SlideShare a Scribd company logo
International
OPEN ACCESS Journal
Of Modern Engineering Research (IJMER)
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 7 | July. 2017 | 1 |
Mitigation of Voltage Imbalance in A Two Feeder Distribution System
Using Iupqc
*
T.Murali Krishna1
,T.Siva Ram2
1
Assistant Professor, 2
Assistant Professor Department of Electrical & Electronics Engineering
Malla Reddy Engineering College & Management Sciences, Kistapur, Medchal, Telangana, India.
Corresponding author: *T.Murali Krishna
I. INTRODUCTION
Power quality determines the fitness of electric power to consumer devices. Synchronization of the
voltage frequency and phase allows electrical systems to function in their intended manner without significant
loss of performance or life[1]. Without the proper power, an electrical device (or load) may malfunction, fail
prematurely or not operate at all. There are many ways in which electric power can be of poor quality and many
more causes of such poor quality power. Poor power quality may result into increased power losses, and other
remarkable abnormalities in the distribution side. The problems became more serious with the high usage of
non-linear loads. The main reason for this is that the nonlinear loads, as a rule, draw non sinusoidal currents
from the supply and lead to voltage distortion and related system problems.
For Power Quality improvement, the developments of power electronics devices such as FACTS and
Custom Power Devices have introduced an emerging branch of technology providing the power system with
versatile new control capabilities. Like Flexible AC Transmission Systems (FACTS) for transmission systems,
the new technology known as Custom Power pertains to the use of power electronics controllers in a distribution
systems. Just as FACTS improves the power transfer capability and stability margins, custom power makes sure
consumers get pre-specified quality and reliability of supply. Voltage sags and swells in the medium and low
voltage grid are considered to be the most frequent type of Power Quality problems. Their impact on sensitive
loads is severe. Different solutions have been developed to protect sensitive loads against such disturbances.
Among these IUPQC is most effective device. Unified Power Quality Conditioner (UPQC) consists of two
IGBT based Voltage source converters (VSC), one shunt and one series cascaded by a common DC bus.
Whenever the supply voltage undergoes sag then series converter injects suitable voltage with supply. Thus
UPQC improves the power quality by preventing load current harmonics and by correcting the input power
factor. Voltage-Source Converter based Custom power devices are increasingly being used in custom power
applications for improving the power quality (PQ) of power distribution systems. Devices such as distribution
static compensator (DSTATCOM) and dynamic voltage restorer (DVR) are extensively being used in power
quality improvement. A DSTATCOM can compensate for distortion and unbalance in a load such that a
balanced sinusoidal current flows through the feeder [3,4]. ]. It can also regulate the voltage of a distribution
bus. A DVR can compensate for voltage sag/swell and distortion in the supply side voltage such that the voltage
across a sensitive/critical load terminal is perfectly regulated. A unified power-quality conditioner (UPQC) can
perform the functions of both DSTATCOM and DVR. The UPQC consists of two voltage-source converters
(VSCs) that are connected to a common dc bus. One of the VSCs is connected in series with a distribution
ABSTRACT: Proliferation of electronic equipment in commercial and industrial processes has
resulted in increasingly sensitive electrical loads to be fed from power distribution system which
introduce contamination to voltage and current waveforms at the point of common coupling of
industrial loads. The unified power quality conditioner (UPQC) is connected between two different
feeders (lines), hence this method of connection of the UPQC is called as Interline UPQC
(IUPQC).This paper proposes a new connection for a UPQC to improve the power quality of two
feeders in a distribution system. Interline Unified Power Quality Conditioner (IUPQC), specifically
aims at the integration of series VSC and Shunt VSC to provide high quality power supply by means of
voltage sag/swell compensation, harmonic elimination in a power distribution network, so that
improved power quality can be made available at the point of common coupling. The structure, control
and capability of the IUPQC are discussed in this paper. The efficiency of the proposed configuration
has been verified through simulation using MATLAB/ SIMULINK.
Keywords: Power quality, UPQC, PQ disturbances, fuzzy controller.
Mitigation Of Voltage Imbalance In A Two Feeder Distribution System Using Iupqc
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 7 | July. 2017 | 2 |
feeder, while the other one is connected in shunt with the same feeder. The dc links of both VSCs are supplied
through a common dc capacitor. This paper presents the new connection for UPQC. Interline Unified Power
Quality Conditioner (IUPQC) which is the most sophisticated mitigating device for the power quality
disturbances. The main aim of the IUPQC is to hold the voltages Vt1 and Vt2 constant against voltage
sag/swell/any power disturbances in either of the feeders. Many contributions were introduced to modify the
configurations and the control algorithms to enhance its performance.
II. CONTROL SCHEME
Sinusoidal PWM-Based Control Scheme:
In order to mitigate the simulated voltage sags in the test system of each mitigation technique, also to
mitigate voltage sags in practical application, a sinusoidal PWM-based control scheme is implemented, with
reference to IUPQC. The aim of the control scheme is to maintain a constant voltage magnitude at the point
where sensitive load is connected, under the system disturbance. The control system only measures the rms
voltage at load point, in example, no reactive power measurements is required. The VSC switching strategy is
based on a sinusoidal PWM technique which offers simplicity and good response. Since custom power is a
relatively low-power application, PWM methods offer a more flexible option than the fundamental frequency
switching (FFS) methods favoured in FACTS applications. Besides, high switching frequencies can be used to
improve the efficiency of the converter, without incurring significant switching losses.
The IUPQC control system exerts voltage angle control as follows:
An error signal is obtained by comparing the reference voltage with the rms voltage measured at the
load point. The fuzzy controller processes the error signal and generates the required angle δ to drive the error to
zero, in example, the load rms voltage is brought back to the reference voltage. In the PWM generators, the
sinusoidal signal, vcontrol, is phase modulated by means of the angle δ or delta as nominated in the Fig.1. The
modulated signal, v control is compared against a triangular signal (carrier) in order to generate the switching
signals of the VSC valves. The main parameters of the sinusoidal PWM scheme are the amplitude modulation
index, ma , of signal v control, and the frequency modulation index, mf, of the triangular signal. The v control in
the Fig.1 are nominated as CtrlA, CtrlB and CtrlC. The amplitude index ma is kept fixed at 1 p.u, in order to
obtain the highest fundamental voltage component at the controller output. The switching frequency if is set at
450 Hz,
mf = 9. It should be noted that, an assumption of balanced network and operating conditions are made.
The modulating angle δ or delta is applied to the PWM generators in phase A, whereas the angles for
phase B and C are shifted by 240° or -120° and 120° respectively. It can be seen in Fig.1 that the control
implementation is kept very simple by using only voltage measurements as feedback variable in the control
scheme. The speed of response and robustness of the control scheme are clearly shown in the test results. The
PWM control scheme shown in Fig. 1 is implemented in MATLAB/SIMULINK to carry out the IUPQC test
simulations. The gain of the fuzzy controller used in this scheme is 700.With a view to have a self regulated dc
bus, the voltage across the capacitor is sensed at regular intervals and controlled by employing a suitable closed
loop control. The DC link voltage, Vdc is sensed at a regular interval and is compared with its reference
counterpart Vdc*. The error signal is processed in a fuzzy controller. A limit is put on the output of controller
this ensures that the source supplies active power of the load and dc bus of the UPQC.
