for all index α G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 16 / 51
  • 18. Numerical scheme Mathematical results Existence and uniqueness (A2) Technical assumption (Legendre-Fenchel transform) Hα(p) = sup q∈R (pq − Lα(q)) with L′′ α ≥ δ > 0, for all index α Theorem (Existence and uniqueness [IMZ, ’13]) Under (A0)-(A1)-(A2), there exists a unique viscosity solution u of (2) on the junction, satisfying for some constant CT > 0 |u(t, y) − u0(y)| ≤ CT for all (t, y) ∈ JT . Moreover the function u is Lipschitz continuous with respect to (t, y). G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 16 / 51
  • 19. Numerical scheme Mathematical results Convergence Theorem (Convergence from discrete to continuous [CML, ’13]) Assume that (A0)-(A1)-(A2) and the CFL condition (5) are satisfied. Then the numerical solution converges uniformly to u the unique viscosity solution of (2) when ε → 0, locally uniformly on any compact set K: lim sup ε→0 sup (n∆t,i∆x)∈K |uα (n∆t, i∆x) − Uα,n i | = 0 Proof G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 17 / 51
  • 20. Traffic interpretation Outline 1 Introduction 2 Numerical scheme 3 Traffic interpretation 4 Numerical simulation 5 Recent developments G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 18 / 51
  • 21. Traffic interpretation Setting J1 JNI JNI +1 JNI +NO x < 0 x = 0 x > 0 Jβ γβ Jλ γλ NI incoming and NO outgoing roads G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 19 / 51
  • 22. Traffic interpretation Car densities The car density ρα solves the LWR equation on branch α: ρα t + (Qα (ρα ))x = 0 By definition ρα = γα ∂x Uα on branch α And uα(x, t) = −Uα(−x, t), x > 0, for incoming roads uα(x, t) = −Uα(x, t), x > 0, for outgoing roads where the car index uα solves the HJ equation on branch α: uα t + Hα (uα x ) = 0, for x > 0 Setting G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 20 / 51
  • 23. Traffic interpretation Flow Hα(p) := ⎧ ⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩ − 1 γα Qα(γαp) for α = 1, ..., NI − 1 γα Qα(−γαp) for α = NI + 1, ..., NI + NO Incoming roads Outgoing roads ρcrit γα ρmax γα p − Qmax γα p − Qmax γα HαHα H− α H− α H+ αH+ α − ρmax γα − ρcrit γα G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 21 / 51
  • 24. Traffic interpretation Links with “classical” approach Definition (Discrete car density) The discrete car density ρα,n i with n ≥ 0 and i ∈ Z is given by: ρα,n i := ⎧ ⎪⎨ ⎪⎩ γαpα,n |i|−1 for α = 1, ..., NI , i ≤ −1 −γαpα,n i for α = NI + 1, ..., NI + NO, i ≥ 0 (6) J1 JNI JNI +1 JNI +NO x < 0 x > 0 −2 −1 2 1 0 −2 −2 −1 −1 1 1 2 2 Jβ Jλ ρλ,n 1 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 22 / 51
  • 25. Traffic interpretation Traffic interpretation Proposition (Scheme for vehicles densities) The scheme deduced from (3) for the discrete densities is given by: ∆x ∆t {ρα,n+1 i − ρα,n i } = ⎧ ⎪⎨ ⎪⎩ Fα(ρα,n i−1, ρα,n i ) − Fα(ρα,n i , ρα,n i+1) for i ̸= 0, −1 Fα 0 (ρ·,n 0 ) − Fα(ρα,n i , ρα,n i+1) for i = 0 Fα(ρα,n i−1, ρα,n i ) − Fα 0 (ρ·,n 0 ) for i = −1 With ⎧ ⎨ ⎩ Fα(ρα,n i−1, ρα,n i ) := min Qα D(ρα,n i−1), Qα S (ρα,n i ) Fα 0 (ρ·,n 0 ) := γα min min β≤NI 1 γβ Qβ D(ρβ,n 0 ), min λ>NI 1 γλ Qλ S (ρλ,n 0 ) incoming outgoing ρλ,n 0ρβ,n −1ρβ,n −2 ρλ,n 1 x x = 0 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 23 / 51
  • 26. Traffic interpretation Supply and demand functions Remark It recovers the seminal Godunov scheme with passing flow = minimum between upstream demand QD and downstream supply QS. Density ρ ρcrit ρmax Supply QS Qmax Density ρ ρcrit ρmax Flow Q Qmax Density ρ ρcrit Demand QD Qmax From [Lebacque ’93, ’96] G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 24 / 51
  • 27. Traffic interpretation Supply and demand VS Hamiltonian H− α (p) = ⎧ ⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩ − 1 γα Qα D(γαp) for α = 1, ..., NI − 1 γα Qα S (−γαp) for α = NI + 1, ..., NI + NO And H+ α (p) = ⎧ ⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩ − 1 γα Qα S (γαp) for α = 1, ..., NI − 1 γα Qα D(−γαp) for α = NI + 1, ..., NI + NO G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 25 / 51
  • 28. Numerical simulation Outline 1 Introduction 2 Numerical scheme 3 Traffic interpretation 4 Numerical simulation 5 Recent developments G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 26 / 51
  • 29. Numerical simulation Example of a Diverge An off-ramp: J1 ρ1 J2 ρ2 ρ3 J3 with ⎧ ⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩ γe = 1, γl = 0.75, γr = 0.25 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 27 / 51
