SlideShare a Scribd company logo
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 –
6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME
128
MODELING AND EXPERIMENTAL ANALYSIS OF VARIABLE
SPEED THREE PHASE SQUIRREL CAGE INDUCTION GENERATOR
1
Lalit Kumar, 2
Mrs. S. U. Kulkarni, 3
Mohit.K.Shakya, 4
Sachinkumar L.Sarwade
1
M.Tech Student, Electrical Engineering, BVUCOEP.
2
Asst.Prof. Electrical Engg. Bharti Vidyapeeth University College of engineering,
Pune, India.
3
Asst.Prof., Electrical Engineering, KJCOEMR, Pune.
4
M.E. Student, Electrical Engg., PVGCOET, Pune.
ABSTRACT
Induction machines have wide applications in renewable power system and
particularly in wind turbine power systems. In case of standalone wind power system
applications, for generating single phase electricity single phase or three phase induction
machines can be used. Three phase induction generator can be used to generate single phase
electricity at constant or above synchronous speed by using the two-series-connected-and-one
isolated (TSCAOI) winding connection without an intermediate stage. In contrast with
single-phase cage induction machines, three phase induction machines are significantly less
expensive, more efficient, and smaller in frame size in comparison with their single-phase
counterpart of similar power ratings.
This paper introduces a novel cage induction generator and presents a mathematical
model, through which its behavior can be accurately predicted. The proposed generator
system employs a three-phase cage induction machine and generates single-phase, constant-
frequency electricity at varying rotor speeds without an intermediate inverter stage. The
technique uses any one of the three stator phases of the machine as the excitation winding and
the remaining two phases, which are connected in series, as the power winding. The two-
series-connected-and-one isolated (TSCAOI) phase winding configuration magnetically
decouples the two sets of windings, enabling independent control. Electricity is generated
through the power winding at both sub and super-synchronous speeds with appropriate
excitation to the isolated single winding at any frequency of generation. An Experimental
analysis and dynamic mathematical model, which accurately predicts the behavior of the
proposed generator.
INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING
& TECHNOLOGY (IJEET)
ISSN 0976 – 6545(Print)
ISSN 0976 – 6553(Online)
Volume 4, Issue 3, May - June (2013), pp. 128-140
© IAEME: www.iaeme.com/ijeet.asp
Journal Impact Factor (2013): 5.5028 (Calculated by GISI)
www.jifactor.com
IJEET
© I A E M E
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 –
6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME
129
Keywords: Induction Generator in TSCAOI Configuration, Renewable Power System,
Mathematical Model.
I. INTRODUCTION
The use of renewable energy as an alternative to low cost fossil energy, which was in
abundance, has never been considered as an economically viable option in the past. However,
the excessive, unnecessary, and inefficient use of fossil energy has now become a global
concern, owing to rapidly decreasing fossil resources, rising fuel prices, increasing demand
for energy, and, more importantly, the awareness of global warming and environmental
impact. Consequently, it has now become a common practice of governing bodies to place
more emphasis on energy saving, harnessing renewable energy, and particularly on energy
management through efficient generation, conversion, transmission, and distribution. This
initiative incited a new area of active research and development within both academia and
industry under the context of “green or clean or renewable” energy. Nuclear energy has
several advantages over coal in that no carbon dioxide or sulfur dioxide are produced, mining
operations are smaller scale, and it has no other major use besides supplying heat. The major
difficulty is the problem of waste disposal, which, because of the fears of many, will probably
never have a truly satisfying solution.
Because of these problems, along with the rising energy demand in the 21st
century
and the growing recognition of global warming and environmental pollution, energy supply
has become an integral and cross cutting element of every countries economy. In recent
years, more and more countries have polarized sustainable, renewable and clean energy
sources such as wind power and other forms of solar power are being strongly encouraged.
Wind power may become a major source of energy in spite of slightly higher costs than coal
or nuclear power because of the basically non-economic or political problems of coal and
nuclear power. This is not to say that wind power will always be more expensive than coal or
nuclear power, because considerable progress is being made in making wind power less
expensive. But even without a clear cost advantage, wind power may become truly important
in the world energy picture.
Wind power has now established itself as a mainstream electricity generation
source, and plays a central role in an increasing number of countries’ immediate and longer
term energy plans. After 15 years of average cumulative growth rates of about 28%, the
commercial wind power installations in about 80 countries at the end of last year totaled
about 240 GW, having increased by more than 40 times over that same period. Twenty two
countries have more than 1,000 MW installed. The following figure shows the 1999 WIND
FORCE 10 blueprint and actual development globally [1].
Fig 1: Total Wind Capacity Installed in India
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 –
6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME
130
There are various techniques for conversion of mechanical energy into electrical
energy. Typically, small renewable energy power plants rely mostly on induction machines,
because they are widely and commercially available and very inexpensive. Induction
generators are useful in applications such as mini hydro power plants, wind turbines, or in
reducing high-pressure gas streams to lower pressure, because they can recover energy with
relatively simple controls. It is also very easy to operate them in parallel with large power
systems, because the utility grid controls voltage and frequency while static and reactive
compensating capacitors can be used for correction of the power factor and harmonic
reduction. Although the induction generator is mostly suitable for hydro and wind power
plants, it can be efficiently used with prime movers driven by diesel, biogas, natural gas,
gasoline and alcohol motors. Induction generators have outstanding operation as either motor
or generator; they have very robust construction features, providing natural protection against
short-circuits, and have the lowest cost with respect to other generators. Abrupt speed
changes due to load or primary source changes, as usually expected in small power plants, are
easily absorbed by its solid rotor, and any current surge is damped by the magnetization path
of its iron core without fear of demagnetization, as opposed to permanent magnet based
generators. The induction generator has the very same construction as the induction motors
with some possible improvements in efficiency.
