SlideShare a Scribd company logo
A new Perron–Frobenius theorem for
nonnegative tensors
Francesco Tudisco
joint work with Antoine Gautier and Matthias Hein (Saarland University)
Department of Mathematics and Statistics, University of Strathclyde, UK
SIAM ALA Conference • Hong Kong Baptist University
May 5, 2018
0/20
1/20
Outline
Huge literature on eigenvalues of nonnegative tensors
[Bai, Caccetta, Chang, Friedland, Gaubert, Han, Hu, Huang,
Kang, Kolda, Lim, Ling, Liu, Mayo, Ng, Pearson, Ottaviani, Qi,
Sun, Xie, Yang, You, Yuan, Wang, Zhang, Zhou, ...]
1 / 20
1/20
Outline
Huge literature on eigenvalues of nonnegative tensors
[Bai, Caccetta, Chang, Friedland, Gaubert, Han, Hu, Huang,
Kang, Kolda, Lim, Ling, Liu, Mayo, Ng, Pearson, Ottaviani, Qi,
Sun, Xie, Yang, You, Yuan, Wang, Zhang, Zhou, ...]
1. Shape partitions:
A unifying eigenvalue problem formulation for tensors
2. Homogeneity matrix:
Perron-Frobenius thm for tensors via multi-homogeneous map
1 / 20
2/20
Notation
T ∼ N1 × · · · × Nm
T = (ti1,...,im ) ∈ RN1×···×Nm
+ nonnegative tensor
x = (x1, · · · , xm) ∈ RN1 × · · · × RNm
2 / 20
3/20
Notation
Two useful maps
T ∼ N1 × · · · × Nm
T : RN1 × · · · × RNm −→ R
T(x) =
i1,...,im
ti1,...,im x1,i1 · · · xm,im
3 / 20
3/20
Notation
Two useful maps
T ∼ N1 × · · · × Nm
T : RN1 × · · · × RNm −→ R
T(x) =
i1,...,im
ti1,...,im x1,i1 · · · xm,im
T[k] : RN1 × · · · × RNm −→ RNk
T[k](x)ik
=
i1,...,ik−1,ik+1,...,im
ti1,...,ik,...,im x1,i1 · · · xk−1,ik−1
xk+1,ik+1
· · · xm,im
3 / 20
3/20
Notation
Two useful maps
T ∼ N1 × · · · × Nm
T : RN1 × · · · × RNm −→ R
T(x) =
i1,...,im
ti1,...,im x1,i1 · · · xm,im
T[k] : RN1 × · · · × RNm −→ RNk
T[k](x)ik
=
i1,...,ik−1,ik+1,...,im
ti1,...,ik,...,im x1,i1 · · · xk−1,ik−1
xk+1,ik+1
· · · xm,im
Example: Matrix case
T ∼ N × N, i.e. T = matrix A
T(x) = xTAx T[1](x) = Ax T[2](x) = ATx
3 / 20
4/20
Example m = 3 and N1 = N2 = N3
Eigenvalue problems
T ∼ N1 × N1 × N1, square tensor
f1 =
T(x, x, x)
x 3
p
f2 =
T(x, y, y)
x p y 2
q
f3 =
T(x, y, z)
x p y q z r
4 / 20
4/20
Example m = 3 and N1 = N2 = N3
Eigenvalue problems
T ∼ N1 × N1 × N1, square tensor
f1 =
T(x, x, x)
x 3
p
ℓp-eigenvalues
If T is symmetric (tijk = tikj = tkij = tkji)
Crit. points f1 ⇐⇒ T[1](x, x, x) = λ xp−2
x
4 / 20
4/20
Example m = 3 and N1 = N2 = N3
Eigenvalue problems
T ∼ N1 × N1 × N1, square tensor
f2 =
T(x, y, y)
x p y 2
q
ℓp,q-singular values
If T is partially symmetric (tijk = tikj)
Crit. points f2 ⇐⇒
T[1](x, y, y) = λ xp−2x
T[2](x, y, y) = λ yq−2y
4 / 20
4/20
Example m = 3 and N1 = N2 = N3
Eigenvalue problems
T ∼ N1 × N1 × N1, square tensor
f3 =
T(x, y, z)
x p y q z r
ℓp,q,r-singular values
For any T
Crit. points f3 ⇐⇒



T[1](x, y, z) = λ xp−2x
T[2](x, y, z) = λ yq−2y
T[3](x, y, z) = λ zr−2z
4 / 20
4/20
Example m = 3 and N1 = N2 = N3
Eigenvalue problems
T ∼ N1 × N1 × N1, square tensor
We introduce a unifying formulation
4 / 20
5/20
Shape partition
Shape partition of T ∼ N1 × · · · × Nm:
σ = {σ1, . . . , σd} is a partition of {1, . . . , m} s.t.
• j, k ∈ σi =⇒ Ni = Nk
• j ∈ σi, k ∈ σi+1 =⇒ j < k
• |σi| ≤ |σi+1|
Examples:
T ∼ N × N × N × N
σ1 = {1, 2, 3, 4}
σ2 = {1}, {2, 3, 4}
σ3 = {1, 2}, {3, 4}
σ4 = {1}, {2}, {3, 4}
σ5 = {1}, {2}, {3}, {4}
T ∼ N × N × M × M
σ3 = {1, 2}, {3, 4}
σ4 = {1}, {2}, {3, 4}
σ5 = {1}, {2}, {3}, {4}
5 / 20
6/20
Indexing associated with σ
T ∼ N1 × · · · × Nm
σ = {σ1, . . . , σd}
6 / 20
6/20
Indexing associated with σ
T ∼ N1 × · · · × Nm
σ = {σ1, . . . , σd}
• si = min{k : k ∈ σi}
• ni = Nsi for all i = 1, . . . , d
σ1
N1 × . . . × Ns2−1
=
=
n1 × . . . × n1
|σ1| times
×
=
×
σ2
Ns2 × . . . × Ns3−1
=
=
n2 × . . . × n2
|σ2| times
× . . . ×
=
=
× . . . ×
σd
Nsd × . . . × Nm
=
=
nd × . . . × nd
|σd| times
6 / 20
7/20
σ−eigenvalues and eigenvectors
T ∼ N1 × · · · × Nm, σ = {σ1, . . . , σd}, p = (p1, . . . , pd) > 1
|σ1| times
x1, . . . , x1,
|σ2| times
x2, . . . , x2, . . . ,
|σd| times
xd, . . . , xd
7 / 20
7/20
σ−eigenvalues and eigenvectors
T ∼ N1 × · · · × Nm, σ = {σ1, . . . , σd}, p = (p1, . . . , pd) > 1
|σ1| times
x1, . . . , x1,
|σ2| times
x2, . . . , x2, . . . ,
|σd| times
xd, . . . , xd
(⋆)