Mitigation Of Voltage Imbalance In A Two Feeder Distribution System Using Iupqc
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 7 | July. 2017 | 3 |
Figure: 1 PWM based control scheme
Later part of active power supplied by source is used to provide a self supported DC link of the UPQC.
Thus, the DC bus voltage of the UPQC is maintained to have a proper current control. Subtraction of load
currents from the reference supply currents results in three phase reference currents for the shunt inverter. These
reference currents are compared with actual shunt compensating currents and the error signals are then
converted into (or processed to give) switching pulses using PWM technique which are further used to drive
shunt inverter. In response to the PWM gating signals the shunt inverter supplies harmonic currents required by
load. In addition to this it also supplies the reactive power demand of the load. In effect, the shunt bi-directional
converter that is connected through an inductor in parallel with the load terminals accomplishes three functions
simultaneously. It injects reactive current to compensate current harmonics of the load. It provides reactive
power for the load and thereby improve power factor of the system. It also draws the fundamental current to
compensate the power loss of the system and make the voltage of DC capacitor constant.
III. INTERLINE UNIFIED POWER QUALITY CONDITIONER (IUPQC)
The IUPQC shown in Fig.2 consists of two VSCs (VSC-1 and VSC-2) that are connected back to back
through a common energy storage dc capacitor. Let us assume that the VSC-1 is connected in shunt to Feeder-1
while the VSC-2 is connected in series with Feeder-2. Each of the two VSCs is realized by three H-bridge
inverters. In this structure, each switch represents a power semiconductor device (e.g., IGBT) and an anti-
parallel diode. All the inverters are supplied from a common single dc capacitor Cdc and each inverter has a
transformer connected at its output. The complete structure of a three-phase IUPQC with two such VSCs is
shown in Fig. 2. The secondary (distribution) sides of the shunt-connected transformers (VSC-1) are connected
in star with the neutral point being connected to the load neutral. The secondary winding of the series-connected
transformers (VSC-2) are directly connected in series with the bus B-2 and load L-2. The ac filter capacitors Cf
and Ck are also connected in each phase to prevent the flow of the harmonic currents generated due to
switching. The six inverters of the IUPQC are controlled independently. The switching action is obtained using
output feedback control. In this figure, the feeder impedances are denoted by the pairs (Rs1, L s1) and (R s2, L
s2). It can be seen that the two feeders supply the loads L-1 and L-2. The load L-1 is assumed to have two
separate components—an unbalanced part (L-11) and a non-linear part (L-12). The currents drawn by these two
loads are denoted by il1 and il2, respectively. We further assume that the load L-2 is a sensitive load that requires
uninterrupted and regulated voltage. The shunt VSC (VSC-1) is connected to bus B-1 at the end of Feeder-1,
while the series VSC (VSC-2) is connected at bus B-2 at the end of Feeder-2. The voltages of buses B-1 and B-2
and across the sensitive load terminal are denoted by Vt1, V t2 , and Vl2, respectively.
Figure:2 Typical IUPQC connected in a distribution system
An IUPQC connected to a distribution system is shown in Fig.2. In this figure, the feeder impedances
are denoted by the Pairs (Rs1,Ls1) and(Rs2 ,Ls2) . It can be seen that the two feeders supply the loads L-1 and L-2.
The load L-1 is assumed to have two separate components—an unbalanced part (L-11) and a non-linear part (L-
12). The currents drawn by these two loads are denoted by il11 and il12, respectively. We further assume that the
load L-2 is a sensitive load that requires uninterrupted and regulated voltage. The shunt VSC (VSC-1) is
connected to bus B-1 at the end of Feeder-1, while the series VSC (VSC-2) is connected at bus B-2 at the end of
Mitigation Of Voltage Imbalance In A Two Feeder Distribution System Using Iupqc
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 7 | July. 2017 | 4 |
Feeder-2. The voltages of buses B-1 and B-2 and across the sensitive load terminal are denoted by vt1,vt2 , and
vl2 , respectively. The aim of the IUPQC is two-fold:
• to protect the sensitive load L-2 from the disturbances occurring in the system by regulating the voltage vl2;
• to regulate the bus B-1 voltage vt1 against sag/swell and or disturbances in the system. In order to attain these
aims, the shunt VSC-1 is operated as a voltage controller while the series VSC-2 regulates the voltage vl2 across
the sensitive load.
A 3-phase supply voltage of 11kv line to line, 50Hz with sag of 81% at source end, non-linear and
unbalanced load at load end is considered. Non-linear load (Diode Rectifier feeding an RL load) injects current
harmonics into the system. IUPQC is able to reduce the harmonics from entering into the system using shunt
control. IUPQC with its series voltage control calculates the required voltage to be injected in series with the
line to compensate the voltage sag in the insertion transformer produces the series injected (compensated)
voltage by drawing the required power from the DC link. IUPQC with shunt PI controller estimates the required
current to be injected in shunt with the line to compensate the disturbances.
Fuzzy Logic controller
Fuzzy logic is a form of multi valued logic that can be taken from a fuzzy set theory. Fuzzy logic
variables can have truth logic between 0 and 1.Fuzzy logic is a good mean to control a system where there is no
specific relation between input and output Quantities. It has a simple rule based if-then approach to solve a
control problem rather than modeling total system. This logic depends on operator’s experience not on modeling
of the system. Because of its usefulness in reducing complexity in mathematical Models it is gaining more
attention. In power system area fuzzy logic is used in stability studies, unit commitment, and reactive power
Control in distribution systems etc. fuzzy logic is made from fuzzification, knowledge rule base and de
fuzzification. Steps to Choose the inputs to FLC: two inputs generator speed variation and speed derivative
deviation used. Defining knowledge rule base and Choose membership functions for inputs in fuzzy set
notation. Triangular membership functions are used.
Fuzzy control is a control method based on fuzzy logic. Just as fuzzy logic can be described as
―computing with words rather than numbers. Fuzzy control can be simply described as ―control with sentence
rather than equations‖. Controllers based on fuzzy logic give the linguistic strategies control conversion from
expert knowledge in automatic control strategies. The development of control system based on fuzzy logic
involves the following steps:
a. Fuzzification strategy
b. Data base building
c. Rule base elaboration
d. Interface machine elaboration
e. De fuzziffication strategy.
In addition, design of fuzzy logic controller can provide desirable both small signal and large signal
dynamic performance at same time, which is not possible with linear control technique. The development of
fuzzy logic approach here is limited to the design and structure of the controller. Here the input is voltage and its
variations; the output constrain as the ref I .The inputs of FLC are defined as the voltage error, and change of
error. The fuzzy controller ran with the input and output normalized universe (-1,1). Fuzzy sets are defined for
each input and output variable. There are seven fuzzy levels (NB-negative big, NM-negative medium, NS-
negative small Z-zero, PS-positive small, PM-positive medium, PB-positive big) the membership functions for
input and output variables are triangular. The min-max method interface engine is used. The fuzzy method used
in this FLC is center of area. The complete set of control rules is shown in Table.1. Each of the 49 control rules
represents the desired controller respons particular situation. The block diagram presented in Fig.2 shows a FLC
controller in the MATLAB simulation.