  • 30. Numerical simulation Fundamental Diagrams 0 50 100 150 200 250 300 350 0 500 1000 1500 2000 2500 3000 3500 4000 (ρ c ,f max ) (ρ c ,f max ) Density (veh/km) Flow(veh/h) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 28 / 51
  • 31. Numerical simulation Initial conditions (t=0s) −200 −150 −100 −50 0 0 10 20 30 40 50 60 70 Road n° 1 (t= 0s) Position (m) Density(veh/km) 0 50 100 150 200 0 10 20 30 40 50 60 70 Road n° 2 (t= 0s) Position (m) Density(veh/km) 0 50 100 150 200 0 10 20 30 40 50 60 70 Road n° 3 (t= 0s) Position (m) Density(veh/km) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 29 / 51
  • 32. Numerical simulation Numerical solution: densities G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 30 / 51
  • 33. Numerical simulation Numerical solution: Hamilton-Jacobi G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 31 / 51
  • 34. Numerical simulation Trajectories 1 2 3 4 56 7 78 8 9 9 10 10 11 11 12 12 13 13 Trajectories on road n° 1 Position (m) Time(s) −200 −150 −100 −50 0 0 5 10 15 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12 Trajectories on road n° 2 Position (m) Time(s) 0 50 100 150 200 0 5 10 15 0 0 1 1 2 2 3 3 4 4 5 56 6 7 7 8 8 9 10 11 12 Trajectories on road n° 3 Position (m) Time(s) 0 50 100 150 200 0 5 10 15 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 32 / 51
  • 35. Numerical simulation Gradient estimates 0 10 20 30 0 50 100 150 200 250 Time (s) Density(veh/km) Density time evolution on road n° 1 0 10 20 30 0 50 100 150 200 250 300 Time (s) Density(veh/km) Density time evolution on road n° 2 0 10 20 30 0 50 100 150 Time (s) Density(veh/km) Density time evolution on road n° 3 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 33 / 51
  • 36. Recent developments Outline 1 Introduction 2 Numerical scheme 3 Traffic interpretation 4 Numerical simulation 5 Recent developments G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 34 / 51
  • 37. Recent developments New junction model Proposition (Junction model [IM, ’14]) From [4], we have ⎧ ⎪⎨ ⎪⎩ uα t + Hα(uα x ) = 0, x > 0, α = 1, . . . , N uα = uβ =: u, x = 0, ut + H(u1 x , . . . , uN x ) = 0, x = 0 (7) with initial condition uα(0, x) = uα 0 (x) and H(u1 x , . . . , uN x ) = max flux limiter L , max α=1,...,N H− α (uα x ) minimum between demand and supply . G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 35 / 51
  • 38. Recent developments Weaker assumptions on the Hamiltonians For all α = 1, . . . , N, (A0) The initial condition uα 0 is Lipschitz continuous. (A1) The Hamiltonians Hα are continuous and quasi-convex i.e. there exists points pα 0 such that ⎧ ⎪⎨ ⎪⎩ Hα is non-increasing on (−∞, pα 0 ], Hα is non-decreasing on [pα 0 , +∞). G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 36 / 51
  • 39. Recent developments Homogenization on a network Proposition (Homogenization on a periodic network [IM’14]) Assume (A0)-(A1). Consider a periodic network. If uε satisfies (oscillating) HJ equation on network, then uε converges uniformly towards u0 when ε → 0, with u0 solution of u0 t + H ∇x u0 = 0, t > 0, x ∈ Rd (8) See Prof. R. Monneau’s lecture and [4] G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 37 / 51
  • 40. Recent developments Numerical homogenization on a network Numerical scheme adapted to the cell problem Traffic Traffic eH γH eV γH γV γV i = 0 i = N 2 i = − N 2 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 38 / 51
  • 41. Recent developments First example Proposition (Effective Hamiltonian for fixed coefficients [IM’14]) If (γH , γV ) are fixed, then the (Hamiltonian) effective Hamiltonian H is given by H(uH,x , uV ,x ) = max L, max i={H,V } H(ui,x ) , (traffic flow) effective flow Q is given by Q(ρH , ρV ) = min −L, Q(ρH) γH , Q(ρV ) γV . G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 39 / 51
  • 42. Recent developments First example Numerics: assume Q(ρ) = 4ρ(1 − ρ) and L = −1.5, G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 40 / 51
  • 43. Recent developments Second example Two consecutive traffic signals on a 1D road flow l LL x1 x2xE E xS S Homogenization theory by [G. Galise, C. Imbert, R. Monneau, ’14] G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 41 / 51
