SlideShare a Scribd company logo
A multi-objective optimization framework
for a second order traïŹƒc ïŹ‚ow model on a junction
Guillaume Costeseque
collaboration with Paola Goatin, Simone Gšottlich and Oliver Kolb
Inria Sophia-Antipolis MÂŽediterranÂŽee
ACUMES meeting
Sophia-Antipolis – July 04, 2017
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 1 / 46
Motivation
TraïŹƒc ïŹ‚ows on a network
Nice network [Google maps, Jul. 3, 2017]
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 2 / 46
Motivation
TraïŹƒc ïŹ‚ows on a network
Road network ≡ graph made of edges and vertices
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 2 / 46
Motivation
Outline
1 Introduction
2 Some background
3 Riemann solver
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 3 / 46
Introduction
Outline
1 Introduction
2 Some background
3 Riemann solver
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 4 / 46
Introduction
ARZ model on a junction
(i)
(j)
(ρi, wi)
(ρj, wj)
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 5 / 46
Introduction
ARZ model on a junction
(continued)
ARZ model [1, 10] on each branch (i)
ïŁ±
ïŁŽïŁČ
ïŁŽïŁł
∂tρi + ∂x (ρi vi ) = 0,
∂t (ρi wi ) + ∂x (ρi vi wi ) = 0,
wi := vi + pi (ρi )
(1)
Coupling conditions needed to ensure conservation of
Mass ïŹ‚ow q = ρv
Momentum ïŹ‚ow qw = ρvw
through the junction
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 6 / 46
Introduction
Problem statement
Why ARZ model?
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 7 / 46
Introduction
Problem statement
Why ARZ model?
To reproduce the capacity drop phenomenon
(+ control thanks to variable speed limits and/or ramp metering)
What are we looking for?
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 7 / 46
Introduction
Problem statement
Why ARZ model?
To reproduce the capacity drop phenomenon
(+ control thanks to variable speed limits and/or ramp metering)
What are we looking for?
Well-posedness of Riemann solvers at the junction
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 7 / 46
Some background
Outline
1 Introduction
2 Some background
Basics
Computation of the supply for second order models
3 Riemann solver
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 8 / 46
Some background Basics
Common assumptions
(A1) Conservation of the ïŹ‚uxes:
n
i=1
ρi vi
=:qi
=
n+m
j=n+1
ρj vj
=:qj
(A2) Fixed assignment coeïŹƒcients:
∃ (αji )i,j ∈ [0, 1], s.t.
n+m
j=n+1
αji = 1 and qj =
n
i=1
αji qi
(A3) Bounds on the ïŹ‚uxes
0 ≀ qi ≀ ∆i , i = 1, . . . , n,
0 ≀ qj ≀ ÎŁj , j = n + 1, . . . , n + m,
∆i demand and Σj supply
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 9 / 46
Some background Basics
Common assumptions
(A4) Maximization of the total incoming ïŹ‚uxes:
max
n
i=1
qi
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 10 / 46
Some background Basics
Common assumptions
(A4) Maximization of the total incoming ïŹ‚uxes:
max
n
i=1
qi
Literature:
ARZ model
Garavello-Piccoli [4]
Herty-Rascle [7]
Herty-Moutari-Rascle [6]
Haut-Bastin [5]
Phase Transition model
Colombo, Goatin, Piccoli [2]
Garavello, Marcellini [3]
Engineering community: Lebacque’s works [9, 8]
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 10 / 46
Some background Basics
Common assumptions
(A4) Multi-objective optimization of the incoming ïŹ‚uxes:
max (q1, . . . , qn)
and for any ïŹxed P = (P1, . . . , Pn) such that Pi ∈]0, 1[ and
n
i=1 Pi = 1, the ratio
ql
n
i=1 qi
is the closest to Pl
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 10 / 46
Some background Computation of the supply for second order models
Demand and supply
ρ
ρ → ρ(w − pi(ρ))
Di(ρ, w)
Si(ρ, w)
ρv
ρv
ρ
σi(w)
ρv
ρ
σi(w)
σi(w)
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 11 / 46
Some background Computation of the supply for second order models
Downstream density perceived by upstream traïŹƒc
= wl − pr(˜ρr)
ρv
{w = wl}
ρ
{w = wr}
ρr˜ρr
(ρr, wr)
vr = wr − pr(ρr)
(ρl, wl)
x
The velocity is conserved through a contact discontinuity!
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 12 / 46
Riemann solver
Outline
1 Introduction
2 Some background
3 Riemann solver
General 1-to-m diverge
2-to-1 merge
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 13 / 46
Riemann solver General 1-to-m diverge
RS for a 1-to-m diverge (m ≄ 1)
qm+1
q1
q2
(1)
(2)
(m + 1)
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 14 / 46
Riemann solver General 1-to-m diverge
RS for a 1-to-m diverge (m ≄ 1)
Initial states ((ρ1,0, v1,0), (ρ2,0, v2,0) . . . , (ρm+1,0, vm+1,0))
Multi-optimization ≡ optimization of the total through-ïŹ‚ow
max
℩1×m
q1
Set of admissible states
℩1×m := q1 ∈ R
0 ≀ q1 ≀ ∆1
0 ≀ qj = αj1q1 ≀ ÎŁj , ∀j
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 15 / 46
Riemann solver General 1-to-m diverge
RS for a 1-to-m diverge (m ≄ 1)
Solution for a 1-to-m diverge
q1 = min ∆1, min
j=2,...,m+1
1
αj1
ÎŁj ,