T[s1](x1,..., x1, . . . , xd,..., xd) = λ xp1−2
1 x1 x1 p1 = 1
...
T[sd](x1,..., x1, . . . , xd,..., xd) = λ xpd−2
d xd xd pd
= 1
7 / 20
7/20
σ−eigenvalues and eigenvectors
T ∼ N1 × · · · × Nm, σ = {σ1, . . . , σd}, p = (p1, . . . , pd) > 1
|σ1| times
x1, . . . , x1,
|σ2| times
x2, . . . , x2, . . . ,
|σd| times
xd, . . . , xd
(⋆)



T[s1](x1,..., x1, . . . , xd,..., xd) = λ xp1−2
1 x1 x1 p1 = 1
...
T[sd](x1,..., x1, . . . , xd,..., xd) = λ xpd−2
d xd xd pd
= 1
(T, σ, p) −→ r(T) = max{|λ| : λ fulfill (⋆)}
7 / 20
8/20
Multi-homogeneous map associated to (T, σ, p)
We characterize the existence, uniqueness and maximality of
positive σ−eigenpairs of T.
To this end we consider a particular multi-homogeneous map
8 / 20
8/20
Multi-homogeneous map associated to (T, σ, p)
We characterize the existence, uniqueness and maximality of
positive σ−eigenpairs of T.
To this end we consider a particular multi-homogeneous map
F = (f1, . . . , fm) : RN1 × · · · × RNm −→ RN1 × · · · × RNm s.t.
fi(x1, . . . , λ xj, . . . , xm) = λAij
fi(x1, . . . , xj, . . . , xm)
8 / 20
8/20
Multi-homogeneous map associated to (T, σ, p)
We characterize the existence, uniqueness and maximality of
positive σ−eigenpairs of T.
To this end we consider a particular multi-homogeneous map
F = (f1, . . . , fm) : RN1 × · · · × RNm −→ RN1 × · · · × RNm s.t.
fi(x1, . . . , λ xj, . . . , xm) = λAij
fi(x1, . . . , xj, . . . , xm)
A = A(F) = homogeneity matrix of F
8 / 20
9/20
Multi-homogeneous map associated to (T, σ, p)
Given T, σ and p we define FT,σ,p = (f1, . . . , fd) by
fi(x) = T[si]
|σ1| times
x1, . . . , x1, . . . ,
|σd| times
xd, . . . , xd
1
pi−1
9/20
Multi-homogeneous map associated to (T, σ, p)
Given T, σ and p we define FT,σ,p = (f1, . . . , fd) by
fi(x) = T[si]
|σ1| times
x1, . . . , x1, . . . ,
|σd| times
xd, . . . , xd
1
pi−1
A =












|σ1|−1
p1−1
|σ2|
p1−1 · · · |σd|
p1−1
|σ1|
p2−1
|σ2|−1
p2−1 · · · |σd|
p2−1
... ... ... ...
|σ1|
pd−1
|σ2|
pd−1 · · · |σd|−1
pd−1












9 / 20
10/20
Perron-Frobenius theorem for “contractive” (T, σ, p)
10 / 20
10/20
Perron-Frobenius theorem for “contractive” (T, σ, p)
Theorem
If ρ(A) < 1 and T is σ-strictly nonnegative
10 / 20
10/20
Perron-Frobenius theorem for “contractive” (T, σ, p)
σ-strictly nonnegative
For every (i, ki) ∈ Iσ there exist j1, . . . , jm such that:
tj1,...,jm > 0 with jsi = ki
Theorem
If ρ(A) < 1 and T is σ-strictly nonnegative
10 / 20
10/20
Perron-Frobenius theorem for “contractive” (T, σ, p)
σ-strictly nonnegative
For every (i, ki) ∈ Iσ there exist j1, . . . , jm such that:
tj1,...,jm > 0 with jsi = ki
Theorem
If ρ(A) < 1 and T is σ-strictly nonnegative, then:
• There exists a entry-wise positive σ-eigenvector u of T
associated with r(T)
10 / 20
10/20
Perron-Frobenius theorem for “contractive” (T, σ, p)
σ-strictly nonnegative
For every (i, ki) ∈ Iσ there exist j1, . . . , jm such that:
tj1,...,jm > 0 with jsi = ki
Theorem
If ρ(A) < 1 and T is σ-strictly nonnegative, then:
• There exists a entry-wise positive σ-eigenvector u of T
associated with r(T)
• u is the unique positive σ-eigenvector of T
10 / 20
11/20
Example: ℓp,q,r
-singular value problem
T ∼ N1 × N2 × N3, σ = {{1}, {2}, {3}}, p = (p, q, r)
11 / 20
11/20
Example: ℓp,q,r
-singular value problem
T ∼ N1 × N2 × N3, σ = {{1}, {2}, {3}}, p = (p, q, r)



T[1](x, y, z) = λ xp−2x
T[2](x, y, z) = λ yq−2y
T[3](x, y, z) = λ zr−2z
(⋆⋆)
11 / 20
11/20
Example: ℓp,q,r
-singular value problem
T ∼ N1 × N2 × N3, σ = {{1}, {2}, {3}}, p = (p, q, r)



T[1](x, y, z) = λ xp−2x
T[2](x, y, z) = λ yq−2y
T[3](x, y, z) = λ zr−2z
(⋆⋆)
There exists a unique positive u = (x, y, z) that solves (⋆⋆) with
λ = r(T) if:
• ρ(A) < 1 and strictly nonnegative
[Gautier, T., Hein, 2018]
11 / 20
11/20
Example: ℓp,q,r
-singular value problem
T ∼ N1 × N2 × N3, σ = {{1}, {2}, {3}}, p = (p, q, r)