Fig.2.Typical induction generator systems used in wind turbines
Of the schemes illustrated in Fig. 2, fixed-speed cage three phase induction generators
are well known for their simplicity and low cost and operated at constant rotor speed to
generate electricity at constant frequency for both direct grid integration and standalone
operation. Usually, they are excited through a bank of capacitors and are incapable of
tracking maximum power that is available from the wind turbine when operated at constant
speed. Therefore, in order to extract maximum energy under varying wind speed conditions,
an intermediate power conversion stage, comprising an alternating-current (ac)/direct-current
(dc) and dc/ac back-to-back converter configuration, is employed between the generator and
the grid or the load [2]–[4]. The intermediate stage allows for the variable-speed operation of
the generator, but it essentially requires to be rated for the same or a fraction (in the case of
doubly fed induction generators) of the power level of the generator itself. Thus, such an
intermediate stage is often found to be economically unjustifiable for some applications,
particularly at micro power levels.
Induction generators have been also employed to generate single-phase electricity,
particularly for standalone or residential use [5]. In [6] and [7], a self-excited and self
regulated single-phase induction generator has been reported for the generation of single-
phase electricity. In contrast, the analysis of the self-excitation of a dual-winding induction
generator has been presented in [8]. This paper, which uses a single-phase cage induction
machine with an auxiliary winding, has been extended by connecting an inverter to the
auxiliary winding to achieve more flexibility in power control. The experimental performance
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 –
6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME
131
is investigated under varying operating conditions and it indicate that the machine can be
operated both at sub- and super-synchronousrotor speeds to generate electricity at constant
frequency.
II. INDUCTION GENERATOR IN TSCAOI CONFIGURATION
Induction generators have been also employed to generate single-phase electricity,
particularly for standalone or residential use .A self-excited and self regulated single-phase
induction generator has been reported for the generation ofsingle-phase electricity. In [9], a
novel method for self-regulated single phase induction generator by using an ac adjustable
capacitor is introduced. All these reported schemes employed a single-phase induction
generator and an auxiliary winding in some cases or a three phase induction generator to
generate single-phase electricity at constant or above synchronous speed. In contrast with
single-phase cage induction machines, three phase cage induction machines are less
expensive and small in size for a similar power rating. As, explained in [10] three-phase cage
induction machine can be used as a single-phase generator under both sub- and super-
synchronous variable-speed conditions without an intermediate inverter stage. The technique
uses one of the three windings in isolation for excitation and the remaining two, which are
connected in series, as the power winding for the single-phase electricity generation. The
three-phase cage induction machine is mathematically modeled in the proposed two-series
connected- and-one-isolated (TSCAOI) phase winding configuration. The proposed
technique allows for both energy storage and retrieval through the excitation winding and is
expected to gain popularity, particularly in small-scale applications, being relatively simple
and low in cost. The following figure shows the proposed induction generator in the TSCAOI
configuration.
Fig 3.Proposed Induction Generator in the TSCAOI Configuration
Cage induction machines are undoubtedly the workhorse of the industry and can be
still regarded as the main competitor to permanent-magnet machines. This is because they are
self starting, rugged, reliable, and efficient and offer a long trouble free working life. Of these
cage induction machines, three phase machines are significantly less expensive, more
efficient, and smaller in frame size in comparison with their single-phase counterpart of
similar power ratings. Consequently, three-phase cage induction motors are economically
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 –
6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME
132
more appealing and have thus become the preferred choice for numerous applications, even at
derated power levels.
The proposed novel technique uses a three phase cage induction machine, exploiting
its economical advantage, to generate single-phase electricity at variable rotor speeds without
an intermediate inverter stage. The technique configures the three stator windings of the
three-phase cage induction machine in a novel way to create separate or rather decoupled
excitation and power windings. In this configuration, any one of the three phase windings is
solely used in isolation for excitation, whereas the remaining two are connected in series to
generate power at a desired frequency while the rotor is driven at any given speed.
Alternatively, the machine can be also configured in such a way that the two series-connected
windings provide the excitation while the single winding generates.
As mathematically shown, the TSCAOI winding configuration magnetically
decouples both excitation and power windings from each other and thus allows for
independent control as in the case of a single-phase induction motor with an auxiliary
winding. In the proposed technique, excitation for the generator is provided through the
single winding to study the voltage build up process at no load and at load.
III. MATHEMATICAL MODEL
While doing mathematical modeling, certain assumptions are made, they are as follows:
1. Uniform air gap.
2. Balanced rotor and stator windings with sinusoidally distributed mmf.
3. Inductance vs. rotor position is sinusoidal &
4. Saturation and parameter changes are neglected.
Fig. 4 shows the stator and rotor with respect to αβ frame. The first step in the
mathematical modeling of an induction machine is by describing it as coupled stator and rotor
three-phase circuits using phase variables, namely stator currents ias, ibs, ics and rotor
currents iar, ibr, icr ; in addition to the rotor speed ωr and the angular displacement φr
between stator and rotor windings.