qj = αj1q1, ∀j = 2, . . . , m + 1
with
∆1 = D1 (ρ1,0, w1)
Σj = Sj p−1
j (max{0, w1 − v2,0}), w1 , ∀j = 2, . . . , m + 1
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 16 / 46
Riemann solver General 1-to-m diverge
Example of a 1 × 1 junction
(1) (2)
(ρ1, w1) (ρ2, w2)
q1 = q2 = min {D1(ρ1,0, w1) , S2( ˜ρ2, w1)}
where
˜ρ2 = p−1
2 (max{0, w1 − v2,0})
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 17 / 46
Riemann solver 2-to-1 merge
Case of a 2 × 1 merge
(2)
(3)
q3
q1
(1)
q2
q3 = q1 + q2
+ initial conditions
((ρ1,0, v1,0), (ρ2,0, v2,0), (ρ3,0, v3,0))
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 18 / 46
Riemann solver 2-to-1 merge
Example of a 2 × 1 merge
(continued)
Multi-objective optimization problem
max
℩2×1
(q1, q2)
with
℩2×1 =
ïŁ±
ïŁČ
ïŁł
(q1, q2) ∈ R2
0 ≀ q1 ≀ ∆1,
0 ≀ q2 ≀ ∆2,
0 ≀ q3 = q1 + q2 ≀ ÎŁ3(q1, q2)
ïŁŒ
ïŁœ
ïŁŸ
∆i = Di (ρi,0, wi ), i = 1, 2
ÎŁ3(q1, q2) = S3 (˜ρ3, ˜w)
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 19 / 46
Riemann solver 2-to-1 merge
Example of a 2 × 1 merge
(continued)
Multi-objective optimization problem
max
℩2×1
(q1, q2)
with
℩2×1 =
ïŁ±
ïŁČ
ïŁł
(q1, q2) ∈ R2
0 ≀ q1 ≀ ∆1,
0 ≀ q2 ≀ ∆2,
0 ≀ q3 = q1 + q2 ≀ ÎŁ3(q1, q2)
ïŁŒ
ïŁœ
ïŁŸ
∆i = Di (ρi,0, wi ), i = 1, 2
ÎŁ3(q1, q2) = S3 (˜ρ3, ˜w)
˜w =
q1
q1 + q2
w1 +
q2
q1 + q2
w2
˜ρ3 = p−1
3 (max{0, ˜w − v3,0})
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 19 / 46
Riemann solver 2-to-1 merge
First property
Proposition (Convexity of the feasible set)
The set of admissible states ℩2×1 is non-empty and convex.
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 20 / 46
Riemann solver 2-to-1 merge
First property
Proposition (Convexity of the feasible set)
The set of admissible states ℩2×1 is non-empty and convex.
Sketch of the proof:
(0, 0) ∈ ℩2×1
Classical convexity proof: take two points on the boundary of ℩2×1
and show that a convex combination of these two points still belongs
to the set
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 20 / 46
Riemann solver 2-to-1 merge
Analysis of the supply
Assume ∃z ∈ [0, 1] such that
q1 = z(q1 + q2)
q2 = (1 − z)(q1 + q2)
DeïŹne
˜Σ3(z) = Σ3 (q1, q2)
and set
∆w = w1 − w2
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 21 / 46
Riemann solver 2-to-1 merge
˜Σ3(z)
q2(z)
q1(z)
q1
0 ˜Σ3(z)
1 − z
z
q2
˜Σ3 − q1 − q2 = 0
−1
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 22 / 46
Riemann solver 2-to-1 merge
Local optima
˜Σ3 − q1 − q2 = 0
q1
0
q2
1 − P∗
P∗∗
If ∆w > 0
P∗
local minimum for
z → q1(z) = z ˜Σ3(z)
P∗∗
local maximum for
z → q2(z) = (1 − z)˜Σ3(z)
If ∆w < 0
P∗
is a local maximum for
z → q1(z) = z ˜Σ3(z)
P∗∗
is a local minimum for
p → q2(z) = (1 − z)˜Σ3(z)
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 23 / 46
Riemann solver 2-to-1 merge
Riemann solver for the 2-to-1 merge
Algorithm
Consider given pressure functions pi (ρ) and initial conditions.
1 Fix a priority ratio P ∈]0, 1[
2 Compute
F(P) = min
∆1
P
,
∆2
1 − P
, ˜Σ3(P)
with
˜Σ3(P) = S3(ρP , ˜wP )
and ˜wP = Pw1 + (1 − P)w2 and ρP = p−1
3 (max{0, ˜wP − v3,0})
3 Distinguish the diïŹ€erent cases
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 24 / 46
Riemann solver 2-to-1 merge
Set
˜q1 = P ˜Σ3(P) and ˜q2 = (1 − P)˜Σ3(P)
q∗
1 = P∗ ˜Σ3(P∗
) and q∗
2 = (1 − P∗
)˜Σ3(P∗
)
1 If
∆w = 0, or
∆w < 0 and P ≀ P∗
, or
∆w > 0 and P ≄ P∗∗
,
(2)
we choose
q1 = min {∆1, max {˜q1, Σ3(q1, q2) − q2}} ,
q2 = min {∆2, max {˜q2, Σ3(q1, q2) − q1}} .
(3)
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 25 / 46
Riemann solver 2-to-1 merge
2 If
∆w < 0 and P ≄ P∗
,
then
q2 = min {∆2, max {q∗
2, Σ3(q1, q2) − q1}} . (4)
Computation of q1:
1 If
F(P) = ˜Σ3(P) and q∗
2 ≀ ∆2,
we apply
q1 = min{q∗
1 , ∆1}. (5)
2 Otherwise
q1 = min {∆1, max {˜q1, Σ3(q1, q2) − q2}} . (6)
3 The case ∆w > 0 and P ≀ P∗∗ treated analogously to case 2.
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 26 / 46
Riemann solver 2-to-1 merge
Easy case ∆w = 0
ÎŁ3 is a constant
q2
q1
q1 = Σ3 − q2
Σ3 − ∆2
∆1
Σ3 − ∆1 ∆2
(1 − P)Σ3
P
1 − P
PÎŁ3
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 27 / 46
Riemann solver 2-to-1 merge
Subcase 1: F(P) =
∆1
P
∆1
∆2
∆2
1 − P
P
0
q2
q1
ÎŁ3 = q1 + q2
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 28 / 46
Riemann solver 2-to-1 merge
Subcase 1: F(P) =
∆1
P
q1 = ∆1
q2 = min ∆2, max (1 − P)˜Σ3(P), Σ3(∆1, q2) − ∆1
∆1
∆2
∆2
1 − P
P
0
q2
q1
ÎŁ3 = q1 + q2
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 29 / 46
Riemann solver 2-to-1 merge
Subcase 2: F(P) =
∆2
1 − P
1 − P
P
∆2
∆1
0
q2
q1
ÎŁ3 = q1 + q2
∆1
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 30 / 46
Riemann solver 2-to-1 merge
Subcase 2: F(P) =
∆2
1 − P
q1 = min ∆1, max P ˜Σ3(P), Σ3(q1, ∆2) − ∆2
q2 = ∆2
1 − P
P
∆2
∆1
0
q2
q1
ÎŁ3 = q1 + q2
∆1
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 31 / 46
Riemann solver 2-to-1 merge
Subcase 3: F(P) = ˜Σ3(P) and P ≀ P∗
0 ∆1
∆2
q2
q1
ÎŁ3 = q1 + q2
P ˜Σ3(P)
(1 − P)˜Σ3(P)