T[1](x, y, z) = λ xp−2x
T[2](x, y, z) = λ yq−2y
T[3](x, y, z) = λ zr−2z
(⋆⋆)
There exists a unique positive u = (x, y, z) that solves (⋆⋆) with
λ = r(T) if:
• ρ(A) < 1 and strictly nonnegative
[Gautier, T., Hein, 2018]
• p, q, r ≥ 3 and irreducibility conditions
[Friedland, Gaubert, Han, 2013]
11 / 20
12/20
The “non-exapansive” case ρ(A) = 1
Example: Matrix case
T ∼ N × N, σ = {1, 2}, p = 2 ⇐⇒ Tx = λx
12/20
The “non-exapansive” case ρ(A) = 1
Example: Matrix case
T ∼ N × N, σ = {1, 2}, p = 2 ⇐⇒ Tx = λx
A =
|σ1| − 1
p1 − 1
= 1
We know that we need irreducibility conditions
12 / 20
13/20
σ−graph of T
Gσ(T) = (V, E), σ = {σ1, . . . , σd}
• Nodes are pairs:
V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd}
13/20
σ−graph of T
Gσ(T) = (V, E), σ = {σ1, . . . , σd}
• Nodes are pairs:
V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd}
• Edge (ik) → (jh) exists if
tℓ1,...,ℓm > 0 with ℓsi = k and ℓα = h for some α ∈ σi
13 / 20
13/20
σ−graph of T
Gσ(T) = (V, E), σ = {σ1, . . . , σd}
• Nodes are pairs:
V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd}
• Edge (ik) → (jh) exists if
tℓ1,...,ℓm > 0 with ℓsi = k and ℓα = h for some α ∈ σi
Example:
T ∼ 2 × 3 × 3
σ = {{1}, {2, 3}}, d = 2
n1 = 2, s1 = 1, n2 = 3, s2 = 2
1211 {1}
2221 23 {2,3}
13 / 20
13/20
σ−graph of T
Gσ(T) = (V, E), σ = {σ1, . . . , σd}
• Nodes are pairs:
V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd}
• Edge (ik) → (jh) exists if
tℓ1,...,ℓm > 0 with ℓsi = k and ℓα = h for some α ∈ σi
Example:
T ∼ 2 × 3 × 3
σ = {{1}, {2, 3}}, d = 2
n1 = 2, s1 = 1, n2 = 3, s2 = 2
1211 {1}
2221 23 {2,3}
t2,2,1 = 1
13 / 20
13/20
σ−graph of T
Gσ(T) = (V, E), σ = {σ1, . . . , σd}
• Nodes are pairs:
V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd}
• Edge (ik) → (jh) exists if
tℓ1,...,ℓm > 0 with ℓsi = k and ℓα = h for some α ∈ σi
Example:
T ∼ 2 × 3 × 3
σ = {{1}, {2, 3}}, d = 2
n1 = 2, s1 = 1, n2 = 3, s2 = 2
1211 {1}
2221 23 {2,3}
t2,2,1 = 1 t1,3,1 = 1
13 / 20
14/20
Perron-Frobenius thm for “non-expansive” (T, σ, p)
Theorem
If ρ(A) ≤ 1 and T is σ-weakly irreducible
14 / 20
14/20
Perron-Frobenius thm for “non-expansive” (T, σ, p)
σ-weakly irreducible
The graph Gσ(T) is strongly connected
Theorem
If ρ(A) ≤ 1 and T is σ-weakly irreducible
14 / 20
14/20
Perron-Frobenius thm for “non-expansive” (T, σ, p)
σ-weakly irreducible
The graph Gσ(T) is strongly connected
σ-weakly irreducible =⇒ σ-strictly nonnegative
Theorem
If ρ(A) ≤ 1 and T is σ-weakly irreducible
14 / 20
14/20
Perron-Frobenius thm for “non-expansive” (T, σ, p)
σ-weakly irreducible
The graph Gσ(T) is strongly connected
σ-weakly irreducible =⇒ σ-strictly nonnegative
Theorem
If ρ(A) ≤ 1 and T is σ-weakly irreducible, then additionally:
• It holds λ < r(T) for every σ-eigenvalue λ
corresponding to a nonnegative eigenvector
14 / 20
15/20
σ−strongly irreducibile T
Example: Matrix case
G(M) is strongly connected if and only if for any x0 ≥ 0 there
exists n > 0 such that xn = (I + M)nx0 > 0
xn = xn−1 + Mxn−1 = xn−1 + Mxn−2 + M2xn−2 = · · ·
15 / 20
15/20
σ−strongly irreducibile T
Example: Matrix case
G(M) is strongly connected if and only if for any x0 ≥ 0 there
exists n > 0 such that xn = (I + M)nx0 > 0
xn = xn−1 + Mxn−1 = xn−1 + Mxn−2 + M2xn−2 = · · ·
F = FT,σ,p = multi-homogeneous map associated with (T, σ, p)
15 / 20
15/20
σ−strongly irreducibile T
Example: Matrix case
G(M) is strongly connected if and only if for any x0 ≥ 0 there
exists n > 0 such that xn = (I + M)nx0 > 0
xn = xn−1 + Mxn−1 = xn−1 + Mxn−2 + M2xn−2 = · · ·
F = FT,σ,p = multi-homogeneous map associated with (T, σ, p)
σ-strongly irreducible
For any x0 ≥ 0 there exists n > 0 s.t. xn = (id + F)n(x0) > 0
xn = xn−1 + F(xn−1) = xn−1 + F(xn−2 + F(xn−2)) = · · ·
15 / 20
16/20
Perron-Frobenius thm for σ-strongly irreducible T
16 / 20
16/20
Perron-Frobenius thm for σ-strongly irreducible T
Theorem
σ-strongly irreducible =⇒ σ-weakly irreducible
(=⇒ σ-strictly nonnegative)
16 / 20
16/20
Perron-Frobenius thm for σ-strongly irreducible T
Theorem
σ-strongly irreducible =⇒ σ-weakly irreducible
(=⇒ σ-strictly nonnegative)
Theorem
If ρ(A) ≤ 1 and T is σ-strongly irreducible, then additionally:
16 / 20
16/20
Perron-Frobenius thm for σ-strongly irreducible T
Theorem
σ-strongly irreducible =⇒ σ-weakly irreducible
(=⇒ σ-strictly nonnegative)
Theorem
If ρ(A) ≤ 1 and T is σ-strongly irreducible, then additionally:
• T has no nonnegative eigenvectors other than u
16 / 20
17/20
A final remark:
Previous conditions for particular choices of σ
• σ-strictly nonnegativity for σ = {1, . . . , m}
[Hu, Huang, Qi, 2014]
• σ-weak irreducibility and σ-strong irreducibility for
σ = {1, . . . , m}
σ = {1, . . . , k}, {k + 1, . . . , m}
σ = {1}, . . . , {m}
[Chang, Pearson, Zhang, 2008] & [Chang, Qi, Zhou, 2010] &
[Friedland, Gaubert, Han, 2013] & [Ling, Qi, 2013]
17 / 20
18/20
Conclusion
• A large class of eigenvalue problems for tensors can be written
in terms of (T, σ ,p)
18 / 20
18/20
Conclusion
• A large class of eigenvalue problems for tensors can be written
in terms of (T, σ ,p)
• If T ≥ 0 and it does not have fully zero unfoldings, then look
at the matrix A = A(FT,σ,p):
18 / 20
18/20
Conclusion
• A large class of eigenvalue problems for tensors can be written
in terms of (T, σ ,p)
• If T ≥ 0 and it does not have fully zero unfoldings, then look
at the matrix A = A(FT,σ,p):
• If ρ(A) < 1, then PF holds
18 / 20
18/20
Conclusion
• A large class of eigenvalue problems for tensors can be written
in terms of (T, σ ,p)
• If T ≥ 0 and it does not have fully zero unfoldings, then look
at the matrix A = A(FT,σ,p):
• If ρ(A) < 1, then PF holds
• If ρ(A) = 1 and Gσ(T) is connected,
then PF holds + r(T) > λ
18 / 20
18/20
Conclusion
• A large class of eigenvalue problems for tensors can be written
in terms of (T, σ ,p)
• If T ≥ 0 and it does not have fully zero unfoldings, then look
at the matrix A = A(FT,σ,p):
• If ρ(A) < 1, then PF holds
• If ρ(A) = 1 and Gσ(T) is connected,
then PF holds + r(T) > λ
• If id + FT,σ,p is “eventually positive”,
then unique nonnegative eigenvector
18 / 20
19/20
References
A. Gautier, F. T. and M. Hein,
A unifying Perron-Frobenius theorem for nonnegative tensors
via multi-homogeneous maps, SIAM J Matrix Anal Appl 2019
A. Gautier, F. T. and M. Hein,
The Perron-Frobenius theorem for multi-homogeneous
mapping, SIAM J Matrix Anal Appl 2019
19 / 20
20/20
Thank you for your kind attention!
MS20
Nonlinear Perron-Frobenius theory and applications
jointly organized with Antoine Gautier
Today
4:15PM – 6:15PM
WLB103
Speakers:
• Antoine Gautier
• Francesca Arrigo
• Shmuel Friedland
• Jiang Zhou
20 / 20