Fig 4.Stator and Rotor with respect to αβ frame
The electrical parameters of machine are expressed in terms of a resistance matrix R
[3x3] and an inductance matrix L [3x3] in which the magnetic mutual coupling elements are
functions of position r. So that, for instance, the current vector is I = [ias ibs ics iar ibr icr]t
,
representing stator and rotor currents expressed in their respective stator and rotor frames.
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 –
6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME
133
Variables:
V= [vas vbs vcs 0 0 0]t
…………………………...(1)
I= [ias ibs ics iar ibr icr]t
…………………………..(2)
Whereas,
vas= Vs*sin(ωt),
vb s= Vs*sin(ωt+
ଶగ
ଷ
),
vcs=Vs*sin(ωt-
ଶగ
ଷ
)
Vs= peak voltage
ω= 2πf, is the phase angle in radians
t is the time in seconds
f = frequency in cycles per second (Hz) &
t=Transpose of the matrix
Matrix analysis of Induction Machine
The transformation matrix for conversion of abc frame stator and rotor quantities into
‘eo’ and ‘αβ’ frames respectively are given as follows,
………………………………….. (3)
……………………... (4)
The voltage equation for 3-phase induction machine in abc frame, is represented as
following,
[vs,abc] =[Rs][is,abc] + p {[Ls][is,abc]} + p {[Lsr][ir,abc]}……………………………..(5)
[vr,abc] =[Rr][ir,abc] + p [Lsr]T [is,abc] + p {[Lr][ir,abc]}……………………………..(6)
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 –
6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME
134
For, squirrel cage induction generator the rotor voltage is zero as the rotor is short
circuited. As per the requirement of the TSCAOI configuration, the voltage and currents of
the stator and rotor have to be transformed into the ‘eo’ frame and ‘αβ’ frame respectively.
This can be done using the transformation matrices Q and Kr for stator and rotor respectively.
[vseo]T
= [Q][vsabc] …………………………………………..(7)
[vr αβ]=[Kr][vrabc] …………………..…………………….....(8)
So, after substituting the values of (3), (4), (5)and also (6), in equations (7) and (8), we will
get the following equations,
[vs,eo] =[Q][Rs][Q]−1
[is,eo] + [Q]p{[Ls][Q]−1
[is,eo]} + [Q]p{[Lsr][Kr]−1
[ir,αβ]} ………………(9)
[vr,αβ] =[Kr][Rr][Kr]−1[ir,αβ] + [Kr]p {[Lsr]T [Q]−1
[is,eo]} + [Kr]p {[Lr][Kr]−1[ir,αβ]……….(10)
After lengthy manipulations and substitutions we will get the following equations,
... (11)
……………. (12)
Where, ωris the rotor speed in electrical radians per second. By observing above
equation, we can say that the power winding and the excitation winding of the stator are
totally decoupled.
To complete the machine model, it is necessary to select state variables and derive the
appropriate equations for integration. In this case, the elements of the machine current vector
are chosen as the state variables. Equation (13) shows the state space model using the
winding currents as the phase vector, as derived from (11) and (12), i.e.,
p[i]=[A][i]+[B][v] …………………………………… (13)
Where,
[i]= [iseisoirαirβ]t
[v]= [vseo]=[vsevso]t
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 –
6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME
135
LM=
ଷ
ଶ
Lms
Lss=Lls+ LM
Lrr= Llr+ LM
D=(LssLrr- LM
2
)
D1=LlsLrr+
ଶ
ଷ
LlrLM
The electromagnetic torque of the machine can be derived from
..... (14)
Where, P denotes the number of poles. Equation (14) in “abc” quantities is
transformed into the “eo” and “αβ” frames and can be given by
…. (15)
Equation (15) represents the torque components due to both load and excitation
currents. At the steady state, the torque given in (15) is equal to the turbine torque. The
equation of the motion of the generator is given by
……… (16)
Where, J (in kg · m2) is the inertia and Tp(in Nm) is the torque of the prime mover.
The above mathematical model shows the conversion of three phase induction
machine which can be used for the single phase power generation when the prime mover
torque is given to rotate the rotor.
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 –
6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME
136
IV. EXPERIMENTAL ANALYSIS
Fig. 5. Experimental setup
In order to demonstrate the practical viability of the proposed concept, a four-pole
3.7KW ,415V,7.3A cage induction machine in TSCAOI configuration was used. The
experimental setup is shown in Fig. 5.1(a). The rotor of proposed 3.7KW induction generator
was driven by another DC motor to emulate the variable wind conditions, to supply power
to a standalone and electronic load at constant voltage at 50 Hz under varying rotor speeds. A
experimental observation have taken on different capacitor (25-µF, 50-µF, 75-µF, 105-µF),
shown as C0 in Fig. 5, was employed to reduce the reactive-power requirement of the
excitation source and to keep the magnitude of the excitation current below the rated value of
the machine.
(a)
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
1300 1400 1500 1600 1700
ExcitationCurrent(A)
Rotor Speed (rpm)
C=50µF,Vse=150V
C=50µF,Vse=100V
C=75µF,Vse=100V
C=75µF,Vse=150V
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 –
6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME
137
(b)
(c)
Fig.6. Rotor speed verses (a) Excitation current (b) Output voltage (c) Output power for
different rotor speeds and different capacitor.