1 − P
P
1 − P∗
P∗
Pareto front
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 32 / 46
Riemann solver 2-to-1 merge
Subcase 3: F(P) = ˜Σ3(P) and P ≀ P∗
q1 = P ˜Σ3(P)
q2 = (1 − P)˜Σ3(P)
0 ∆1
∆2
q2
q1
ÎŁ3 = q1 + q2
P ˜Σ3(P)
(1 − P)˜Σ3(P)
1 − P
P
1 − P∗
P∗
Pareto front
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 33 / 46
Riemann solver 2-to-1 merge
Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗
(a) If q∗
1 ≀ ∆1 and q∗
2 ≀ ∆2
∆2
Pareto front
0
q2
q1
ÎŁ3 = q1 + q2
(1 − P∗
)˜Σ3(P∗
)
P∗ ˜Σ3(P∗
)∆1
1 − P
P
1 − P∗
P∗
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 34 / 46
Riemann solver 2-to-1 merge
Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗
(a) If q∗
1 ≀ ∆1 and q∗
2 ≀ ∆2
q1 = q∗
1 = P∗ ˜Σ3(P∗)
q2 = q∗
2 = (1 − P∗)˜Σ3(P∗)
∆2
Pareto front
0
q2
q1
ÎŁ3 = q1 + q2
(1 − P∗
)˜Σ3(P∗
)
P∗ ˜Σ3(P∗
)∆1
1 − P
P
1 − P∗
P∗
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 35 / 46
Riemann solver 2-to-1 merge
Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗
(b) If q∗
1 ≀ ∆1 and q∗
2 > ∆2
1 − P∗
P∗
∆2
0
q2
q1
ÎŁ3 = q1 + q2
∆1
1 − P
P
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 36 / 46
Riemann solver 2-to-1 merge
Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗
(b) If q∗
1 ≀ ∆1 and q∗
2 > ∆2
q1 = Σ3(q1, ∆2) − ∆2
q2 = ∆2
1 − P∗
P∗
∆2
0
q2
q1
ÎŁ3 = q1 + q2
∆1
1 − P
P
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 37 / 46
Riemann solver 2-to-1 merge
Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗
(c) If q∗
1 > ∆1 and ÂŻq2 ≀ ∆2
∆2
∆10
q2
q1
ÎŁ3 = q1 + q2
1 − P
P
1 − P∗
P∗
Pareto front
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 38 / 46
Riemann solver 2-to-1 merge
Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗
(c) If q∗
1 > ∆1 and ÂŻq2 ≀ ∆2
q1 = ∆1
q2 = ÂŻq2 solution of q2 = ÎŁ3(∆1, q2) − ∆1 and q2 ≄ q∗
2
∆2
∆10
q2
q1
ÎŁ3 = q1 + q2
1 − P
P
1 − P∗
P∗
Pareto front
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 39 / 46
Riemann solver 2-to-1 merge
Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗
(d) If q∗
1 > ∆1 and ÂŻq2 ≄ ∆2 ≄ q2
∆1
∆2
0
q2
q1
ÎŁ3 = q1 + q2
1 − P
P
1 − P∗
P∗
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 40 / 46
Riemann solver 2-to-1 merge
Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗
(d) If q∗
1 > ∆1 and ÂŻq2 ≄ ∆2 ≄ q2
q1 = ∆1
q2 = ∆2
∆1
∆2
0
q2
q1
ÎŁ3 = q1 + q2
1 − P
P
1 − P∗
P∗
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 41 / 46
Riemann solver 2-to-1 merge
Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗
(e) If q∗
1 > ∆1 and ∆2 < q2
ÎŁ3 = q1 + q2
∆2
0
q2
q11 − P
P
1 − P∗
P∗
∆1
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 42 / 46
Riemann solver 2-to-1 merge
Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗
(e) If q∗
1 > ∆1 and ∆2 < q2
q1 = Σ3(q1, ∆2) − ∆2
q2 = ∆2
ÎŁ3 = q1 + q2
∆2
0
q2
q11 − P
P
1 − P∗
P∗
∆1
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 43 / 46
References
Some references I
A. Aw and M. Rascle, Resurrection of “second order” models of traïŹƒc ïŹ‚ow,
SIAM journal on applied mathematics, 60 (2000), pp. 916–938.
R. M. Colombo, P. Goatin, and B. Piccoli, Road networks with phase
transitions, Journal of Hyperbolic DiïŹ€erential Equations, 7 (2010), pp. 85–106.
M. Garavello and F. Marcellini, The riemann problem at a junction for a
phase transition traïŹƒc model, Preprint, (2016).
M. Garavello and B. Piccoli, TraïŹƒc ïŹ‚ow on a road network using the
Aw–Rascle model, Communications in Partial DiïŹ€erential Equations, 31 (2006),
pp. 243–275.
B. Haut and G. Bastin, A second order model of road junctions in ïŹ‚uid models
of traïŹƒc networks, Networks and Heterogeneous Media, 2 (2007), pp. 227–253.
M. Herty, S. Moutari, and M. Rascle, Optimization criteria for modelling
intersections of vehicular traïŹƒc ïŹ‚ow, Networks and Heterogeneous Media, 1
(2006), pp. 275–294.
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 44 / 46
References
Some references II
M. Herty and M. Rascle, Coupling conditions for a class of second-order
models for traïŹƒc ïŹ‚ow, SIAM Journal on mathematical analysis, 38 (2006),
pp. 595–616.
J. Lebacque, S. Mammar, and H. Haj-Salem, An intersection model based
on the GSOM model, in Proceedings of the 17th World Congress, The
International Federation of Automatic Control, Seoul, Korea, 2008, pp. 7148–7153.
J.-P. Lebacque, H. Haj-Salem, and S. Mammar, Second order traïŹƒc ïŹ‚ow
modeling: supply-demand analysis of the inhomogeneous Riemann problem and of
boundary conditions, Proceedings of the 10th Euro Working Group on
Transportation (EWGT), 3 (2005).
H. M. Zhang, A non-equilibrium traïŹƒc model devoid of gas-like behavior,
Transportation Research Part B: Methodological, 36 (2002), pp. 275–290.
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 45 / 46
References
Thanks for your attention
guillaume.costeseque@inria.fr
G. Costeseque Second order models on junctions Valbonne, July 04, 2017 46 / 46