More Related Content

PDF
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
PDF
Small updates of matrix functions used for network centrality
PDF
Optimal L-shaped matrix reordering, aka graph's core-periphery
PDF
Core–periphery detection in networks with nonlinear Perron eigenvectors
PDF
On the Jensen-Shannon symmetrization of distances relying on abstract means
PDF
Bregman divergences from comparative convexity
PDF
A series of maximum entropy upper bounds of the differential entropy
PDF
The dual geometry of Shannon information
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Small updates of matrix functions used for network centrality
Optimal L-shaped matrix reordering, aka graph's core-periphery
Core–periphery detection in networks with nonlinear Perron eigenvectors
On the Jensen-Shannon symmetrization of distances relying on abstract means
Bregman divergences from comparative convexity
A series of maximum entropy upper bounds of the differential entropy
The dual geometry of Shannon information

What's hot (20)

PDF
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
PDF
Patch Matching with Polynomial Exponential Families and Projective Divergences
PDF
Divergence clustering
PDF
Classification with mixtures of curved Mahalanobis metrics
PDF
On Twisted Paraproducts and some other Multilinear Singular Integrals
PDF
Ecfft zk studyclub 9.9
PDF
Darmon Points: an Overview
PDF
Multilinear Twisted Paraproducts
PDF
On learning statistical mixtures maximizing the complete likelihood
PDF
Divergence center-based clustering and their applications
PDF
Murphy: Machine learning A probabilistic perspective: Ch.9
PDF
Boundedness of the Twisted Paraproduct
PDF
Proximal Splitting and Optimal Transport
PDF
Ijmet 10 01_046
PDF
k-MLE: A fast algorithm for learning statistical mixture models
PDF
Multilinear singular integrals with entangled structure
PDF
Levitan Centenary Conference Talk, June 27 2014
PDF
Clustering in Hilbert simplex geometry
PDF
Mesh Processing Course : Active Contours
PDF
Hyperfunction method for numerical integration and Fredholm integral equation...
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
Patch Matching with Polynomial Exponential Families and Projective Divergences
Divergence clustering
Classification with mixtures of curved Mahalanobis metrics
On Twisted Paraproducts and some other Multilinear Singular Integrals
Ecfft zk studyclub 9.9
Darmon Points: an Overview
Multilinear Twisted Paraproducts
On learning statistical mixtures maximizing the complete likelihood
Divergence center-based clustering and their applications
Murphy: Machine learning A probabilistic perspective: Ch.9
Boundedness of the Twisted Paraproduct
Proximal Splitting and Optimal Transport
Ijmet 10 01_046
k-MLE: A fast algorithm for learning statistical mixture models
Multilinear singular integrals with entangled structure
Levitan Centenary Conference Talk, June 27 2014
Clustering in Hilbert simplex geometry
Mesh Processing Course : Active Contours
Hyperfunction method for numerical integration and Fredholm integral equation...
Ad

Similar to A new Perron-Frobenius theorem for nonnegative tensors (20)