By using the fuzzy controller instead of PI controller the transient response of the IUPQC is very fast.
In this paper we have taken fuzzy logic controller. From the conventional PI dc-link voltage controller PI
controller is replaced by fuzzy logic controller and is taken as conventional fuzzy logic controller and from the
fast acting dc-link voltage controller the PI controller is replaced by fuzzy controller and is taken as fast acting
fuzzy logic controller. The fuzzy logic dc-link voltage controller gives fast transient response than that of PI dc-
link voltage controllers. The transient response of the conventional and fast acting fuzzy logic dc-link
controllers in figs
Mitigation Of Voltage Imbalance In A Two Feeder Distribution System Using Iupqc
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 7 | July. 2017 | 5 |
Fig .FLC controller in MATLAB simulation
Fig: Input Variable Volatagerror
Fig: Input Variable Volatag change inerror
Fig: output Variable current
Mitigation Of Voltage Imbalance In A Two Feeder Distribution System Using Iupqc
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 7 | July. 2017 | 6 |
Fuzzy Logic Toolbox
The Fuzzy Logic Toolbox provides GUIs to let we perform classical fuzzy system development and
pattern recognition Using the toolbox, we can:
▪ Develop and analyze fuzzy inference systems
▪ Develop adaptive neuro-fuzzy inference systems
▪ Perform fuzzy clustering
Fuzzy inference is a method that interprets the values in the input vector and, based on user defined rules,
assigns values to the output vector. Using the GUI editors and viewers in the Fuzzy Logic Toolbox, you can
build the rules set, define the membership functions, and analyze the behavior of a fuzzy inference system (FIS).
The process of fuzzy inference involves all of the pieces that are described in Membership Functions, Logical
Operations, and if-then rules.
There are five primary GUI tools for building, editing, and observing fuzzy inference systems in the
Fuzzy Logic Toolbox. The Fuzzy Inference System or FIS Editor, the Membership Function Editor, the Rule
Editor, the Rule Viewer, and the Surface Viewer:
FIS Editor - Displays general information about a fuzzy inference system.
Membership Function Editor-The Membership Function Editor is used to define the shapes of all the
membership functions associated with each variable. The Rule Editor is for editing the list of rules that defines
the behavior of the system.
Rule Editor - The Rule Editor is for editing the list of rules that defines the behaviour of the system.
Rule Viewer - Lets us to view detailed behaviour of a FIS to help diagnose the behaviour of specific rules or
study the effect of changing input variables
Surface Viewer - Generates a 3-D surface from two input variables and the output of an FIS.
Power quality improvement using iupqc:
There are three ways to solve the problems of power quality and provide quality power customized to
meet user’s requirement:
• System improvement
• Use mitigation equipment based on power electronics
• Improvement of equipment immunity
Of these, the best way to handle power quality problems is to mitigate the effects of distorted voltage or
current at the point of common coupling. This would ensure that the harmonics are restricted from entering the
distribution system and contaminating the system power as a whole. Thereby, the other loads connected to the
system are provided with clean power. This paper illustrates how various power quality disturbances are
mitigated using equipment called IUPQC.
1) Mitigation of Voltage Sag
A 3-phase supply voltage (11kv, 50Hz) with impulsive sag of 0.5 p.u magnitude and the duration about
0.5 to 30 cycles is taken. With the system operating in the steadys tate, 15 cycle impulsive voltage sag of 0.5 p.u
magnitude is occurring at 0.3msec for which the peak of the supply voltage reduces from its nominal value of
10kv to 5kv. The simulation results are shown in Fig.4. The Total Harmonic Distortion (THD) at load side is
Mitigation Of Voltage Imbalance In A Two Feeder Distribution System Using Iupqc
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 7 | July. 2017 | 7 |
found to be 0.45%. The source voltage THD is effectively found to be 0.04%. In order to supply the balanced
power required to the load, the DC capacitor voltage drops as soon as the sag occurs. As the sag is removed, the
capacitor voltage returns to the steady state. The voltage injected by UPQC in kV is shown in Fig. 4(d). Active
and reactive powers both on source and load sides are shown in Fig. 4 (e) and Fig. 4(f).
2) Mitigation of Voltage Swell
A 3-phase supply voltage (11kv, 50Hz) with momentary swell of 0.26 p.u magnitude and the duration
about 0.5 to 30 cycles is taken. With the system operating in the steady state, a 21 cycle momentary voltage
swell of 0.26 p.u magnitude is occurring at 0.3 m sec for which the peak of the supply voltage raises from its
nominal value of 10kv to 12.6kV. In order to supply the balanced power required to the load, the DC capacitor
voltage raises as soon as the swell occurs. As the swell is removed the capacitor voltage returns to the steady
state. The Total Harmonic Distortion (THD) at load side is found to be 0.90%. The source voltage THD is
effectively found to be 0.04%.
V. SIMULATION RESULTS
Simulation model and corresponding waveforms of voltage sag:
Fig. 4 Simulation results- Mitigation of voltage sag (impulsive) Using IUPQC
(a) Instantaneous source voltage (kV)
(b) Instantaneous load voltage (kV)
(c) Three phase load and source r.m.s voltage
Mitigation Of Voltage Imbalance In A Two Feeder Distribution System Using Iupqc
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 7 | July. 2017 | 8 |
(d) Voltage injected by UPQC (kV)
(e) Load current (KA)
(f) Source and load active powers (MW)
(g) Source and load reactive powers (MVAR).
Simulation model and corresponding waveforms of voltage swell:
Fig.5. Simulation results- Mitigation of a voltage swell (momentary)
(a) Instantaneous source voltage (kV)
(b) Instantaneous load voltage (kV)
(c) 3-Ф load and source r.m.s voltage (pu)
(d) Voltage injected by UPQC (kV)
(e) Load current (kA)
(f) Source and load active powers (MW)
(g) Source and load reactive powers (MVAR
Comparison of Pi and Fuzzy results
Pi results fuzzy results
THD THD Currents1 currents currents1 currents
Voltage sag 0.90 0.04 0.45 0.04
Voltage swell 1.11 0.04 0.90 0.04
Mitigation Of Voltage Imbalance In A Two Feeder Distribution System Using Iupqc
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 7 | July. 2017 | 9 |
VI. CONCLUSIONS
The Sinusoidal Pulse Width Modulation based control scheme for the proposed IUPQC has been
described. The control scheme for IUPQC with shunt (FUZZY) controller and series voltage controller has been
developed. By using the fuzzy controller instead of PI controller the transient response of the IUPQC is very
fast. In this paper we have taken fuzzy logic controller. From the conventional PI dc-link voltage controller PI
controller is replaced by fuzzy logic controller and is taken as conventional fuzzy logic controller and from the
fast acting dc-link voltage controller the PI controller is replaced by fuzzy controller and is taken as fast acting
fuzzy logic controller. The fuzzy logic dc-link voltage controller gives fast transient response than that of PI
dc-link voltage controllers. The transient response of the conventional and fast acting fuzzy logic dc-link
controllers in figs
The simulation results shows that fuzzy controller of the shunt filter (current control mode), series filter
(voltage control mode) compensates of all types of interruptions in the load current and source voltage, so as to
maintain sinusoidal voltage and current at load side. The series filter was tested with different types of
interruptions. The simulated results show that in all the stages of circuit operation, the feeder-2 load voltages
and load currents are restored close to ideal supply.