Fig. 6 The graph between roter speed verses diffirent quantity is plotted as shown in
Fig.6. It is observed from Fig.6 (a) that the excitation current is minimum for 50 µF capacitor
connected across power winding. The variation of the output voltage versus the rotor speed is
shown in Fig.6 (b). The impedance seen by the excitation source is complex in nature, being
dependent on both the excitation frequency and the slip frequency. It appears from results
that the variation of both the output voltage and current is largely governed by the rotor-
speed. It is observed from above Fig. 6(a) and (c) that with increse in excitation voltage and
value of the capacitance the output power and output voltage increses.But it is also observed
0.0
50.0
100.0
150.0
200.0
250.0
1300 1500 1700
OutputVoltage
Rotor Speed(rpm)
C=50µF,Vse=1
50V
C=50µF,Vse=1
00V
C=75µF,Vse=1
00V
C=75µF,Vse=1
50V
C=105µF,Vse=
100V
0.0
50.0
100.0
150.0
200.0
250.0
300.0
1300 1500 1700
OutputPower
Rotor Speed(rpm)
C=50µF,Vse=1
50V
C=50µF,Vse=1
00V
C=75µF,Vse=1
00V
C=75µF,Vse=1
50V
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 –
6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME
138
that before or after the perticular range of rotor speed the output power and output voltage
decreases.At this speed the excitation current is minimum in each case of diffirent capacitor
value.It is seen that at this speed with increse in capacitor value the excitation current
increses but it is in safe limit of excitation current upto Co =105 µF.
Fig. 7. Rotor speed verses Excitation power for different rotor speeds and different capacitor
Fig.7 demonstrates the variation of the power of the excitation source for different
rotor speeds for different value of capacitor. The positive power and the negative power
indicate the power supplied and absorbed by the source, respectively. The rotor speed was
simply increased or decreased by increasing or decreasing the torque setting of the prime
mover of the proposed generator that is DC motor. It is seen that after adding the more value
of capacitor the excitation power increases due to increase in the value of excitation current
as shown in Fig.7.
Fig.8 shows the relation between efficiency of the proposed generator verses output
power. It is observed that with increase in output power efficiency is more around
1500rpm.The efficiency is less with increases in speed beyond 1600rpm.With increase in
capacitance value output power is increases at same excitation voltage. It should be noted that
the excitation voltage can never be as high so that the rated current should not be exceeded
and the flux required to generate output voltage across the power winding is less. The
performance of the proposed generator was evaluated by measuring the efficiency for a range
of output and excitation power levels, as shown in Fig.8. A maximum efficiency of
approximately 60% is observed.
The above observations conclusively prove that the newly developed Induction
generator has certain distinct qualities and advantages which promise to make it a success for
consumer applications for remote application. The experimental investigation reported in this
part of the project proves the technical viability of the use of induction generator in TSCAOI
configuration to generate single phase power.
-500.0
-400.0
-300.0
-200.0
-100.0
0.0
100.0
200.0
300.0
400.0
500.0
600.0
13001400150016001700
ExcitationPower(W)
Rotor Speed (rpm)
C=50µF,Vse=150V
C=50µF,Vse=100V
C=75µF,Vse=100V
C=75µF,Vse=150V
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 –
6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME
139
(a)
(b)
Fig.8 Output power verses efficiency of for different rotor speeds and different capacitor
The above mentioned experimental results can be verified through approximate
theoretical analysis.
In the proposed TSCAOI configuration of the machine, the power can be generated
through both the excitation and power windings, whereas the var requirement of the machine
is met by the excitation winding, supplemented by a capacitor connected to the power
winding. This is because the total var requirement of the three-phase machine can never be
met by the single excitation winding without exceeding its rated current, even at zero
excitation real power.
0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
0.0 100.0 200.0 300.0
%ηgenerator
Outpu Power
C=50µF,Vse=150V
,N=1500rpm
C=50µF,Vse=150V
,N=1400rpm
C=50µF,Vse=150V
,N=1600rpm
C=50µF, Vse=150
V,N=1650rpm
0
10
20
30
40
50
60
70
80
90
100
0 100 200 300
%ηgenerator
Output Power
C=75µF, Vs
e=150V,…
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 –
6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME
140
V. CONCLUSION
The mathematical model of a three-phase induction generator in TSCAOI
configuration are presented in a step-by-step manner. The above experimental verification is
analyzed for different value of capacitor at different rotor speed. The above experimental
analysis indicates that the proposed machine can be used to generate the power at sub or
super synchronous speed at constant frequency at any excitation voltage.
As, we have seen the experimental results, the novel cage three phase induction
generator can be used for the single phase power generation. The proposed generator is easy
to implement and low in cost and it is an ideal machine for small-scale renewable energy
applications. The project conclusively proves that the new proposed machine described here
is technically viable and commercially reliable due to its simplicity, ruggedness and
maintenance free operation. The experiments conducted are detailed along with the
corresponding results. Special tests to identify the parameters for analysis have been
explained with typical results. The voltage drop from 264V to 220V at 420W output power
at 1540 rpm for Co of 105µF show good performance of the proposed machine.