PDF
research paper publication
PDF
Hybrid Atlas Models of Financial Equity Market
PDF
160511 hasegawa lab_seminar
PDF
Talk in BayesComp 2018
PDF
On fixed point theorems in fuzzy metric spaces in integral type
PPT
Fuzzy calculation
PDF
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
PPTX
Distributionworkshop 2.pptx
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
On fixed point theorems in fuzzy metric spaces
PDF
Slides erasmus
PDF
Stochastic Processes - part 6
PDF
PaperNo14-Habibi-IJMA-n-Tuples and Chaoticity
PDF
On the Family of Concept Forming Operators in Polyadic FCA
PDF
Existance Theory for First Order Nonlinear Random Dfferential Equartion
PDF
Low Complexity Regularization of Inverse Problems
PDF
Nonlinear perturbed difference equations
PDF
ch9.pdf
PDF
PaperNo23-habibiIJCMS5-8-2014-IJCMS
research paper publication
Hybrid Atlas Models of Financial Equity Market
160511 hasegawa lab_seminar
Talk in BayesComp 2018
On fixed point theorems in fuzzy metric spaces in integral type
Fuzzy calculation
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
Distributionworkshop 2.pptx
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
On fixed point theorems in fuzzy metric spaces
Slides erasmus
Stochastic Processes - part 6
PaperNo14-Habibi-IJMA-n-Tuples and Chaoticity
On the Family of Concept Forming Operators in Polyadic FCA
Existance Theory for First Order Nonlinear Random Dfferential Equartion
Low Complexity Regularization of Inverse Problems
Nonlinear perturbed difference equations
ch9.pdf
PaperNo23-habibiIJCMS5-8-2014-IJCMS
Ad

Recently uploaded (20)

PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PDF
. Radiology Case Scenariosssssssssssssss
PPTX
Cell Membrane: Structure, Composition & Functions
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
DOCX
Viruses (History, structure and composition, classification, Bacteriophage Re...
PPTX
microscope-Lecturecjchchchchcuvuvhc.pptx
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PDF
bbec55_b34400a7914c42429908233dbd381773.pdf
PPTX
2. Earth - The Living Planet Module 2ELS
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PPT
protein biochemistry.ppt for university classes
PDF
The scientific heritage No 166 (166) (2025)
PPTX
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
PPTX
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
AlphaEarth Foundations and the Satellite Embedding dataset
. Radiology Case Scenariosssssssssssssss
Cell Membrane: Structure, Composition & Functions
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
Viruses (History, structure and composition, classification, Bacteriophage Re...
microscope-Lecturecjchchchchcuvuvhc.pptx
Comparative Structure of Integument in Vertebrates.pptx
bbec55_b34400a7914c42429908233dbd381773.pdf
2. Earth - The Living Planet Module 2ELS
Phytochemical Investigation of Miliusa longipes.pdf
Taita Taveta Laboratory Technician Workshop Presentation.pptx
protein biochemistry.ppt for university classes
The scientific heritage No 166 (166) (2025)
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...