REFERENCES
[1]. R.N.Bhargavi―, Power Quality Improvement
[2]. Using Interline Unified Power Quality Conditioner‖
[3]. A. Ghosh and G. Ledwich, Power Quality Enhancement Using Custom Power Devices. Norwell, MA: Kluwer,
2002.
[4]. F. Z. Peng and J. S. Lai, ―Generalized instantaneous reactive power theory for three-phase power systems,‖ IEEE
Trans. Instrum. Meas., vol. 45, no. 1, pp. 293–297, Feb. 1996.
[5]. G. Ledwich and A. Ghosh, ―A flexible DSTATCOM operating in voltage and current control mode,‖ Proc. Inst.
Elect. Eng., Gen., Transm. Distrib., vol. 149, no. 2, pp. 215–224, 2002.
[6]. M. K. Mishra, A. Ghosh, and A. Joshi, ―Operation of a DSTATCOM in voltage control mode,‖ IEEE Trans.
Power Del., vol. 18, no. 1, pp.258–264, Jan. 2003.
[7]. A. Ghosh, A. K. Jindal, and A. Joshi, ―A unified power quality conditioner for voltage regulation of critical load
bus,‖ in Proc. IEEE Power Eng. Soc. General Meeting, Denver, CO, Jun. 6–10, 2004.
[8]. A. Ghosh and G. Ledwich, ―A unified power quality conditioner (UPQC) for simultaneous voltage and current
compensation,‖ Elect Power Syst. Res., vol. 59, no. 1, pp. 55–63, 2001.
[9]. Understanding Power Quality Problems ,Voltage Sags and Interruptions By Math.HJ .Bollen
[10]. Electrical Power Systems Quality , Second Edition, by Roger C. Dugan/ Mark F. Mc Granaghan, Surya Santoso/
H. Wayne Beaty.
*T.Murali Krishna. "Mitigation of Voltage Imbalance in A Two Feeder Distribution System Using
Iupqc." International Journal of Modern Engineering Research (IJMER) 7.7 (2017): 01-09.

More Related Content

PDF
International Journal of Engineering Research and Development
PDF
Simulation of D-STATCOM to study Voltage Stability in Distribution system
PDF
Or3425552561
PDF
Simulation and Comparison of DVR and DSTATCOM Used for voltage sag mitigation...
PDF
Design of UPQC with Minimization of DC Link voltage for the Improvement of Po...
PDF
IRJET- Enhancement of Power Flow Capability in Power System using UPFC- A RevieW
PDF
POWER STABILITY ANALYSIS OF A TRANSMISSION SYSTEM WITH A UNIFIED POWER FLOW C...
International Journal of Engineering Research and Development
Simulation of D-STATCOM to study Voltage Stability in Distribution system
Or3425552561
Simulation and Comparison of DVR and DSTATCOM Used for voltage sag mitigation...
Design of UPQC with Minimization of DC Link voltage for the Improvement of Po...
IRJET- Enhancement of Power Flow Capability in Power System using UPFC- A RevieW
POWER STABILITY ANALYSIS OF A TRANSMISSION SYSTEM WITH A UNIFIED POWER FLOW C...

What's hot (20)

PDF
IRJET- Simulation of Unified Series Shunt Compensator for Power Quality Compe...
PPTX
950313411009
PDF
Research Inventy : International Journal of Engineering and Science
PPTX
power quality improvement in distrution system using D statcom
PDF
Integration of upqc for power quality improvement in distributed
PDF
SIMULATION OF REDUCED SWITCH INVERTER BASED UPQC WITH FUZZY LOGIC AND ANN CON...
PDF
Power Quality Improvement by UPQC based on Voltage Source Converters
PDF
SRF CONTROLLED DVR FOR COMPENSATION OF BALANCED AND UNBALANCED VOLTAGE DISTUR...
PDF
Comparison of upqc and dvr in wind turbine fed fsig under asymmetric faults
PDF
Enhanced decoupled current control with voltage compensation for modular mult...
PDF
www.ijerd.com
PDF
Power Quality Enhancement in Power System Network using DSTACOM
PDF
Effect of Carrier Frequency in Grid Inter Connected Wind System With SSFC Con...
PDF
A Voltage Controlled Dstatcom for Power Quality Improvement
PPTX
Optimal Placement of FACTS Controller
PDF
IRJET-Simulation and Modeling of Dynamic Voltage Restorer for Compensation Of...
PDF
12 16134 paper 064 ijeecs(edit)
PDF
78201910
PDF
U4501117122
IRJET- Simulation of Unified Series Shunt Compensator for Power Quality Compe...
950313411009
Research Inventy : International Journal of Engineering and Science
power quality improvement in distrution system using D statcom
Integration of upqc for power quality improvement in distributed
SIMULATION OF REDUCED SWITCH INVERTER BASED UPQC WITH FUZZY LOGIC AND ANN CON...
Power Quality Improvement by UPQC based on Voltage Source Converters
SRF CONTROLLED DVR FOR COMPENSATION OF BALANCED AND UNBALANCED VOLTAGE DISTUR...
Comparison of upqc and dvr in wind turbine fed fsig under asymmetric faults
Enhanced decoupled current control with voltage compensation for modular mult...
www.ijerd.com
Power Quality Enhancement in Power System Network using DSTACOM
Effect of Carrier Frequency in Grid Inter Connected Wind System With SSFC Con...
A Voltage Controlled Dstatcom for Power Quality Improvement
Optimal Placement of FACTS Controller
IRJET-Simulation and Modeling of Dynamic Voltage Restorer for Compensation Of...
12 16134 paper 064 ijeecs(edit)
78201910
U4501117122
Ad

Similar to Mitigation of Voltage Imbalance in A Two Feeder Distribution System Using Iupqc (20)

PDF
journalism research
PDF
IRJET- Improving Power Quality by using MC-UPQC
PDF
Matlab Implementation of Power Quality Improvement Based on Fast Dynamic Control
PDF
40220130406009 2
PDF
Power Quality Improvement Analysis and Implementation of Custom Power Device ...
PDF
Comparision of pi, fuzzy & neuro fuzzy controller based multi converter unifi...
PDF
Advance Technology in Application of Four Leg Inverters to UPQC
PDF
A Novel Multi Level Converter Unified Power – Quality (MC-UPQC) Conditioning ...
PDF
Two-Feeder Converter Based Interline Unified Power Quality Conditioner
PDF
Improved Controller for the Dual Topology of the Unified Power Quality Condit...
PPT
PDF
Harmonic analysis and Power factor improvement with UPQC under two Novel cont...