More Related Content

PDF
A new solver for the ARZ traffic flow model on a junction
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
Divergence center-based clustering and their applications
PDF
QMC: Transition Workshop - Density Estimation by Randomized Quasi-Monte Carlo...
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
A new solver for the ARZ traffic flow model on a junction
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Divergence center-based clustering and their applications
QMC: Transition Workshop - Density Estimation by Randomized Quasi-Monte Carlo...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...

What's hot (20)

PDF
Kolev skalna2018 article-exact_solutiontoa_parametricline
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
Solving connectivity problems via basic Linear Algebra
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
CLIM Fall 2017 Course: Statistics for Climate Research, Estimating Curves and...
PDF
2-rankings of Graphs
PDF
Talk iccf 19_ben_hammouda
PDF
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
PDF
Testing for mixtures by seeking components
PDF
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
Kernel for Chordal Vertex Deletion
PDF
Some recent developments in the traffic flow variational formulation
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
CLIM Fall 2017 Course: Statistics for Climate Research, Geostats for Large Da...
PDF
Trilinear embedding for divergence-form operators
PDF
Pres_Zurich14
Kolev skalna2018 article-exact_solutiontoa_parametricline
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Solving connectivity problems via basic Linear Algebra
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
CLIM Fall 2017 Course: Statistics for Climate Research, Estimating Curves and...
2-rankings of Graphs
Talk iccf 19_ben_hammouda
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Testing for mixtures by seeking components
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
Kernel for Chordal Vertex Deletion
Some recent developments in the traffic flow variational formulation
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
CLIM Fall 2017 Course: Statistics for Climate Research, Geostats for Large Da...
Trilinear embedding for divergence-form operators
Pres_Zurich14
Ad

Similar to A multi-objective optimization framework for a second order traffic flow model on a junction (20)

PDF
QCD Phase Diagram
PDF
Lecture6 svdd
PDF
Micro to macro passage in traffic models including multi-anticipation effect
PDF
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
PDF
Divergence clustering
PDF
Coordinate sampler: A non-reversible Gibbs-like sampler
PDF
Nonconvex Compressed Sensing with the Sum-of-Squares Method
PDF
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
PDF
Machine learning ,supervised learning ,j
PDF
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
PDF
Bayesian inference on mixtures
PDF
Subgradient Methods for Huge-Scale Optimization Problems - мроĐč ĐĐ”ŃŃ‚Đ”Ń€ĐŸĐČ, Cat...
 
PDF
A study of the worst case ratio of a simple algorithm for simple assembly lin...
 
PDF
Introduction to logistic regression
PDF
Bayesian adaptive optimal estimation using a sieve prior
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
Graph Edit Distance: Basics & Trends
PDF
04 greedyalgorithmsii 2x2
PDF
Litvinenko low-rank kriging +FFT poster
PDF
Scattering theory analogues of several classical estimates in Fourier analysis
QCD Phase Diagram
Lecture6 svdd
Micro to macro passage in traffic models including multi-anticipation effect
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
Divergence clustering
Coordinate sampler: A non-reversible Gibbs-like sampler
Nonconvex Compressed Sensing with the Sum-of-Squares Method
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Machine learning ,supervised learning ,j
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
Bayesian inference on mixtures
Subgradient Methods for Huge-Scale Optimization Problems - мроĐč ĐĐ”ŃŃ‚Đ”Ń€ĐŸĐČ, Cat...
 
A study of the worst case ratio of a simple algorithm for simple assembly lin...
 
Introduction to logistic regression
Bayesian adaptive optimal estimation using a sieve prior
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
Graph Edit Distance: Basics & Trends
04 greedyalgorithmsii 2x2
Litvinenko low-rank kriging +FFT poster
Scattering theory analogues of several classical estimates in Fourier analysis
Ad

More from Guillaume Costeseque (20)

PDF
Impacts de la "Ville 30" sur les trafics, les vitesses et les temps de parcou...
PDF
Présentation aux RFTM 2024 sur l'estimation des débits à partir des données FCD
PDF
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
PDF
Nouvelles mobilités, nouveaux usages, évolutions des marchés
PDF
Cours its-ecn-2021
PDF
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
PDF
Cours its-ecn-2020
PDF
Evaluation d'une navette autonome Ă  Nantes 2019
PDF
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
PDF
Representation formula for traffic flow estimation on a network
PDF
Hamilton-Jacobi approach for second order traffic flow models
PDF
Numerical approach for Hamilton-Jacobi equations on a network: application to...
PDF
Numerical methods for variational principles in traffic
PDF
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
PDF
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
PDF
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
PDF
Road junction modeling using a scheme based on Hamilton-Jacobi equations
PDF
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
PDF
Mesoscopic multiclass traffic flow modeling on multi-lane sections
PDF
The moving bottleneck problem: a Hamilton-Jacobi approach
Impacts de la "Ville 30" sur les trafics, les vitesses et les temps de parcou...
Présentation aux RFTM 2024 sur l'estimation des débits à partir des données FCD
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Cours its-ecn-2021
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Cours its-ecn-2020
Evaluation d'une navette autonome Ă  Nantes 2019
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
Representation formula for traffic flow estimation on a network
Hamilton-Jacobi approach for second order traffic flow models
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical methods for variational principles in traffic
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Road junction modeling using a scheme based on Hamilton-Jacobi equations
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Mesoscopic multiclass traffic flow modeling on multi-lane sections
The moving bottleneck problem: a Hamilton-Jacobi approach