A new Perron-Frobenius theorem for nonnegative tensors

  • 1. A new Perron–Frobenius theorem for nonnegative tensors Francesco Tudisco joint work with Antoine Gautier and Matthias Hein (Saarland University) Department of Mathematics and Statistics, University of Strathclyde, UK SIAM ALA Conference • Hong Kong Baptist University May 5, 2018 0/20
  • 2. 1/20 Outline Huge literature on eigenvalues of nonnegative tensors [Bai, Caccetta, Chang, Friedland, Gaubert, Han, Hu, Huang, Kang, Kolda, Lim, Ling, Liu, Mayo, Ng, Pearson, Ottaviani, Qi, Sun, Xie, Yang, You, Yuan, Wang, Zhang, Zhou, ...] 1 / 20
  • 3. 1/20 Outline Huge literature on eigenvalues of nonnegative tensors [Bai, Caccetta, Chang, Friedland, Gaubert, Han, Hu, Huang, Kang, Kolda, Lim, Ling, Liu, Mayo, Ng, Pearson, Ottaviani, Qi, Sun, Xie, Yang, You, Yuan, Wang, Zhang, Zhou, ...] 1. Shape partitions: A unifying eigenvalue problem formulation for tensors 2. Homogeneity matrix: Perron-Frobenius thm for tensors via multi-homogeneous map 1 / 20
  • 4. 2/20 Notation T ∼ N1 × · · · × Nm T = (ti1,...,im ) ∈ RN1×···×Nm + nonnegative tensor x = (x1, · · · , xm) ∈ RN1 × · · · × RNm 2 / 20
  • 5. 3/20 Notation Two useful maps T ∼ N1 × · · · × Nm T : RN1 × · · · × RNm −→ R T(x) = i1,...,im ti1,...,im x1,i1 · · · xm,im 3 / 20
  • 6. 3/20 Notation Two useful maps T ∼ N1 × · · · × Nm T : RN1 × · · · × RNm −→ R T(x) = i1,...,im ti1,...,im x1,i1 · · · xm,im T[k] : RN1 × · · · × RNm −→ RNk T[k](x)ik = i1,...,ik−1,ik+1,...,im ti1,...,ik,...,im x1,i1 · · · xk−1,ik−1 xk+1,ik+1 · · · xm,im 3 / 20
  • 7. 3/20 Notation Two useful maps T ∼ N1 × · · · × Nm T : RN1 × · · · × RNm −→ R T(x) = i1,...,im ti1,...,im x1,i1 · · · xm,im T[k] : RN1 × · · · × RNm −→ RNk T[k](x)ik = i1,...,ik−1,ik+1,...,im ti1,...,ik,...,im x1,i1 · · · xk−1,ik−1 xk+1,ik+1 · · · xm,im Example: Matrix case T ∼ N × N, i.e. T = matrix A T(x) = xTAx T[1](x) = Ax T[2](x) = ATx 3 / 20
  • 8. 4/20 Example m = 3 and N1 = N2 = N3 Eigenvalue problems T ∼ N1 × N1 × N1, square tensor f1 = T(x, x, x) x 3 p f2 = T(x, y, y) x p y 2 q f3 = T(x, y, z) x p y q z r 4 / 20
  • 9. 4/20 Example m = 3 and N1 = N2 = N3 Eigenvalue problems T ∼ N1 × N1 × N1, square tensor f1 = T(x, x, x) x 3 p ℓp-eigenvalues If T is symmetric (tijk = tikj = tkij = tkji) Crit. points f1 ⇐⇒ T[1](x, x, x) = λ xp−2 x 4 / 20
  • 10. 4/20 Example m = 3 and N1 = N2 = N3 Eigenvalue problems T ∼ N1 × N1 × N1, square tensor f2 = T(x, y, y) x p y 2 q ℓp,q-singular values If T is partially symmetric (tijk = tikj) Crit. points f2 ⇐⇒ T[1](x, y, y) = λ xp−2x T[2](x, y, y) = λ yq−2y 4 / 20
  • 11. 4/20 Example m = 3 and N1 = N2 = N3 Eigenvalue problems T ∼ N1 × N1 × N1, square tensor f3 = T(x, y, z) x p y q z r ℓp,q,r-singular values For any T Crit. points f3 ⇐⇒    T[1](x, y, z) = λ xp−2x T[2](x, y, z) = λ yq−2y T[3](x, y, z) = λ zr−2z 4 / 20
  • 12. 4/20 Example m = 3 and N1 = N2 = N3 Eigenvalue problems T ∼ N1 × N1 × N1, square tensor We introduce a unifying formulation 4 / 20
  • 13. 5/20 Shape partition Shape partition of T ∼ N1 × · · · × Nm: σ = {σ1, . . . , σd} is a partition of {1, . . . , m} s.t. • j, k ∈ σi =⇒ Ni = Nk • j ∈ σi, k ∈ σi+1 =⇒ j < k • |σi| ≤ |σi+1| Examples: T ∼ N × N × N × N σ1 = {1, 2, 3, 4} σ2 = {1}, {2, 3, 4} σ3 = {1, 2}, {3, 4} σ4 = {1}, {2}, {3, 4} σ5 = {1}, {2}, {3}, {4} T ∼ N × N × M × M σ3 = {1, 2}, {3, 4} σ4 = {1}, {2}, {3, 4} σ5 = {1}, {2}, {3}, {4} 5 / 20
  • 14. 6/20 Indexing associated with σ T ∼ N1 × · · · × Nm σ = {σ1, . . . , σd} 6 / 20
  • 15. 6/20 Indexing associated with σ T ∼ N1 × · · · × Nm σ = {σ1, . . . , σd} • si = min{k : k ∈ σi} • ni = Nsi for all i = 1, . . . , d σ1 N1 × . . . × Ns2−1 = = n1 × . . . × n1 |σ1| times × = × σ2 Ns2 × . . . × Ns3−1 = = n2 × . . . × n2 |σ2| times × . . . × = = × . . . × σd Nsd × . . . × Nm = = nd × . . . × nd |σd| times 6 / 20
  • 16. 7/20 σ−eigenvalues and eigenvectors T ∼ N1 × · · · × Nm, σ = {σ1, . . . , σd}, p = (p1, . . . , pd) > 1 |σ1| times x1, . . . , x1, |σ2| times x2, . . . , x2, . . . , |σd| times xd, . . . , xd 7 / 20
  • 17. 7/20 σ−eigenvalues and eigenvectors T ∼ N1 × · · · × Nm, σ = {σ1, . . . , σd}, p = (p1, . . . , pd) > 1 |σ1| times x1, . . . , x1, |σ2| times x2, . . . , x2, . . . , |σd| times xd, . . . , xd (⋆)    T[s1](x1,..., x1, . . . , xd,..., xd) = λ xp1−2 1 x1 x1 p1 = 1 ... T[sd](x1,..., x1, . . . , xd,..., xd) = λ xpd−2 d xd xd pd = 1 7 / 20
  • 18. 7/20 σ−eigenvalues and eigenvectors T ∼ N1 × · · · × Nm, σ = {σ1, . . . , σd}, p = (p1, . . . , pd) > 1 |σ1| times x1, . . . , x1, |σ2| times x2, . . . , x2, . . . , |σd| times xd, . . . , xd (⋆)    T[s1](x1,..., x1, . . . , xd,..., xd) = λ xp1−2 1 x1 x1 p1 = 1 ... T[sd](x1,..., x1, . . . , xd,..., xd) = λ xpd−2 d xd xd pd = 1 (T, σ, p) −→ r(T) = max{|λ| : λ fulfill (⋆)} 7 / 20
  • 19. 8/20 Multi-homogeneous map associated to (T, σ, p) We characterize the existence, uniqueness and maximality of positive σ−eigenpairs of T. To this end we consider a particular multi-homogeneous map 8 / 20