DOCX
High_reactive_power_DOC.docx
PDF
P-Q Theory Based UPQC for Reactive Power Compensation with UCAP
PDF
A045070104
PDF
Comparative Analysis of Power Quality Enhancement of Distribution System usin...
PDF
IMPROVEMENT OF POWER QUALITY BY USING MULTICONVERTER UNIFIED POWER QUALITY CO...
PDF
H31052059
PDF
B360614
PDF
Pi controller based of multi level upqc using dq0 transformation to improve p...
journalism research
IRJET- Improving Power Quality by using MC-UPQC
Matlab Implementation of Power Quality Improvement Based on Fast Dynamic Control
40220130406009 2
Power Quality Improvement Analysis and Implementation of Custom Power Device ...
Comparision of pi, fuzzy & neuro fuzzy controller based multi converter unifi...
Advance Technology in Application of Four Leg Inverters to UPQC
A Novel Multi Level Converter Unified Power – Quality (MC-UPQC) Conditioning ...
Two-Feeder Converter Based Interline Unified Power Quality Conditioner
Improved Controller for the Dual Topology of the Unified Power Quality Condit...
Harmonic analysis and Power factor improvement with UPQC under two Novel cont...
High_reactive_power_DOC.docx
P-Q Theory Based UPQC for Reactive Power Compensation with UCAP
A045070104
Comparative Analysis of Power Quality Enhancement of Distribution System usin...
IMPROVEMENT OF POWER QUALITY BY USING MULTICONVERTER UNIFIED POWER QUALITY CO...
H31052059
B360614
Pi controller based of multi level upqc using dq0 transformation to improve p...
Ad

More from IJMERJOURNAL (20)

PDF
Modeling And Simulation Swash Plate Pump Response Characteristics in Load Sen...
PDF
Generation of Electricity Through A Non-Municipal Solid Waste Heat From An In...
PDF
A New Two-Dimensional Analytical Model of Small Geometry GaAs MESFET
PDF
Design a WSN Control System for Filter Backwashing Process
PDF
Application of Customer Relationship Management (Crm) Dimensions: A Critical ...
PDF
Comparisons of Shallow Foundations in Different Soil Condition
PDF
Place of Power Sector in Public-Private Partnership: A Veritable Tool to Prom...
PDF
Study of Part Feeding System for Optimization in Fms & Force Analysis Using M...
PDF
Investigating The Performance of A Steam Power Plant
PDF
Study of Time Reduction in Manufacturing of Screws Used in Twin Screw Pump
PDF
Adsorption of Methylene Blue From Aqueous Solution with Vermicompost Produced...
PDF
Analytical Solutions of simultaneous Linear Differential Equations in Chemica...
PDF
Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...
PDF
Hybrid Methods of Some Evolutionary Computations AndKalman Filter on Option P...
PDF
An Efficient Methodology To Develop A Secured E-Learning System Using Cloud C...
PDF
Nigerian Economy and the Impact of Alternative Energy.
PDF
CASE STUDY
PDF
Validation of Maintenance Policy of Steel Plant Machine Shop By Analytic Hier...
PDF
li-fi: the future of wireless communication
PDF
The Comprehensive Computation Model of Gas Permeability Based on Fuzzy Comple...
Modeling And Simulation Swash Plate Pump Response Characteristics in Load Sen...
Generation of Electricity Through A Non-Municipal Solid Waste Heat From An In...
A New Two-Dimensional Analytical Model of Small Geometry GaAs MESFET
Design a WSN Control System for Filter Backwashing Process
Application of Customer Relationship Management (Crm) Dimensions: A Critical ...
Comparisons of Shallow Foundations in Different Soil Condition
Place of Power Sector in Public-Private Partnership: A Veritable Tool to Prom...
Study of Part Feeding System for Optimization in Fms & Force Analysis Using M...
Investigating The Performance of A Steam Power Plant
Study of Time Reduction in Manufacturing of Screws Used in Twin Screw Pump
Adsorption of Methylene Blue From Aqueous Solution with Vermicompost Produced...
Analytical Solutions of simultaneous Linear Differential Equations in Chemica...
Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...
Hybrid Methods of Some Evolutionary Computations AndKalman Filter on Option P...
An Efficient Methodology To Develop A Secured E-Learning System Using Cloud C...
Nigerian Economy and the Impact of Alternative Energy.
CASE STUDY
Validation of Maintenance Policy of Steel Plant Machine Shop By Analytic Hier...
li-fi: the future of wireless communication
The Comprehensive Computation Model of Gas Permeability Based on Fuzzy Comple...

Recently uploaded (20)

PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPT
Mechanical Engineering MATERIALS Selection
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPTX
Lecture Notes Electrical Wiring System Components
PDF
Digital Logic Computer Design lecture notes
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
Lesson 3_Tessellation.pptx finite Mathematics
PDF
Well-logging-methods_new................
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPT
Project quality management in manufacturing
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Embodied AI: Ushering in the Next Era of Intelligent Systems
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Foundation to blockchain - A guide to Blockchain Tech
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Mechanical Engineering MATERIALS Selection
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
Lecture Notes Electrical Wiring System Components
Digital Logic Computer Design lecture notes
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
Lesson 3_Tessellation.pptx finite Mathematics
Well-logging-methods_new................
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Project quality management in manufacturing
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...