Recently uploaded (20)

PPT
protein biochemistry.ppt for university classes
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PDF
An interstellar mission to test astrophysical black holes
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PPTX
Microbiology with diagram medical studies .pptx
PPTX
ECG_Course_Presentation ŰŻ.Ù…Ű­Ù…ŰŻ Ű”Ù‚Ű±Ű§Ù† ppt
PPTX
famous lake in india and its disturibution and importance
PDF
Placing the Near-Earth Object Impact Probability in Context
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PPTX
2. Earth - The Living Planet Module 2ELS
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
 
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PPTX
2Systematics of Living Organisms t-.pptx
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PDF
Sciences of Europe No 170 (2025)
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PPTX
BIOMOLECULES PPT........................
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
protein biochemistry.ppt for university classes
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
An interstellar mission to test astrophysical black holes
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
Microbiology with diagram medical studies .pptx
ECG_Course_Presentation ŰŻ.Ù…Ű­Ù…ŰŻ Ű”Ù‚Ű±Ű§Ù† ppt
famous lake in india and its disturibution and importance
Placing the Near-Earth Object Impact Probability in Context
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
2. Earth - The Living Planet Module 2ELS
INTRODUCTION TO EVS | Concept of sustainability
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
 
7. General Toxicologyfor clinical phrmacy.pptx
2Systematics of Living Organisms t-.pptx
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
Sciences of Europe No 170 (2025)
Comparative Structure of Integument in Vertebrates.pptx
BIOMOLECULES PPT........................
POSITIONING IN OPERATION THEATRE ROOM.ppt

A multi-objective optimization framework for a second order traffic flow model on a junction