  • 20. 8/20 Multi-homogeneous map associated to (T, σ, p) We characterize the existence, uniqueness and maximality of positive σ−eigenpairs of T. To this end we consider a particular multi-homogeneous map F = (f1, . . . , fm) : RN1 × · · · × RNm −→ RN1 × · · · × RNm s.t. fi(x1, . . . , λ xj, . . . , xm) = λAij fi(x1, . . . , xj, . . . , xm) 8 / 20
  • 21. 8/20 Multi-homogeneous map associated to (T, σ, p) We characterize the existence, uniqueness and maximality of positive σ−eigenpairs of T. To this end we consider a particular multi-homogeneous map F = (f1, . . . , fm) : RN1 × · · · × RNm −→ RN1 × · · · × RNm s.t. fi(x1, . . . , λ xj, . . . , xm) = λAij fi(x1, . . . , xj, . . . , xm) A = A(F) = homogeneity matrix of F 8 / 20
  • 22. 9/20 Multi-homogeneous map associated to (T, σ, p) Given T, σ and p we define FT,σ,p = (f1, . . . , fd) by fi(x) = T[si] |σ1| times x1, . . . , x1, . . . , |σd| times xd, . . . , xd 1 pi−1
  • 23. 9/20 Multi-homogeneous map associated to (T, σ, p) Given T, σ and p we define FT,σ,p = (f1, . . . , fd) by fi(x) = T[si] |σ1| times x1, . . . , x1, . . . , |σd| times xd, . . . , xd 1 pi−1 A =             |σ1|−1 p1−1 |σ2| p1−1 · · · |σd| p1−1 |σ1| p2−1 |σ2|−1 p2−1 · · · |σd| p2−1 ... ... ... ... |σ1| pd−1 |σ2| pd−1 · · · |σd|−1 pd−1             9 / 20
  • 24. 10/20 Perron-Frobenius theorem for “contractive” (T, σ, p) 10 / 20
  • 25. 10/20 Perron-Frobenius theorem for “contractive” (T, σ, p) Theorem If ρ(A) < 1 and T is σ-strictly nonnegative 10 / 20
  • 26. 10/20 Perron-Frobenius theorem for “contractive” (T, σ, p) σ-strictly nonnegative For every (i, ki) ∈ Iσ there exist j1, . . . , jm such that: tj1,...,jm > 0 with jsi = ki Theorem If ρ(A) < 1 and T is σ-strictly nonnegative 10 / 20
  • 27. 10/20 Perron-Frobenius theorem for “contractive” (T, σ, p) σ-strictly nonnegative For every (i, ki) ∈ Iσ there exist j1, . . . , jm such that: tj1,...,jm > 0 with jsi = ki Theorem If ρ(A) < 1 and T is σ-strictly nonnegative, then: • There exists a entry-wise positive σ-eigenvector u of T associated with r(T) 10 / 20
  • 28. 10/20 Perron-Frobenius theorem for “contractive” (T, σ, p) σ-strictly nonnegative For every (i, ki) ∈ Iσ there exist j1, . . . , jm such that: tj1,...,jm > 0 with jsi = ki Theorem If ρ(A) < 1 and T is σ-strictly nonnegative, then: • There exists a entry-wise positive σ-eigenvector u of T associated with r(T) • u is the unique positive σ-eigenvector of T 10 / 20
  • 29. 11/20 Example: ℓp,q,r -singular value problem T ∼ N1 × N2 × N3, σ = {{1}, {2}, {3}}, p = (p, q, r) 11 / 20
  • 30. 11/20 Example: ℓp,q,r -singular value problem T ∼ N1 × N2 × N3, σ = {{1}, {2}, {3}}, p = (p, q, r)    T[1](x, y, z) = λ xp−2x T[2](x, y, z) = λ yq−2y T[3](x, y, z) = λ zr−2z (⋆⋆) 11 / 20
  • 31. 11/20 Example: ℓp,q,r -singular value problem T ∼ N1 × N2 × N3, σ = {{1}, {2}, {3}}, p = (p, q, r)    T[1](x, y, z) = λ xp−2x T[2](x, y, z) = λ yq−2y T[3](x, y, z) = λ zr−2z (⋆⋆) There exists a unique positive u = (x, y, z) that solves (⋆⋆) with λ = r(T) if: • ρ(A) < 1 and strictly nonnegative [Gautier, T., Hein, 2018] 11 / 20
  • 32. 11/20 Example: ℓp,q,r -singular value problem T ∼ N1 × N2 × N3, σ = {{1}, {2}, {3}}, p = (p, q, r)    T[1](x, y, z) = λ xp−2x T[2](x, y, z) = λ yq−2y T[3](x, y, z) = λ zr−2z (⋆⋆) There exists a unique positive u = (x, y, z) that solves (⋆⋆) with λ = r(T) if: • ρ(A) < 1 and strictly nonnegative [Gautier, T., Hein, 2018] • p, q, r ≥ 3 and irreducibility conditions [Friedland, Gaubert, Han, 2013] 11 / 20
  • 33. 12/20 The “non-exapansive” case ρ(A) = 1 Example: Matrix case T ∼ N × N, σ = {1, 2}, p = 2 ⇐⇒ Tx = λx
  • 34. 12/20 The “non-exapansive” case ρ(A) = 1 Example: Matrix case T ∼ N × N, σ = {1, 2}, p = 2 ⇐⇒ Tx = λx A = |σ1| − 1 p1 − 1 = 1 We know that we need irreducibility conditions 12 / 20
  • 35. 13/20 σ−graph of T Gσ(T) = (V, E), σ = {σ1, . . . , σd} • Nodes are pairs: V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd}
  • 36. 13/20 σ−graph of T Gσ(T) = (V, E), σ = {σ1, . . . , σd} • Nodes are pairs: V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd} • Edge (ik) → (jh) exists if tℓ1,...,ℓm > 0 with ℓsi = k and ℓα = h for some α ∈ σi 13 / 20
  • 37. 13/20 σ−graph of T Gσ(T) = (V, E), σ = {σ1, . . . , σd} • Nodes are pairs: V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd} • Edge (ik) → (jh) exists if tℓ1,...,ℓm > 0 with ℓsi = k and ℓα = h for some α ∈ σi Example: T ∼ 2 × 3 × 3 σ = {{1}, {2, 3}}, d = 2 n1 = 2, s1 = 1, n2 = 3, s2 = 2 1211 {1} 2221 23 {2,3} 13 / 20
  • 38. 13/20 σ−graph of T Gσ(T) = (V, E), σ = {σ1, . . . , σd} • Nodes are pairs: V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd} • Edge (ik) → (jh) exists if tℓ1,...,ℓm > 0 with ℓsi = k and ℓα = h for some α ∈ σi Example: T ∼ 2 × 3 × 3 σ = {{1}, {2, 3}}, d = 2 n1 = 2, s1 = 1, n2 = 3, s2 = 2 1211 {1} 2221 23 {2,3} t2,2,1 = 1 13 / 20