Mitigation of Voltage Imbalance in A Two Feeder Distribution System Using Iupqc

  • 1. International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 7 | July. 2017 | 1 | Mitigation of Voltage Imbalance in A Two Feeder Distribution System Using Iupqc * T.Murali Krishna1 ,T.Siva Ram2 1 Assistant Professor, 2 Assistant Professor Department of Electrical & Electronics Engineering Malla Reddy Engineering College & Management Sciences, Kistapur, Medchal, Telangana, India. Corresponding author: *T.Murali Krishna I. INTRODUCTION Power quality determines the fitness of electric power to consumer devices. Synchronization of the voltage frequency and phase allows electrical systems to function in their intended manner without significant loss of performance or life[1]. Without the proper power, an electrical device (or load) may malfunction, fail prematurely or not operate at all. There are many ways in which electric power can be of poor quality and many more causes of such poor quality power. Poor power quality may result into increased power losses, and other remarkable abnormalities in the distribution side. The problems became more serious with the high usage of non-linear loads. The main reason for this is that the nonlinear loads, as a rule, draw non sinusoidal currents from the supply and lead to voltage distortion and related system problems. For Power Quality improvement, the developments of power electronics devices such as FACTS and Custom Power Devices have introduced an emerging branch of technology providing the power system with versatile new control capabilities. Like Flexible AC Transmission Systems (FACTS) for transmission systems, the new technology known as Custom Power pertains to the use of power electronics controllers in a distribution systems. Just as FACTS improves the power transfer capability and stability margins, custom power makes sure consumers get pre-specified quality and reliability of supply. Voltage sags and swells in the medium and low voltage grid are considered to be the most frequent type of Power Quality problems. Their impact on sensitive loads is severe. Different solutions have been developed to protect sensitive loads against such disturbances. Among these IUPQC is most effective device. Unified Power Quality Conditioner (UPQC) consists of two IGBT based Voltage source converters (VSC), one shunt and one series cascaded by a common DC bus. Whenever the supply voltage undergoes sag then series converter injects suitable voltage with supply. Thus UPQC improves the power quality by preventing load current harmonics and by correcting the input power factor. Voltage-Source Converter based Custom power devices are increasingly being used in custom power applications for improving the power quality (PQ) of power distribution systems. Devices such as distribution static compensator (DSTATCOM) and dynamic voltage restorer (DVR) are extensively being used in power quality improvement. A DSTATCOM can compensate for distortion and unbalance in a load such that a balanced sinusoidal current flows through the feeder [3,4]. ]. It can also regulate the voltage of a distribution bus. A DVR can compensate for voltage sag/swell and distortion in the supply side voltage such that the voltage across a sensitive/critical load terminal is perfectly regulated. A unified power-quality conditioner (UPQC) can perform the functions of both DSTATCOM and DVR. The UPQC consists of two voltage-source converters (VSCs) that are connected to a common dc bus. One of the VSCs is connected in series with a distribution ABSTRACT: Proliferation of electronic equipment in commercial and industrial processes has resulted in increasingly sensitive electrical loads to be fed from power distribution system which introduce contamination to voltage and current waveforms at the point of common coupling of industrial loads. The unified power quality conditioner (UPQC) is connected between two different feeders (lines), hence this method of connection of the UPQC is called as Interline UPQC (IUPQC).This paper proposes a new connection for a UPQC to improve the power quality of two feeders in a distribution system. Interline Unified Power Quality Conditioner (IUPQC), specifically aims at the integration of series VSC and Shunt VSC to provide high quality power supply by means of voltage sag/swell compensation, harmonic elimination in a power distribution network, so that improved power quality can be made available at the point of common coupling. The structure, control and capability of the IUPQC are discussed in this paper. The efficiency of the proposed configuration has been verified through simulation using MATLAB/ SIMULINK. Keywords: Power quality, UPQC, PQ disturbances, fuzzy controller.
  • 2. Mitigation Of Voltage Imbalance In A Two Feeder Distribution System Using Iupqc | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 7 | July. 2017 | 2 | feeder, while the other one is connected in shunt with the same feeder. The dc links of both VSCs are supplied through a common dc capacitor. This paper presents the new connection for UPQC. Interline Unified Power Quality Conditioner (IUPQC) which is the most sophisticated mitigating device for the power quality disturbances. The main aim of the IUPQC is to hold the voltages Vt1 and Vt2 constant against voltage sag/swell/any power disturbances in either of the feeders. Many contributions were introduced to modify the configurations and the control algorithms to enhance its performance. II. CONTROL SCHEME Sinusoidal PWM-Based Control Scheme: In order to mitigate the simulated voltage sags in the test system of each mitigation technique, also to mitigate voltage sags in practical application, a sinusoidal PWM-based control scheme is implemented, with reference to IUPQC. The aim of the control scheme is to maintain a constant voltage magnitude at the point where sensitive load is connected, under the system disturbance. The control system only measures the rms voltage at load point, in example, no reactive power measurements is required. The VSC switching strategy is based on a sinusoidal PWM technique which offers simplicity and good response. Since custom power is a relatively low-power application, PWM methods offer a more flexible option than the fundamental frequency switching (FFS) methods favoured in FACTS applications. Besides, high switching frequencies can be used to improve the efficiency of the converter, without incurring significant switching losses. The IUPQC control system exerts voltage angle control as follows: An error signal is obtained by comparing the reference voltage with the rms voltage measured at the load point. The fuzzy controller processes the error signal and generates the required angle δ to drive the error to zero, in example, the load rms voltage is brought back to the reference voltage. In the PWM generators, the sinusoidal signal, vcontrol, is phase modulated by means of the angle δ or delta as nominated in the Fig.1. The modulated signal, v control is compared against a triangular signal (carrier) in order to generate the switching signals of the VSC valves. The main parameters of the sinusoidal PWM scheme are the amplitude modulation index, ma , of signal v control, and the frequency modulation index, mf, of the triangular signal. The v control in the Fig.1 are nominated as CtrlA, CtrlB and CtrlC. The amplitude index ma is kept fixed at 1 p.u, in order to obtain the highest fundamental voltage component at the controller output. The switching frequency if is set at 450 Hz, mf = 9. It should be noted that, an assumption of balanced network and operating conditions are made. The modulating angle δ or delta is applied to the PWM generators in phase A, whereas the angles for phase B and C are shifted by 240° or -120° and 120° respectively. It can be seen in Fig.1 that the control implementation is kept very simple by using only voltage measurements as feedback variable in the control scheme. The speed of response and robustness of the control scheme are clearly shown in the test results. The PWM control scheme shown in Fig. 1 is implemented in MATLAB/SIMULINK to carry out the IUPQC test simulations. The gain of the fuzzy controller used in this scheme is 700.With a view to have a self regulated dc bus, the voltage across the capacitor is sensed at regular intervals and controlled by employing a suitable closed loop control. The DC link voltage, Vdc is sensed at a regular interval and is compared with its reference counterpart Vdc*. The error signal is processed in a fuzzy controller. A limit is put on the output of controller this ensures that the source supplies active power of the load and dc bus of the UPQC.