  • 1. A multi-objective optimization framework for a second order traïŹƒc ïŹ‚ow model on a junction Guillaume Costeseque collaboration with Paola Goatin, Simone Gšottlich and Oliver Kolb Inria Sophia-Antipolis MÂŽediterranÂŽee ACUMES meeting Sophia-Antipolis – July 04, 2017 G. Costeseque Second order models on junctions Valbonne, July 04, 2017 1 / 46
  • 2. Motivation TraïŹƒc ïŹ‚ows on a network Nice network [Google maps, Jul. 3, 2017] G. Costeseque Second order models on junctions Valbonne, July 04, 2017 2 / 46
  • 3. Motivation TraïŹƒc ïŹ‚ows on a network Road network ≡ graph made of edges and vertices G. Costeseque Second order models on junctions Valbonne, July 04, 2017 2 / 46
  • 4. Motivation Outline 1 Introduction 2 Some background 3 Riemann solver G. Costeseque Second order models on junctions Valbonne, July 04, 2017 3 / 46
  • 5. Introduction Outline 1 Introduction 2 Some background 3 Riemann solver G. Costeseque Second order models on junctions Valbonne, July 04, 2017 4 / 46
  • 6. Introduction ARZ model on a junction (i) (j) (ρi, wi) (ρj, wj) G. Costeseque Second order models on junctions Valbonne, July 04, 2017 5 / 46
  • 7. Introduction ARZ model on a junction (continued) ARZ model [1, 10] on each branch (i) ïŁ± ïŁŽïŁČ ïŁŽïŁł ∂tρi + ∂x (ρi vi ) = 0, ∂t (ρi wi ) + ∂x (ρi vi wi ) = 0, wi := vi + pi (ρi ) (1) Coupling conditions needed to ensure conservation of Mass ïŹ‚ow q = ρv Momentum ïŹ‚ow qw = ρvw through the junction G. Costeseque Second order models on junctions Valbonne, July 04, 2017 6 / 46
  • 8. Introduction Problem statement Why ARZ model? G. Costeseque Second order models on junctions Valbonne, July 04, 2017 7 / 46
  • 9. Introduction Problem statement Why ARZ model? To reproduce the capacity drop phenomenon (+ control thanks to variable speed limits and/or ramp metering) What are we looking for? G. Costeseque Second order models on junctions Valbonne, July 04, 2017 7 / 46
  • 10. Introduction Problem statement Why ARZ model? To reproduce the capacity drop phenomenon (+ control thanks to variable speed limits and/or ramp metering) What are we looking for? Well-posedness of Riemann solvers at the junction G. Costeseque Second order models on junctions Valbonne, July 04, 2017 7 / 46
  • 11. Some background Outline 1 Introduction 2 Some background Basics Computation of the supply for second order models 3 Riemann solver G. Costeseque Second order models on junctions Valbonne, July 04, 2017 8 / 46
  • 12. Some background Basics Common assumptions (A1) Conservation of the ïŹ‚uxes: n i=1 ρi vi =:qi = n+m j=n+1 ρj vj =:qj (A2) Fixed assignment coeïŹƒcients: ∃ (αji )i,j ∈ [0, 1], s.t. n+m j=n+1 αji = 1 and qj = n i=1 αji qi (A3) Bounds on the ïŹ‚uxes 0 ≀ qi ≀ ∆i , i = 1, . . . , n, 0 ≀ qj ≀ ÎŁj , j = n + 1, . . . , n + m, ∆i demand and ÎŁj supply G. Costeseque Second order models on junctions Valbonne, July 04, 2017 9 / 46
  • 13. Some background Basics Common assumptions (A4) Maximization of the total incoming ïŹ‚uxes: max n i=1 qi G. Costeseque Second order models on junctions Valbonne, July 04, 2017 10 / 46
  • 14. Some background Basics Common assumptions (A4) Maximization of the total incoming ïŹ‚uxes: max n i=1 qi Literature: ARZ model Garavello-Piccoli [4] Herty-Rascle [7] Herty-Moutari-Rascle [6] Haut-Bastin [5] Phase Transition model Colombo, Goatin, Piccoli [2] Garavello, Marcellini [3] Engineering community: Lebacque’s works [9, 8] G. Costeseque Second order models on junctions Valbonne, July 04, 2017 10 / 46
  • 15. Some background Basics Common assumptions (A4) Multi-objective optimization of the incoming ïŹ‚uxes: max (q1, . . . , qn) and for any ïŹxed P = (P1, . . . , Pn) such that Pi ∈]0, 1[ and n i=1 Pi = 1, the ratio ql n i=1 qi is the closest to Pl G. Costeseque Second order models on junctions Valbonne, July 04, 2017 10 / 46
  • 16. Some background Computation of the supply for second order models Demand and supply ρ ρ → ρ(w − pi(ρ)) Di(ρ, w) Si(ρ, w) ρv ρv ρ σi(w) ρv ρ σi(w) σi(w) G. Costeseque Second order models on junctions Valbonne, July 04, 2017 11 / 46
  • 17. Some background Computation of the supply for second order models Downstream density perceived by upstream traïŹƒc = wl − pr(˜ρr) ρv {w = wl} ρ {w = wr} ρr˜ρr (ρr, wr) vr = wr − pr(ρr) (ρl, wl) x The velocity is conserved through a contact discontinuity! G. Costeseque Second order models on junctions Valbonne, July 04, 2017 12 / 46
  • 18. Riemann solver Outline 1 Introduction 2 Some background 3 Riemann solver General 1-to-m diverge 2-to-1 merge G. Costeseque Second order models on junctions Valbonne, July 04, 2017 13 / 46
  • 19. Riemann solver General 1-to-m diverge RS for a 1-to-m diverge (m ≄ 1) qm+1 q1 q2 (1) (2) (m + 1) G. Costeseque Second order models on junctions Valbonne, July 04, 2017 14 / 46
  • 20. Riemann solver General 1-to-m diverge RS for a 1-to-m diverge (m ≄ 1) Initial states ((ρ1,0, v1,0), (ρ2,0, v2,0) . . . , (ρm+1,0, vm+1,0)) Multi-optimization ≡ optimization of the total through-ïŹ‚ow max ℩1×m q1 Set of admissible states ℩1×m := q1 ∈ R 0 ≀ q1 ≀ ∆1 0 ≀ qj = αj1q1 ≀ ÎŁj , ∀j G. Costeseque Second order models on junctions Valbonne, July 04, 2017 15 / 46