REFERENCES
1. GLOBAL Wind Energy Outlook 2012, Global wind energy council- November 2012
2. R. C. Bansal, “Three phase self excited induction generators: Overview,” IEEE Trans. Energy
Convers., vol. 20, no. 2, pp. 292– 299,Jun. 2005.
3. J.-C. Wu, “Novel circuit configuration for the compensation for the reactive power of induction
generator,” IEEE Trans. Energy Convers., vol. 23,no. 1, pp. 156–162, Mar. 2008.
4. B. Singh, S. S. Murthy, and S. Gupta, “STATCOM based voltage regulatorfor self-excited
induction generator feeding non-liner loads,” IEEE Trans
5. T. F. Chan and L. L. Lai, “Single phase operation of a three-phase induction generator using a
novel line current injection method,” IEEE Trans Energy Convers., vol. 22, no. 3, pp. 798–799,
Sep. 2007.
6. S. S. Murthy, “A novel self-excited self-regulated single phase induction generator—Part 1,”
IEEE Trans. Energy Convers., vol. 8, no. 3, pp. 377–382, Sep. 1993.
7. L. Shridar, B. Singh, and S. S. Murthy, “Selection of capacitors for self regulated short shunt
self excited induction generator,” IEEE Trans. Energy Convers., vol. 10, no. 1, pp. 10–17, Mar.
1995
8. O. Ojo and I. Bhat, “An analysis of single phase self excited inductiongenerators,” IEEE Trans.
Energy Convers., vol. 10, no. 2, pp. 254–260,Jun. 1995
9. Self-Regulated Single-Phase Induction Generator, M. M. Ahmed and M.Y. Abdelfatah
International Conference On Communication, Computer And Power (ICCCP'09) Muscat,
February 15-18, 2009
10. U. K. Madawala, T. Geyer, J. Bradshaw, and D. M. Vilathgamuwa,“A model for a novel
induction generator,” in Proc. IEEE IECON,Nov. 3–5, 2009, pp. 64–69.
11. Analysis Of An Isolated Self-Excited Induction Generator Driven By AVariable Speed Prime
Mover, D. Seyoum, C. Grantham and F. Rahman School of Electrical Engineering and
Telecommunications, The University of New South Wales
12. N. S. Wani and W. Z. Gandhare, “Voltage Recovery of Induction Generator using Indirect
Torque Control Method”, International Journal of Electrical Engineering & Technology (IJEET),
Volume 3, Issue 3, 2012, pp. 146 - 155, ISSN Print : 0976-6545, ISSN Online: 0976-6553.
13. Youssef A. Mobarak, “Svc, Statcom, and Transmission Line Rating Enhancments on Induction
Generator Driven by Wind Turbine”, International Journal of Electrical Engineering &
Technology (IJEET), Volume 3, Issue 1, 2012, pp. 326 - 343, ISSN Print : 0976-6545, ISSN
Online: 0976-6553.

More Related Content

PDF
Analysis and Comparisons of Different Type of WCES- A Literature Review
PDF
Analysis and Implementation of Maximum Power Point Tracking Using Conventiona...
PDF
TESTING OF SOLAR-DIESEL HYBRID POWER PLANT BATTERY CHARGING SYSTEMS
PDF
A PFC Fed Asynchronous Generator For Advanced Wind Power Generation Excited B...
PDF
POWER PLANT- PORTABLE MICRO POWER GENERATION
PDF
Pvg based smart energy modelling for agricultural sector
PDF
IRJET - Hybrid Power Generation and Power Station for Electric Vehicle
PDF
Application of Electric Generators Driven by Tractor in Agriculture
Analysis and Comparisons of Different Type of WCES- A Literature Review
Analysis and Implementation of Maximum Power Point Tracking Using Conventiona...
TESTING OF SOLAR-DIESEL HYBRID POWER PLANT BATTERY CHARGING SYSTEMS
A PFC Fed Asynchronous Generator For Advanced Wind Power Generation Excited B...
POWER PLANT- PORTABLE MICRO POWER GENERATION
Pvg based smart energy modelling for agricultural sector
IRJET - Hybrid Power Generation and Power Station for Electric Vehicle
Application of Electric Generators Driven by Tractor in Agriculture

What's hot (18)

PPTX
Development of hybrid power generation model using system composed of rain wa...
PDF
Performance analysis of wind turbine as a distributed generation unit in dist...
PDF
Train Mounting T Box for Wind Power Generation
PPT
Wind and Solar Power - Renewable Energy Technologies
PDF
Hybrid power generation using renewable energy sources for domestic purposes
PPT
Impact of wind power on power system operation
PDF
IRJET - Multi-Hybrid Renewable Energy Source based on Solar, Wind and Biogas ...
PDF
Optimisation of a Sustainable Flywheel Energy Storage Device
PDF
WIND ENERGY CONVERSION SYSTEM KEDARE
PDF
Solar PV Energy Conversion System and its Configurations
PDF
Design and Simulation Analysis of Outer Stator Inner Rotor DFIG by 2d and 3d ...
PPTX
Wind Turbine Generators
PDF
Windmill power generation using mult generator and single rotor (horizontal a...
PDF
IRJET- Hybrid Energy Harvesting System for Charging Stations
PDF
Self Generator Free Energy Flywheel
PPTX
Unit 4
PDF
Design and analysis of an external rotor internal-stator doubly fed induction...
PDF
Design and Fabrication of Moto Autor
Development of hybrid power generation model using system composed of rain wa...