  • 3. Mitigation Of Voltage Imbalance In A Two Feeder Distribution System Using Iupqc | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 7 | July. 2017 | 3 | Figure: 1 PWM based control scheme Later part of active power supplied by source is used to provide a self supported DC link of the UPQC. Thus, the DC bus voltage of the UPQC is maintained to have a proper current control. Subtraction of load currents from the reference supply currents results in three phase reference currents for the shunt inverter. These reference currents are compared with actual shunt compensating currents and the error signals are then converted into (or processed to give) switching pulses using PWM technique which are further used to drive shunt inverter. In response to the PWM gating signals the shunt inverter supplies harmonic currents required by load. In addition to this it also supplies the reactive power demand of the load. In effect, the shunt bi-directional converter that is connected through an inductor in parallel with the load terminals accomplishes three functions simultaneously. It injects reactive current to compensate current harmonics of the load. It provides reactive power for the load and thereby improve power factor of the system. It also draws the fundamental current to compensate the power loss of the system and make the voltage of DC capacitor constant. III. INTERLINE UNIFIED POWER QUALITY CONDITIONER (IUPQC) The IUPQC shown in Fig.2 consists of two VSCs (VSC-1 and VSC-2) that are connected back to back through a common energy storage dc capacitor. Let us assume that the VSC-1 is connected in shunt to Feeder-1 while the VSC-2 is connected in series with Feeder-2. Each of the two VSCs is realized by three H-bridge inverters. In this structure, each switch represents a power semiconductor device (e.g., IGBT) and an anti- parallel diode. All the inverters are supplied from a common single dc capacitor Cdc and each inverter has a transformer connected at its output. The complete structure of a three-phase IUPQC with two such VSCs is shown in Fig. 2. The secondary (distribution) sides of the shunt-connected transformers (VSC-1) are connected in star with the neutral point being connected to the load neutral. The secondary winding of the series-connected transformers (VSC-2) are directly connected in series with the bus B-2 and load L-2. The ac filter capacitors Cf and Ck are also connected in each phase to prevent the flow of the harmonic currents generated due to switching. The six inverters of the IUPQC are controlled independently. The switching action is obtained using output feedback control. In this figure, the feeder impedances are denoted by the pairs (Rs1, L s1) and (R s2, L s2). It can be seen that the two feeders supply the loads L-1 and L-2. The load L-1 is assumed to have two separate components—an unbalanced part (L-11) and a non-linear part (L-12). The currents drawn by these two loads are denoted by il1 and il2, respectively. We further assume that the load L-2 is a sensitive load that requires uninterrupted and regulated voltage. The shunt VSC (VSC-1) is connected to bus B-1 at the end of Feeder-1, while the series VSC (VSC-2) is connected at bus B-2 at the end of Feeder-2. The voltages of buses B-1 and B-2 and across the sensitive load terminal are denoted by Vt1, V t2 , and Vl2, respectively. Figure:2 Typical IUPQC connected in a distribution system An IUPQC connected to a distribution system is shown in Fig.2. In this figure, the feeder impedances are denoted by the Pairs (Rs1,Ls1) and(Rs2 ,Ls2) . It can be seen that the two feeders supply the loads L-1 and L-2. The load L-1 is assumed to have two separate components—an unbalanced part (L-11) and a non-linear part (L- 12). The currents drawn by these two loads are denoted by il11 and il12, respectively. We further assume that the load L-2 is a sensitive load that requires uninterrupted and regulated voltage. The shunt VSC (VSC-1) is connected to bus B-1 at the end of Feeder-1, while the series VSC (VSC-2) is connected at bus B-2 at the end of
  • 4. Mitigation Of Voltage Imbalance In A Two Feeder Distribution System Using Iupqc | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 7 | July. 2017 | 4 | Feeder-2. The voltages of buses B-1 and B-2 and across the sensitive load terminal are denoted by vt1,vt2 , and vl2 , respectively. The aim of the IUPQC is two-fold: • to protect the sensitive load L-2 from the disturbances occurring in the system by regulating the voltage vl2; • to regulate the bus B-1 voltage vt1 against sag/swell and or disturbances in the system. In order to attain these aims, the shunt VSC-1 is operated as a voltage controller while the series VSC-2 regulates the voltage vl2 across the sensitive load. A 3-phase supply voltage of 11kv line to line, 50Hz with sag of 81% at source end, non-linear and unbalanced load at load end is considered. Non-linear load (Diode Rectifier feeding an RL load) injects current harmonics into the system. IUPQC is able to reduce the harmonics from entering into the system using shunt control. IUPQC with its series voltage control calculates the required voltage to be injected in series with the line to compensate the voltage sag in the insertion transformer produces the series injected (compensated) voltage by drawing the required power from the DC link. IUPQC with shunt PI controller estimates the required current to be injected in shunt with the line to compensate the disturbances. Fuzzy Logic controller Fuzzy logic is a form of multi valued logic that can be taken from a fuzzy set theory. Fuzzy logic variables can have truth logic between 0 and 1.Fuzzy logic is a good mean to control a system where there is no specific relation between input and output Quantities. It has a simple rule based if-then approach to solve a control problem rather than modeling total system. This logic depends on operator’s experience not on modeling of the system. Because of its usefulness in reducing complexity in mathematical Models it is gaining more attention. In power system area fuzzy logic is used in stability studies, unit commitment, and reactive power Control in distribution systems etc. fuzzy logic is made from fuzzification, knowledge rule base and de fuzzification. Steps to Choose the inputs to FLC: two inputs generator speed variation and speed derivative deviation used. Defining knowledge rule base and Choose membership functions for inputs in fuzzy set notation. Triangular membership functions are used. Fuzzy control is a control method based on fuzzy logic. Just as fuzzy logic can be described as ―computing with words rather than numbers. Fuzzy control can be simply described as ―control with sentence rather than equations‖. Controllers based on fuzzy logic give the linguistic strategies control conversion from expert knowledge in automatic control strategies. The development of control system based on fuzzy logic involves the following steps: a. Fuzzification strategy b. Data base building c. Rule base elaboration d. Interface machine elaboration e. De fuzziffication strategy. In addition, design of fuzzy logic controller can provide desirable both small signal and large signal dynamic performance at same time, which is not possible with linear control technique. The development of fuzzy logic approach here is limited to the design and structure of the controller. Here the input is voltage and its variations; the output constrain as the ref I .The inputs of FLC are defined as the voltage error, and change of error. The fuzzy controller ran with the input and output normalized universe (-1,1). Fuzzy sets are defined for each input and output variable. There are seven fuzzy levels (NB-negative big, NM-negative medium, NS- negative small Z-zero, PS-positive small, PM-positive medium, PB-positive big) the membership functions for input and output variables are triangular. The min-max method interface engine is used. The fuzzy method used in this FLC is center of area. The complete set of control rules is shown in Table.1. Each of the 49 control rules represents the desired controller respons particular situation. The block diagram presented in Fig.2 shows a FLC controller in the MATLAB simulation. By using the fuzzy controller instead of PI controller the transient response of the IUPQC is very fast. In this paper we have taken fuzzy logic controller. From the conventional PI dc-link voltage controller PI controller is replaced by fuzzy logic controller and is taken as conventional fuzzy logic controller and from the fast acting dc-link voltage controller the PI controller is replaced by fuzzy controller and is taken as fast acting fuzzy logic controller. The fuzzy logic dc-link voltage controller gives fast transient response than that of PI dc- link voltage controllers. The transient response of the conventional and fast acting fuzzy logic dc-link controllers in figs