  • 21. Riemann solver General 1-to-m diverge RS for a 1-to-m diverge (m ≄ 1) Solution for a 1-to-m diverge q1 = min ∆1, min j=2,...,m+1 1 αj1 ÎŁj , qj = αj1q1, ∀j = 2, . . . , m + 1 with ∆1 = D1 (ρ1,0, w1) ÎŁj = Sj p−1 j (max{0, w1 − v2,0}), w1 , ∀j = 2, . . . , m + 1 G. Costeseque Second order models on junctions Valbonne, July 04, 2017 16 / 46
  • 22. Riemann solver General 1-to-m diverge Example of a 1 × 1 junction (1) (2) (ρ1, w1) (ρ2, w2) q1 = q2 = min {D1(ρ1,0, w1) , S2( ˜ρ2, w1)} where ˜ρ2 = p−1 2 (max{0, w1 − v2,0}) G. Costeseque Second order models on junctions Valbonne, July 04, 2017 17 / 46
  • 23. Riemann solver 2-to-1 merge Case of a 2 × 1 merge (2) (3) q3 q1 (1) q2 q3 = q1 + q2 + initial conditions ((ρ1,0, v1,0), (ρ2,0, v2,0), (ρ3,0, v3,0)) G. Costeseque Second order models on junctions Valbonne, July 04, 2017 18 / 46
  • 24. Riemann solver 2-to-1 merge Example of a 2 × 1 merge (continued) Multi-objective optimization problem max ℩2×1 (q1, q2) with ℩2×1 = ïŁ± ïŁČ ïŁł (q1, q2) ∈ R2 0 ≀ q1 ≀ ∆1, 0 ≀ q2 ≀ ∆2, 0 ≀ q3 = q1 + q2 ≀ ÎŁ3(q1, q2) ïŁŒ ïŁœ ïŁŸ ∆i = Di (ρi,0, wi ), i = 1, 2 ÎŁ3(q1, q2) = S3 (˜ρ3, ˜w) G. Costeseque Second order models on junctions Valbonne, July 04, 2017 19 / 46
  • 25. Riemann solver 2-to-1 merge Example of a 2 × 1 merge (continued) Multi-objective optimization problem max ℩2×1 (q1, q2) with ℩2×1 = ïŁ± ïŁČ ïŁł (q1, q2) ∈ R2 0 ≀ q1 ≀ ∆1, 0 ≀ q2 ≀ ∆2, 0 ≀ q3 = q1 + q2 ≀ ÎŁ3(q1, q2) ïŁŒ ïŁœ ïŁŸ ∆i = Di (ρi,0, wi ), i = 1, 2 ÎŁ3(q1, q2) = S3 (˜ρ3, ˜w) ˜w = q1 q1 + q2 w1 + q2 q1 + q2 w2 ˜ρ3 = p−1 3 (max{0, ˜w − v3,0}) G. Costeseque Second order models on junctions Valbonne, July 04, 2017 19 / 46
  • 26. Riemann solver 2-to-1 merge First property Proposition (Convexity of the feasible set) The set of admissible states ℩2×1 is non-empty and convex. G. Costeseque Second order models on junctions Valbonne, July 04, 2017 20 / 46
  • 27. Riemann solver 2-to-1 merge First property Proposition (Convexity of the feasible set) The set of admissible states ℩2×1 is non-empty and convex. Sketch of the proof: (0, 0) ∈ ℩2×1 Classical convexity proof: take two points on the boundary of ℩2×1 and show that a convex combination of these two points still belongs to the set G. Costeseque Second order models on junctions Valbonne, July 04, 2017 20 / 46
  • 28. Riemann solver 2-to-1 merge Analysis of the supply Assume ∃z ∈ [0, 1] such that q1 = z(q1 + q2) q2 = (1 − z)(q1 + q2) DeïŹne ˜Σ3(z) = ÎŁ3 (q1, q2) and set ∆w = w1 − w2 G. Costeseque Second order models on junctions Valbonne, July 04, 2017 21 / 46
  • 29. Riemann solver 2-to-1 merge ˜Σ3(z) q2(z) q1(z) q1 0 ˜Σ3(z) 1 − z z q2 ˜Σ3 − q1 − q2 = 0 −1 G. Costeseque Second order models on junctions Valbonne, July 04, 2017 22 / 46
  • 30. Riemann solver 2-to-1 merge Local optima ˜Σ3 − q1 − q2 = 0 q1 0 q2 1 − P∗ P∗∗ If ∆w > 0 P∗ local minimum for z → q1(z) = z ˜Σ3(z) P∗∗ local maximum for z → q2(z) = (1 − z)˜Σ3(z) If ∆w < 0 P∗ is a local maximum for z → q1(z) = z ˜Σ3(z) P∗∗ is a local minimum for p → q2(z) = (1 − z)˜Σ3(z) G. Costeseque Second order models on junctions Valbonne, July 04, 2017 23 / 46
  • 31. Riemann solver 2-to-1 merge Riemann solver for the 2-to-1 merge Algorithm Consider given pressure functions pi (ρ) and initial conditions. 1 Fix a priority ratio P ∈]0, 1[ 2 Compute F(P) = min ∆1 P , ∆2 1 − P , ˜Σ3(P) with ˜Σ3(P) = S3(ρP , ˜wP ) and ˜wP = Pw1 + (1 − P)w2 and ρP = p−1 3 (max{0, ˜wP − v3,0}) 3 Distinguish the diïŹ€erent cases G. Costeseque Second order models on junctions Valbonne, July 04, 2017 24 / 46
  • 32. Riemann solver 2-to-1 merge Set ˜q1 = P ˜Σ3(P) and ˜q2 = (1 − P)˜Σ3(P) q∗ 1 = P∗ ˜Σ3(P∗ ) and q∗ 2 = (1 − P∗ )˜Σ3(P∗ ) 1 If ∆w = 0, or ∆w < 0 and P ≀ P∗ , or ∆w > 0 and P ≄ P∗∗ , (2) we choose q1 = min {∆1, max {˜q1, ÎŁ3(q1, q2) − q2}} , q2 = min {∆2, max {˜q2, ÎŁ3(q1, q2) − q1}} . (3) G. Costeseque Second order models on junctions Valbonne, July 04, 2017 25 / 46
  • 33. Riemann solver 2-to-1 merge 2 If ∆w < 0 and P ≄ P∗ , then q2 = min {∆2, max {q∗ 2, ÎŁ3(q1, q2) − q1}} . (4) Computation of q1: 1 If F(P) = ˜Σ3(P) and q∗ 2 ≀ ∆2, we apply q1 = min{q∗ 1 , ∆1}. (5) 2 Otherwise q1 = min {∆1, max {˜q1, ÎŁ3(q1, q2) − q2}} . (6) 3 The case ∆w > 0 and P ≀ P∗∗ treated analogously to case 2. G. Costeseque Second order models on junctions Valbonne, July 04, 2017 26 / 46
  • 34. Riemann solver 2-to-1 merge Easy case ∆w = 0 ÎŁ3 is a constant q2 q1 q1 = ÎŁ3 − q2 ÎŁ3 − ∆2 ∆1 ÎŁ3 − ∆1 ∆2 (1 − P)ÎŁ3 P 1 − P PÎŁ3 G. Costeseque Second order models on junctions Valbonne, July 04, 2017 27 / 46
  • 35. Riemann solver 2-to-1 merge Subcase 1: F(P) = ∆1 P ∆1 ∆2 ∆2 1 − P P 0 q2 q1 ÎŁ3 = q1 + q2 G. Costeseque Second order models on junctions Valbonne, July 04, 2017 28 / 46
  • 36. Riemann solver 2-to-1 merge Subcase 1: F(P) = ∆1 P q1 = ∆1 q2 = min ∆2, max (1 − P)˜Σ3(P), ÎŁ3(∆1, q2) − ∆1 ∆1 ∆2 ∆2 1 − P P 0 q2 q1 ÎŁ3 = q1 + q2 G. Costeseque Second order models on junctions Valbonne, July 04, 2017 29 / 46
  • 37. Riemann solver 2-to-1 merge Subcase 2: F(P) = ∆2 1 − P 1 − P P ∆2 ∆1 0 q2 q1 ÎŁ3 = q1 + q2 ∆1 G. Costeseque Second order models on junctions Valbonne, July 04, 2017 30 / 46
  • 38. Riemann solver 2-to-1 merge Subcase 2: F(P) = ∆2 1 − P q1 = min ∆1, max P ˜Σ3(P), ÎŁ3(q1, ∆2) − ∆2 q2 = ∆2 1 − P P ∆2 ∆1 0 q2 q1 ÎŁ3 = q1 + q2 ∆1 G. Costeseque Second order models on junctions Valbonne, July 04, 2017 31 / 46