Performance analysis of wind turbine as a distributed generation unit in dist...
Train Mounting T Box for Wind Power Generation
Wind and Solar Power - Renewable Energy Technologies
Hybrid power generation using renewable energy sources for domestic purposes
Impact of wind power on power system operation
IRJET - Multi-Hybrid Renewable Energy Source based on Solar, Wind and Biogas ...
Optimisation of a Sustainable Flywheel Energy Storage Device
WIND ENERGY CONVERSION SYSTEM KEDARE
Solar PV Energy Conversion System and its Configurations
Design and Simulation Analysis of Outer Stator Inner Rotor DFIG by 2d and 3d ...
Wind Turbine Generators
Windmill power generation using mult generator and single rotor (horizontal a...
IRJET- Hybrid Energy Harvesting System for Charging Stations
Self Generator Free Energy Flywheel
Unit 4
Design and analysis of an external rotor internal-stator doubly fed induction...
Design and Fabrication of Moto Autor
Ad

Viewers also liked (16)

DOCX
Akshay Pawar Experiance
PDF
Ijcet 06 07_001
DOCX
ANSH KAMAL BHANDARI
PPTX
Google[x] projects
PDF
A comprehensive study of different image super resolution reconstruction algo...
PDF
Report finger print
PDF
Smart Fire Detection System using Image Processing
PDF
Loon project
DOCX
Google project loon report
DOCX
Google LOON Project
DOC
Project loon report in ieee format
DOCX
Google Project Loon abstract
PPTX
Concept of MIcelle & CMC
DOCX
Project loon report
PDF
Project loon
PPTX
Project loon.ppt
Akshay Pawar Experiance
Ijcet 06 07_001
ANSH KAMAL BHANDARI
Google[x] projects
A comprehensive study of different image super resolution reconstruction algo...
Report finger print
Smart Fire Detection System using Image Processing
Loon project
Google project loon report
Google LOON Project
Project loon report in ieee format
Google Project Loon abstract
Concept of MIcelle & CMC
Project loon report
Project loon
Project loon.ppt
Ad

Similar to Modeling and experimental analysis of variable speed three phase squirrel 2 (20)

PDF
Battery energy storage and power electronics based voltage and frequency cont...
PDF
pali2016.pdf
PDF
Design and simulation analysis of outer stator inner rotor DFIG by 2d and 3d ...
PDF
Mitigation of Voltage Dip and Swell Faults in Wind Energy Conversion Systems
PDF
40220140505005
PDF
40220140505005
PDF
Doubly Fed Induction Generator-Based Wind Turbine Modelling and Simulation Us...
PDF
40220130406006
PDF
OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION FOR LOSS REDUCTION IN DISTRIBUTIO...
PDF
A different visions for uninterruptible load using hybrid solar-grid energy
PDF
Modeling and simulation of dfig to grid connected wind power generation using...
PDF
Analysis of Various Power Quality Issues of Wind Solar System – A Review
PDF
40220140505008
PDF
Transient analysis and modeling of wind generator during power and grid volta...
PDF
40220140503008
PDF
40220140505009
PDF
Economic viability and profitability assessments of WECS
PDF
Application of statcom to increase transient stability of wind farm
PDF
2007-Iovetal.-Powerelectronicsandcontrolofrenewableenergysystems2.pdf
PDF
REVIEW OF LITERATURE ON INDUCTION GENERATORS AND CONTROLLERS FOR PICO HYDRO A...
Battery energy storage and power electronics based voltage and frequency cont...
pali2016.pdf
Design and simulation analysis of outer stator inner rotor DFIG by 2d and 3d ...
Mitigation of Voltage Dip and Swell Faults in Wind Energy Conversion Systems
40220140505005
40220140505005
Doubly Fed Induction Generator-Based Wind Turbine Modelling and Simulation Us...
40220130406006
OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION FOR LOSS REDUCTION IN DISTRIBUTIO...
A different visions for uninterruptible load using hybrid solar-grid energy
Modeling and simulation of dfig to grid connected wind power generation using...
Analysis of Various Power Quality Issues of Wind Solar System – A Review
40220140505008
Transient analysis and modeling of wind generator during power and grid volta...
40220140503008
40220140505009
Economic viability and profitability assessments of WECS
Application of statcom to increase transient stability of wind farm
2007-Iovetal.-Powerelectronicsandcontrolofrenewableenergysystems2.pdf
REVIEW OF LITERATURE ON INDUCTION GENERATORS AND CONTROLLERS FOR PICO HYDRO A...

