This document discusses nested sampling, a technique for Bayesian computation and evidence evaluation. It begins by introducing Bayesian inference and the evidence integral. It then shows that nested sampling transforms the multidimensional evidence integral into a one-dimensional integral over the prior mass constrained to have likelihood above a given value. The document outlines the nested sampling algorithm and shows that it provides samples from the posterior distribution. It also discusses termination criteria and choices of sample size for the algorithm. Finally, it provides a numerical example of nested sampling applied to a Gaussian model.