  • 39. Riemann solver 2-to-1 merge Subcase 3: F(P) = ˜Σ3(P) and P ≀ P∗ 0 ∆1 ∆2 q2 q1 ÎŁ3 = q1 + q2 P ˜Σ3(P) (1 − P)˜Σ3(P) 1 − P P 1 − P∗ P∗ Pareto front G. Costeseque Second order models on junctions Valbonne, July 04, 2017 32 / 46
  • 40. Riemann solver 2-to-1 merge Subcase 3: F(P) = ˜Σ3(P) and P ≀ P∗ q1 = P ˜Σ3(P) q2 = (1 − P)˜Σ3(P) 0 ∆1 ∆2 q2 q1 ÎŁ3 = q1 + q2 P ˜Σ3(P) (1 − P)˜Σ3(P) 1 − P P 1 − P∗ P∗ Pareto front G. Costeseque Second order models on junctions Valbonne, July 04, 2017 33 / 46
  • 41. Riemann solver 2-to-1 merge Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗ (a) If q∗ 1 ≀ ∆1 and q∗ 2 ≀ ∆2 ∆2 Pareto front 0 q2 q1 ÎŁ3 = q1 + q2 (1 − P∗ )˜Σ3(P∗ ) P∗ ˜Σ3(P∗ )∆1 1 − P P 1 − P∗ P∗ G. Costeseque Second order models on junctions Valbonne, July 04, 2017 34 / 46
  • 42. Riemann solver 2-to-1 merge Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗ (a) If q∗ 1 ≀ ∆1 and q∗ 2 ≀ ∆2 q1 = q∗ 1 = P∗ ˜Σ3(P∗) q2 = q∗ 2 = (1 − P∗)˜Σ3(P∗) ∆2 Pareto front 0 q2 q1 ÎŁ3 = q1 + q2 (1 − P∗ )˜Σ3(P∗ ) P∗ ˜Σ3(P∗ )∆1 1 − P P 1 − P∗ P∗ G. Costeseque Second order models on junctions Valbonne, July 04, 2017 35 / 46
  • 43. Riemann solver 2-to-1 merge Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗ (b) If q∗ 1 ≀ ∆1 and q∗ 2 > ∆2 1 − P∗ P∗ ∆2 0 q2 q1 ÎŁ3 = q1 + q2 ∆1 1 − P P G. Costeseque Second order models on junctions Valbonne, July 04, 2017 36 / 46
  • 44. Riemann solver 2-to-1 merge Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗ (b) If q∗ 1 ≀ ∆1 and q∗ 2 > ∆2 q1 = ÎŁ3(q1, ∆2) − ∆2 q2 = ∆2 1 − P∗ P∗ ∆2 0 q2 q1 ÎŁ3 = q1 + q2 ∆1 1 − P P G. Costeseque Second order models on junctions Valbonne, July 04, 2017 37 / 46
  • 45. Riemann solver 2-to-1 merge Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗ (c) If q∗ 1 > ∆1 and ÂŻq2 ≀ ∆2 ∆2 ∆10 q2 q1 ÎŁ3 = q1 + q2 1 − P P 1 − P∗ P∗ Pareto front G. Costeseque Second order models on junctions Valbonne, July 04, 2017 38 / 46
  • 46. Riemann solver 2-to-1 merge Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗ (c) If q∗ 1 > ∆1 and ÂŻq2 ≀ ∆2 q1 = ∆1 q2 = ÂŻq2 solution of q2 = ÎŁ3(∆1, q2) − ∆1 and q2 ≄ q∗ 2 ∆2 ∆10 q2 q1 ÎŁ3 = q1 + q2 1 − P P 1 − P∗ P∗ Pareto front G. Costeseque Second order models on junctions Valbonne, July 04, 2017 39 / 46
  • 47. Riemann solver 2-to-1 merge Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗ (d) If q∗ 1 > ∆1 and ÂŻq2 ≄ ∆2 ≄ q2 ∆1 ∆2 0 q2 q1 ÎŁ3 = q1 + q2 1 − P P 1 − P∗ P∗ G. Costeseque Second order models on junctions Valbonne, July 04, 2017 40 / 46
  • 48. Riemann solver 2-to-1 merge Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗ (d) If q∗ 1 > ∆1 and ÂŻq2 ≄ ∆2 ≄ q2 q1 = ∆1 q2 = ∆2 ∆1 ∆2 0 q2 q1 ÎŁ3 = q1 + q2 1 − P P 1 − P∗ P∗ G. Costeseque Second order models on junctions Valbonne, July 04, 2017 41 / 46
  • 49. Riemann solver 2-to-1 merge Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗ (e) If q∗ 1 > ∆1 and ∆2 < q2 ÎŁ3 = q1 + q2 ∆2 0 q2 q11 − P P 1 − P∗ P∗ ∆1 G. Costeseque Second order models on junctions Valbonne, July 04, 2017 42 / 46
  • 50. Riemann solver 2-to-1 merge Subcase 4: F(P) = ˜Σ3(P) and P ≄ P∗ (e) If q∗ 1 > ∆1 and ∆2 < q2 q1 = ÎŁ3(q1, ∆2) − ∆2 q2 = ∆2 ÎŁ3 = q1 + q2 ∆2 0 q2 q11 − P P 1 − P∗ P∗ ∆1 G. Costeseque Second order models on junctions Valbonne, July 04, 2017 43 / 46
  • 51. References Some references I A. Aw and M. Rascle, Resurrection of “second order” models of traïŹƒc ïŹ‚ow, SIAM journal on applied mathematics, 60 (2000), pp. 916–938. R. M. Colombo, P. Goatin, and B. Piccoli, Road networks with phase transitions, Journal of Hyperbolic DiïŹ€erential Equations, 7 (2010), pp. 85–106. M. Garavello and F. Marcellini, The riemann problem at a junction for a phase transition traïŹƒc model, Preprint, (2016). M. Garavello and B. Piccoli, TraïŹƒc ïŹ‚ow on a road network using the Aw–Rascle model, Communications in Partial DiïŹ€erential Equations, 31 (2006), pp. 243–275. B. Haut and G. Bastin, A second order model of road junctions in ïŹ‚uid models of traïŹƒc networks, Networks and Heterogeneous Media, 2 (2007), pp. 227–253. M. Herty, S. Moutari, and M. Rascle, Optimization criteria for modelling intersections of vehicular traïŹƒc ïŹ‚ow, Networks and Heterogeneous Media, 1 (2006), pp. 275–294. G. Costeseque Second order models on junctions Valbonne, July 04, 2017 44 / 46
  • 52. References Some references II M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traïŹƒc ïŹ‚ow, SIAM Journal on mathematical analysis, 38 (2006), pp. 595–616. J. Lebacque, S. Mammar, and H. Haj-Salem, An intersection model based on the GSOM model, in Proceedings of the 17th World Congress, The International Federation of Automatic Control, Seoul, Korea, 2008, pp. 7148–7153. J.-P. Lebacque, H. Haj-Salem, and S. Mammar, Second order traïŹƒc ïŹ‚ow modeling: supply-demand analysis of the inhomogeneous Riemann problem and of boundary conditions, Proceedings of the 10th Euro Working Group on Transportation (EWGT), 3 (2005). H. M. Zhang, A non-equilibrium traïŹƒc model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), pp. 275–290. G. Costeseque Second order models on junctions Valbonne, July 04, 2017 45 / 46
  • 53. References Thanks for your attention guillaume.costeseque@inria.fr G. Costeseque Second order models on junctions Valbonne, July 04, 2017 46 / 46