More from IAEME Publication (20)

PDF
IAEME_Publication_Call_for_Paper_September_2022.pdf
PDF
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
PDF
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
PDF
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
PDF
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
PDF
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
PDF
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
PDF
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
PDF
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
PDF
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
PDF
GANDHI ON NON-VIOLENT POLICE
PDF
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
PDF
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
PDF
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
PDF
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
PDF
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
PDF
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
PDF
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
PDF
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
PDF
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
IAEME_Publication_Call_for_Paper_September_2022.pdf
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
GANDHI ON NON-VIOLENT POLICE
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT

Recently uploaded (20)

PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
DOCX
The AUB Centre for AI in Media Proposal.docx
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Encapsulation theory and applications.pdf
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Encapsulation_ Review paper, used for researhc scholars
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Empathic Computing: Creating Shared Understanding
PPTX
Machine Learning_overview_presentation.pptx
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Machine learning based COVID-19 study performance prediction
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
cuic standard and advanced reporting.pdf
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
gpt5_lecture_notes_comprehensive_20250812015547.pdf
The AUB Centre for AI in Media Proposal.docx
20250228 LYD VKU AI Blended-Learning.pptx
Encapsulation theory and applications.pdf
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Reach Out and Touch Someone: Haptics and Empathic Computing
“AI and Expert System Decision Support & Business Intelligence Systems”
Encapsulation_ Review paper, used for researhc scholars
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Empathic Computing: Creating Shared Understanding
Machine Learning_overview_presentation.pptx
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Chapter 3 Spatial Domain Image Processing.pdf
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Machine learning based COVID-19 study performance prediction
Digital-Transformation-Roadmap-for-Companies.pptx
cuic standard and advanced reporting.pdf
MIND Revenue Release Quarter 2 2025 Press Release
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...

Modeling and experimental analysis of variable speed three phase squirrel 2

  • 1. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME 128 MODELING AND EXPERIMENTAL ANALYSIS OF VARIABLE SPEED THREE PHASE SQUIRREL CAGE INDUCTION GENERATOR 1 Lalit Kumar, 2 Mrs. S. U. Kulkarni, 3 Mohit.K.Shakya, 4 Sachinkumar L.Sarwade 1 M.Tech Student, Electrical Engineering, BVUCOEP. 2 Asst.Prof. Electrical Engg. Bharti Vidyapeeth University College of engineering, Pune, India. 3 Asst.Prof., Electrical Engineering, KJCOEMR, Pune. 4 M.E. Student, Electrical Engg., PVGCOET, Pune. ABSTRACT Induction machines have wide applications in renewable power system and particularly in wind turbine power systems. In case of standalone wind power system applications, for generating single phase electricity single phase or three phase induction machines can be used. Three phase induction generator can be used to generate single phase electricity at constant or above synchronous speed by using the two-series-connected-and-one isolated (TSCAOI) winding connection without an intermediate stage. In contrast with single-phase cage induction machines, three phase induction machines are significantly less expensive, more efficient, and smaller in frame size in comparison with their single-phase counterpart of similar power ratings. This paper introduces a novel cage induction generator and presents a mathematical model, through which its behavior can be accurately predicted. The proposed generator system employs a three-phase cage induction machine and generates single-phase, constant- frequency electricity at varying rotor speeds without an intermediate inverter stage. The technique uses any one of the three stator phases of the machine as the excitation winding and the remaining two phases, which are connected in series, as the power winding. The two- series-connected-and-one isolated (TSCAOI) phase winding configuration magnetically decouples the two sets of windings, enabling independent control. Electricity is generated through the power winding at both sub and super-synchronous speeds with appropriate excitation to the isolated single winding at any frequency of generation. An Experimental analysis and dynamic mathematical model, which accurately predicts the behavior of the proposed generator. INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) ISSN 0976 – 6545(Print) ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), pp. 128-140 © IAEME: www.iaeme.com/ijeet.asp Journal Impact Factor (2013): 5.5028 (Calculated by GISI) www.jifactor.com IJEET © I A E M E
  • 2. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME 129 Keywords: Induction Generator in TSCAOI Configuration, Renewable Power System, Mathematical Model. I. INTRODUCTION The use of renewable energy as an alternative to low cost fossil energy, which was in abundance, has never been considered as an economically viable option in the past. However, the excessive, unnecessary, and inefficient use of fossil energy has now become a global concern, owing to rapidly decreasing fossil resources, rising fuel prices, increasing demand for energy, and, more importantly, the awareness of global warming and environmental impact. Consequently, it has now become a common practice of governing bodies to place more emphasis on energy saving, harnessing renewable energy, and particularly on energy management through efficient generation, conversion, transmission, and distribution. This initiative incited a new area of active research and development within both academia and industry under the context of “green or clean or renewable” energy. Nuclear energy has several advantages over coal in that no carbon dioxide or sulfur dioxide are produced, mining operations are smaller scale, and it has no other major use besides supplying heat. The major difficulty is the problem of waste disposal, which, because of the fears of many, will probably never have a truly satisfying solution. Because of these problems, along with the rising energy demand in the 21st century and the growing recognition of global warming and environmental pollution, energy supply has become an integral and cross cutting element of every countries economy. In recent years, more and more countries have polarized sustainable, renewable and clean energy sources such as wind power and other forms of solar power are being strongly encouraged. Wind power may become a major source of energy in spite of slightly higher costs than coal or nuclear power because of the basically non-economic or political problems of coal and nuclear power. This is not to say that wind power will always be more expensive than coal or nuclear power, because considerable progress is being made in making wind power less expensive. But even without a clear cost advantage, wind power may become truly important in the world energy picture. Wind power has now established itself as a mainstream electricity generation source, and plays a central role in an increasing number of countries’ immediate and longer term energy plans. After 15 years of average cumulative growth rates of about 28%, the commercial wind power installations in about 80 countries at the end of last year totaled about 240 GW, having increased by more than 40 times over that same period. Twenty two countries have more than 1,000 MW installed. The following figure shows the 1999 WIND FORCE 10 blueprint and actual development globally [1]. Fig 1: Total Wind Capacity Installed in India