  • 39. 13/20 σ−graph of T Gσ(T) = (V, E), σ = {σ1, . . . , σd} • Nodes are pairs: V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd} • Edge (ik) → (jh) exists if tℓ1,...,ℓm > 0 with ℓsi = k and ℓα = h for some α ∈ σi Example: T ∼ 2 × 3 × 3 σ = {{1}, {2, 3}}, d = 2 n1 = 2, s1 = 1, n2 = 3, s2 = 2 1211 {1} 2221 23 {2,3} t2,2,1 = 1 t1,3,1 = 1 13 / 20
  • 40. 14/20 Perron-Frobenius thm for “non-expansive” (T, σ, p) Theorem If ρ(A) ≤ 1 and T is σ-weakly irreducible 14 / 20
  • 41. 14/20 Perron-Frobenius thm for “non-expansive” (T, σ, p) σ-weakly irreducible The graph Gσ(T) is strongly connected Theorem If ρ(A) ≤ 1 and T is σ-weakly irreducible 14 / 20
  • 42. 14/20 Perron-Frobenius thm for “non-expansive” (T, σ, p) σ-weakly irreducible The graph Gσ(T) is strongly connected σ-weakly irreducible =⇒ σ-strictly nonnegative Theorem If ρ(A) ≤ 1 and T is σ-weakly irreducible 14 / 20
  • 43. 14/20 Perron-Frobenius thm for “non-expansive” (T, σ, p) σ-weakly irreducible The graph Gσ(T) is strongly connected σ-weakly irreducible =⇒ σ-strictly nonnegative Theorem If ρ(A) ≤ 1 and T is σ-weakly irreducible, then additionally: • It holds λ < r(T) for every σ-eigenvalue λ corresponding to a nonnegative eigenvector 14 / 20
  • 44. 15/20 σ−strongly irreducibile T Example: Matrix case G(M) is strongly connected if and only if for any x0 ≥ 0 there exists n > 0 such that xn = (I + M)nx0 > 0 xn = xn−1 + Mxn−1 = xn−1 + Mxn−2 + M2xn−2 = · · · 15 / 20
  • 45. 15/20 σ−strongly irreducibile T Example: Matrix case G(M) is strongly connected if and only if for any x0 ≥ 0 there exists n > 0 such that xn = (I + M)nx0 > 0 xn = xn−1 + Mxn−1 = xn−1 + Mxn−2 + M2xn−2 = · · · F = FT,σ,p = multi-homogeneous map associated with (T, σ, p) 15 / 20
  • 46. 15/20 σ−strongly irreducibile T Example: Matrix case G(M) is strongly connected if and only if for any x0 ≥ 0 there exists n > 0 such that xn = (I + M)nx0 > 0 xn = xn−1 + Mxn−1 = xn−1 + Mxn−2 + M2xn−2 = · · · F = FT,σ,p = multi-homogeneous map associated with (T, σ, p) σ-strongly irreducible For any x0 ≥ 0 there exists n > 0 s.t. xn = (id + F)n(x0) > 0 xn = xn−1 + F(xn−1) = xn−1 + F(xn−2 + F(xn−2)) = · · · 15 / 20
  • 47. 16/20 Perron-Frobenius thm for σ-strongly irreducible T 16 / 20
  • 48. 16/20 Perron-Frobenius thm for σ-strongly irreducible T Theorem σ-strongly irreducible =⇒ σ-weakly irreducible (=⇒ σ-strictly nonnegative) 16 / 20
  • 49. 16/20 Perron-Frobenius thm for σ-strongly irreducible T Theorem σ-strongly irreducible =⇒ σ-weakly irreducible (=⇒ σ-strictly nonnegative) Theorem If ρ(A) ≤ 1 and T is σ-strongly irreducible, then additionally: 16 / 20
  • 50. 16/20 Perron-Frobenius thm for σ-strongly irreducible T Theorem σ-strongly irreducible =⇒ σ-weakly irreducible (=⇒ σ-strictly nonnegative) Theorem If ρ(A) ≤ 1 and T is σ-strongly irreducible, then additionally: • T has no nonnegative eigenvectors other than u 16 / 20
  • 51. 17/20 A final remark: Previous conditions for particular choices of σ • σ-strictly nonnegativity for σ = {1, . . . , m} [Hu, Huang, Qi, 2014] • σ-weak irreducibility and σ-strong irreducibility for σ = {1, . . . , m} σ = {1, . . . , k}, {k + 1, . . . , m} σ = {1}, . . . , {m} [Chang, Pearson, Zhang, 2008] & [Chang, Qi, Zhou, 2010] & [Friedland, Gaubert, Han, 2013] & [Ling, Qi, 2013] 17 / 20
  • 52. 18/20 Conclusion • A large class of eigenvalue problems for tensors can be written in terms of (T, σ ,p) 18 / 20
  • 53. 18/20 Conclusion • A large class of eigenvalue problems for tensors can be written in terms of (T, σ ,p) • If T ≥ 0 and it does not have fully zero unfoldings, then look at the matrix A = A(FT,σ,p): 18 / 20
  • 54. 18/20 Conclusion • A large class of eigenvalue problems for tensors can be written in terms of (T, σ ,p) • If T ≥ 0 and it does not have fully zero unfoldings, then look at the matrix A = A(FT,σ,p): • If ρ(A) < 1, then PF holds 18 / 20
  • 55. 18/20 Conclusion • A large class of eigenvalue problems for tensors can be written in terms of (T, σ ,p) • If T ≥ 0 and it does not have fully zero unfoldings, then look at the matrix A = A(FT,σ,p): • If ρ(A) < 1, then PF holds • If ρ(A) = 1 and Gσ(T) is connected, then PF holds + r(T) > λ 18 / 20
  • 56. 18/20 Conclusion • A large class of eigenvalue problems for tensors can be written in terms of (T, σ ,p) • If T ≥ 0 and it does not have fully zero unfoldings, then look at the matrix A = A(FT,σ,p): • If ρ(A) < 1, then PF holds • If ρ(A) = 1 and Gσ(T) is connected, then PF holds + r(T) > λ • If id + FT,σ,p is “eventually positive”, then unique nonnegative eigenvector 18 / 20
  • 57. 19/20 References A. Gautier, F. T. and M. Hein, A unifying Perron-Frobenius theorem for nonnegative tensors via multi-homogeneous maps, SIAM J Matrix Anal Appl 2019 A. Gautier, F. T. and M. Hein, The Perron-Frobenius theorem for multi-homogeneous mapping, SIAM J Matrix Anal Appl 2019 19 / 20
  • 58. 20/20 Thank you for your kind attention! MS20 Nonlinear Perron-Frobenius theory and applications jointly organized with Antoine Gautier Today 4:15PM – 6:15PM WLB103 Speakers: • Antoine Gautier • Francesca Arrigo • Shmuel Friedland • Jiang Zhou 20 / 20