  • 5. Mitigation Of Voltage Imbalance In A Two Feeder Distribution System Using Iupqc | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 7 | July. 2017 | 5 | Fig .FLC controller in MATLAB simulation Fig: Input Variable Volatagerror Fig: Input Variable Volatag change inerror Fig: output Variable current
  • 6. Mitigation Of Voltage Imbalance In A Two Feeder Distribution System Using Iupqc | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 7 | July. 2017 | 6 | Fuzzy Logic Toolbox The Fuzzy Logic Toolbox provides GUIs to let we perform classical fuzzy system development and pattern recognition Using the toolbox, we can: ▪ Develop and analyze fuzzy inference systems ▪ Develop adaptive neuro-fuzzy inference systems ▪ Perform fuzzy clustering Fuzzy inference is a method that interprets the values in the input vector and, based on user defined rules, assigns values to the output vector. Using the GUI editors and viewers in the Fuzzy Logic Toolbox, you can build the rules set, define the membership functions, and analyze the behavior of a fuzzy inference system (FIS). The process of fuzzy inference involves all of the pieces that are described in Membership Functions, Logical Operations, and if-then rules. There are five primary GUI tools for building, editing, and observing fuzzy inference systems in the Fuzzy Logic Toolbox. The Fuzzy Inference System or FIS Editor, the Membership Function Editor, the Rule Editor, the Rule Viewer, and the Surface Viewer: FIS Editor - Displays general information about a fuzzy inference system. Membership Function Editor-The Membership Function Editor is used to define the shapes of all the membership functions associated with each variable. The Rule Editor is for editing the list of rules that defines the behavior of the system. Rule Editor - The Rule Editor is for editing the list of rules that defines the behaviour of the system. Rule Viewer - Lets us to view detailed behaviour of a FIS to help diagnose the behaviour of specific rules or study the effect of changing input variables Surface Viewer - Generates a 3-D surface from two input variables and the output of an FIS. Power quality improvement using iupqc: There are three ways to solve the problems of power quality and provide quality power customized to meet user’s requirement: • System improvement • Use mitigation equipment based on power electronics • Improvement of equipment immunity Of these, the best way to handle power quality problems is to mitigate the effects of distorted voltage or current at the point of common coupling. This would ensure that the harmonics are restricted from entering the distribution system and contaminating the system power as a whole. Thereby, the other loads connected to the system are provided with clean power. This paper illustrates how various power quality disturbances are mitigated using equipment called IUPQC. 1) Mitigation of Voltage Sag A 3-phase supply voltage (11kv, 50Hz) with impulsive sag of 0.5 p.u magnitude and the duration about 0.5 to 30 cycles is taken. With the system operating in the steadys tate, 15 cycle impulsive voltage sag of 0.5 p.u magnitude is occurring at 0.3msec for which the peak of the supply voltage reduces from its nominal value of 10kv to 5kv. The simulation results are shown in Fig.4. The Total Harmonic Distortion (THD) at load side is
  • 7. Mitigation Of Voltage Imbalance In A Two Feeder Distribution System Using Iupqc | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 7 | July. 2017 | 7 | found to be 0.45%. The source voltage THD is effectively found to be 0.04%. In order to supply the balanced power required to the load, the DC capacitor voltage drops as soon as the sag occurs. As the sag is removed, the capacitor voltage returns to the steady state. The voltage injected by UPQC in kV is shown in Fig. 4(d). Active and reactive powers both on source and load sides are shown in Fig. 4 (e) and Fig. 4(f). 2) Mitigation of Voltage Swell A 3-phase supply voltage (11kv, 50Hz) with momentary swell of 0.26 p.u magnitude and the duration about 0.5 to 30 cycles is taken. With the system operating in the steady state, a 21 cycle momentary voltage swell of 0.26 p.u magnitude is occurring at 0.3 m sec for which the peak of the supply voltage raises from its nominal value of 10kv to 12.6kV. In order to supply the balanced power required to the load, the DC capacitor voltage raises as soon as the swell occurs. As the swell is removed the capacitor voltage returns to the steady state. The Total Harmonic Distortion (THD) at load side is found to be 0.90%. The source voltage THD is effectively found to be 0.04%. V. SIMULATION RESULTS Simulation model and corresponding waveforms of voltage sag: Fig. 4 Simulation results- Mitigation of voltage sag (impulsive) Using IUPQC (a) Instantaneous source voltage (kV) (b) Instantaneous load voltage (kV) (c) Three phase load and source r.m.s voltage
  • 8. Mitigation Of Voltage Imbalance In A Two Feeder Distribution System Using Iupqc | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 7 | July. 2017 | 8 | (d) Voltage injected by UPQC (kV) (e) Load current (KA) (f) Source and load active powers (MW) (g) Source and load reactive powers (MVAR). Simulation model and corresponding waveforms of voltage swell: Fig.5. Simulation results- Mitigation of a voltage swell (momentary) (a) Instantaneous source voltage (kV) (b) Instantaneous load voltage (kV) (c) 3-Ф load and source r.m.s voltage (pu) (d) Voltage injected by UPQC (kV) (e) Load current (kA) (f) Source and load active powers (MW) (g) Source and load reactive powers (MVAR Comparison of Pi and Fuzzy results Pi results fuzzy results THD THD Currents1 currents currents1 currents Voltage sag 0.90 0.04 0.45 0.04 Voltage swell 1.11 0.04 0.90 0.04
  • 9. Mitigation Of Voltage Imbalance In A Two Feeder Distribution System Using Iupqc | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 7 | July. 2017 | 9 | VI. CONCLUSIONS The Sinusoidal Pulse Width Modulation based control scheme for the proposed IUPQC has been described. The control scheme for IUPQC with shunt (FUZZY) controller and series voltage controller has been developed. By using the fuzzy controller instead of PI controller the transient response of the IUPQC is very fast. In this paper we have taken fuzzy logic controller. From the conventional PI dc-link voltage controller PI controller is replaced by fuzzy logic controller and is taken as conventional fuzzy logic controller and from the fast acting dc-link voltage controller the PI controller is replaced by fuzzy controller and is taken as fast acting fuzzy logic controller. The fuzzy logic dc-link voltage controller gives fast transient response than that of PI dc-link voltage controllers. The transient response of the conventional and fast acting fuzzy logic dc-link controllers in figs The simulation results shows that fuzzy controller of the shunt filter (current control mode), series filter (voltage control mode) compensates of all types of interruptions in the load current and source voltage, so as to maintain sinusoidal voltage and current at load side. The series filter was tested with different types of interruptions. The simulated results show that in all the stages of circuit operation, the feeder-2 load voltages and load currents are restored close to ideal supply. REFERENCES [1]. R.N.Bhargavi―, Power Quality Improvement [2]. Using Interline Unified Power Quality Conditioner‖ [3]. A. Ghosh and G. Ledwich, Power Quality Enhancement Using Custom Power Devices. Norwell, MA: Kluwer, 2002. [4]. F. Z. Peng and J. S. Lai, ―Generalized instantaneous reactive power theory for three-phase power systems,‖ IEEE Trans. Instrum. Meas., vol. 45, no. 1, pp. 293–297, Feb. 1996. [5]. G. Ledwich and A. Ghosh, ―A flexible DSTATCOM operating in voltage and current control mode,‖ Proc. Inst. Elect. Eng., Gen., Transm. Distrib., vol. 149, no. 2, pp. 215–224, 2002. [6]. M. K. Mishra, A. Ghosh, and A. Joshi, ―Operation of a DSTATCOM in voltage control mode,‖ IEEE Trans. Power Del., vol. 18, no. 1, pp.258–264, Jan. 2003. [7]. A. Ghosh, A. K. Jindal, and A. Joshi, ―A unified power quality conditioner for voltage regulation of critical load bus,‖ in Proc. IEEE Power Eng. Soc. General Meeting, Denver, CO, Jun. 6–10, 2004. [8]. A. Ghosh and G. Ledwich, ―A unified power quality conditioner (UPQC) for simultaneous voltage and current compensation,‖ Elect Power Syst. Res., vol. 59, no. 1, pp. 55–63, 2001. [9]. Understanding Power Quality Problems ,Voltage Sags and Interruptions By Math.HJ .Bollen [10]. Electrical Power Systems Quality , Second Edition, by Roger C. Dugan/ Mark F. Mc Granaghan, Surya Santoso/ H. Wayne Beaty. *T.Murali Krishna. "Mitigation of Voltage Imbalance in A Two Feeder Distribution System Using Iupqc." International Journal of Modern Engineering Research (IJMER) 7.7 (2017): 01-09.