  • 44. Recent developments Second example Effective flux limiter −L (numerics only) 0 5 10 15 20 25 30 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Offset (s) Fluxlimiter l=0 m l=5 m l=10 m l=20 m G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 42 / 51
  • 45. Recent developments Thanks for your attention guillaume.costeseque@cermics.enpc.fr guillaume.costeseque@ifsttar.fr G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 43 / 51
  • 46. Complements References Some references I A. Bressan, S. Canic, M. Garavello, M. Herty, and B. Piccoli, Flows on networks: recent results and perspectives, EMS Surveys in Mathematical Sciences, (2014). G. Costeseque, J.-P. Lebacque, and R. Monneau, A convergent scheme for hamilton-jacobi equations on a junction: application to traffic, arXiv preprint arXiv:1306.0329, (2013). M. Garavello and B. Piccoli, Traffic flow on networks, American institute of mathematical sciences Springfield, MO, USA, 2006. C. Imbert and R. Monneau, Level-set convex hamilton-jacobi equations on networks, (2014). C. Imbert, R. Monneau, and H. Zidani, A hamilton-jacobi approach to junction problems and application to traffic flows, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), pp. 129–166. G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 44 / 51
  • 47. Complements References Some references II J.-P. Lebacque and M. M. Khoshyaran, First-order macroscopic traffic flow models: Intersection modeling, network modeling, in Transportation and Traffic Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on Transportation and Traffic Theory, 2005. G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 45 / 51
  • 48. Complements References Fundamental diagram Fundamental diagram: multi-valued in congested case [S. Fan, M. Herty, B. Seibold, 2013], NGSIM dataset Back G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 46 / 51
  • 49. Complements Hamilton-Jacobi model Motivation: the simple divergent road x > 0 x > 0γl γrx < 0 Il Ir γe Ie ⎧ ⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩ γe = 1, 0 ≤ γl , γr ≤ 1, γl + γr = 1 LWR model [Lighthill, Whitham ’55; Richards ’56] on each branch α: ρα t + (Qα (ρα ))x = 0 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 47 / 51
  • 50. Complements Hamilton-Jacobi model Getting the Hamilton-Jacobi equation LWR model on each branch (outside the junction point) ρα t + (Qα (ρα ))x = 0 on branch α Primitive: ⎧ ⎨ ⎩ Uα(x, t) = Uα(0, t) + 1 γα x 0 ρα (y, t)dy, Uα(0, t) = g(t) = index of the single car at the junction point x > 0 x > 09 11 8 10 12 6420 1 3 5 7 −1 x < 0 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 48 / 51
  • 51. Complements Hamilton-Jacobi model Getting the Hamilton-Jacobi equation LWR model on each branch (outside the junction point) ρα t + (Qα (ρα ))x = 0 on branch α Primitive: ⎧ ⎨ ⎩ Uα(x, t) = Uα(0, t) + 1 γα x 0 ρα (y, t)dy, Uα(0, t) = g(t) = index of the single car at the junction point x > 0 x > 09 11 8 10 12 6420 1 3 5 7 −1 x < 0 Uα t + 1 γα Qα (γα Uα x ) = g′ (t) + 1 γα Qα (ρα (0, t)) = 0 for a good choice of g Back G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 48 / 51
  • 52. Complements Proofs of the main results Sketch of the proof (gradient estimates): Time derivative estimate: 1. Estimate on mα,n = inf i (DtU)α,n i and partial result for mn = inf α mα,n 2. Similar estimate for Mn 3. Conclusion Space derivative estimate: 1. New bounded Hamiltonian ˜Hα(p) for p ≤ pα and p ≥ pα 2. Time derivative estimate from above 3. Lemma: if for any (i, n, α), (DtU)α,n i ≥ m0 then pα ≤ pα,n i ≤ pα 4. Conclusion as ˜Hα = Hα on [pα , pα] See [2] Back G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 49 / 51
  • 53. Complements Proofs of the main results Convergence with uniqueness assumption Sketch of the proof: (Comparison principle very helpful) 1. uα(t, x) := lim sup ε Uα,n i is a subsolution of (2) (contradiction on Definition inequality with a test function ϕ) 2. Similarly, uα is a supersolution of (2) 3. Conclusion: uα = uα viscosity solution of (2) See [2] G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 50 / 51
  • 54. Complements Proofs of the main results Convergence without uniqueness assumption Sketch of the proof: (No comparison principle) 1. Discrete Lipschitz bounds on uα ε (n∆t, i∆x) := Uα,n i 2. Extension by continuity of uα ε 3. Ascoli theorem (convergent subsequence on every compact set) 4. The limit of one convergent subsequence (uα ε )ε is super and sub-solution of (2) See [2] Back G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Tours, June 24, 2014 51 / 51