The document proposes an approach combining automatic relevance feedback and particle swarm optimization for image retrieval. It constructs a visual feature database from image features like color moments and Gabor filters. For a query image, it retrieves similar images and generates automatic relevance feedback by labeling images as relevant or irrelevant. It then uses particle swarm optimization to re-weight features and retrieve more relevant images over multiple iterations, splitting the swarm in later iterations. An experiment on Corel images over 5 classes showed the approach could effectively retrieve relevant images through this meta-heuristic process without human interaction.