  • 3. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME 130 There are various techniques for conversion of mechanical energy into electrical energy. Typically, small renewable energy power plants rely mostly on induction machines, because they are widely and commercially available and very inexpensive. Induction generators are useful in applications such as mini hydro power plants, wind turbines, or in reducing high-pressure gas streams to lower pressure, because they can recover energy with relatively simple controls. It is also very easy to operate them in parallel with large power systems, because the utility grid controls voltage and frequency while static and reactive compensating capacitors can be used for correction of the power factor and harmonic reduction. Although the induction generator is mostly suitable for hydro and wind power plants, it can be efficiently used with prime movers driven by diesel, biogas, natural gas, gasoline and alcohol motors. Induction generators have outstanding operation as either motor or generator; they have very robust construction features, providing natural protection against short-circuits, and have the lowest cost with respect to other generators. Abrupt speed changes due to load or primary source changes, as usually expected in small power plants, are easily absorbed by its solid rotor, and any current surge is damped by the magnetization path of its iron core without fear of demagnetization, as opposed to permanent magnet based generators. The induction generator has the very same construction as the induction motors with some possible improvements in efficiency. Fig.2.Typical induction generator systems used in wind turbines Of the schemes illustrated in Fig. 2, fixed-speed cage three phase induction generators are well known for their simplicity and low cost and operated at constant rotor speed to generate electricity at constant frequency for both direct grid integration and standalone operation. Usually, they are excited through a bank of capacitors and are incapable of tracking maximum power that is available from the wind turbine when operated at constant speed. Therefore, in order to extract maximum energy under varying wind speed conditions, an intermediate power conversion stage, comprising an alternating-current (ac)/direct-current (dc) and dc/ac back-to-back converter configuration, is employed between the generator and the grid or the load [2]–[4]. The intermediate stage allows for the variable-speed operation of the generator, but it essentially requires to be rated for the same or a fraction (in the case of doubly fed induction generators) of the power level of the generator itself. Thus, such an intermediate stage is often found to be economically unjustifiable for some applications, particularly at micro power levels. Induction generators have been also employed to generate single-phase electricity, particularly for standalone or residential use [5]. In [6] and [7], a self-excited and self regulated single-phase induction generator has been reported for the generation of single- phase electricity. In contrast, the analysis of the self-excitation of a dual-winding induction generator has been presented in [8]. This paper, which uses a single-phase cage induction machine with an auxiliary winding, has been extended by connecting an inverter to the auxiliary winding to achieve more flexibility in power control. The experimental performance
  • 4. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME 131 is investigated under varying operating conditions and it indicate that the machine can be operated both at sub- and super-synchronousrotor speeds to generate electricity at constant frequency. II. INDUCTION GENERATOR IN TSCAOI CONFIGURATION Induction generators have been also employed to generate single-phase electricity, particularly for standalone or residential use .A self-excited and self regulated single-phase induction generator has been reported for the generation ofsingle-phase electricity. In [9], a novel method for self-regulated single phase induction generator by using an ac adjustable capacitor is introduced. All these reported schemes employed a single-phase induction generator and an auxiliary winding in some cases or a three phase induction generator to generate single-phase electricity at constant or above synchronous speed. In contrast with single-phase cage induction machines, three phase cage induction machines are less expensive and small in size for a similar power rating. As, explained in [10] three-phase cage induction machine can be used as a single-phase generator under both sub- and super- synchronous variable-speed conditions without an intermediate inverter stage. The technique uses one of the three windings in isolation for excitation and the remaining two, which are connected in series, as the power winding for the single-phase electricity generation. The three-phase cage induction machine is mathematically modeled in the proposed two-series connected- and-one-isolated (TSCAOI) phase winding configuration. The proposed technique allows for both energy storage and retrieval through the excitation winding and is expected to gain popularity, particularly in small-scale applications, being relatively simple and low in cost. The following figure shows the proposed induction generator in the TSCAOI configuration. Fig 3.Proposed Induction Generator in the TSCAOI Configuration Cage induction machines are undoubtedly the workhorse of the industry and can be still regarded as the main competitor to permanent-magnet machines. This is because they are self starting, rugged, reliable, and efficient and offer a long trouble free working life. Of these cage induction machines, three phase machines are significantly less expensive, more efficient, and smaller in frame size in comparison with their single-phase counterpart of similar power ratings. Consequently, three-phase cage induction motors are economically
  • 5. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME 132 more appealing and have thus become the preferred choice for numerous applications, even at derated power levels. The proposed novel technique uses a three phase cage induction machine, exploiting its economical advantage, to generate single-phase electricity at variable rotor speeds without an intermediate inverter stage. The technique configures the three stator windings of the three-phase cage induction machine in a novel way to create separate or rather decoupled excitation and power windings. In this configuration, any one of the three phase windings is solely used in isolation for excitation, whereas the remaining two are connected in series to generate power at a desired frequency while the rotor is driven at any given speed. Alternatively, the machine can be also configured in such a way that the two series-connected windings provide the excitation while the single winding generates. As mathematically shown, the TSCAOI winding configuration magnetically decouples both excitation and power windings from each other and thus allows for independent control as in the case of a single-phase induction motor with an auxiliary winding. In the proposed technique, excitation for the generator is provided through the single winding to study the voltage build up process at no load and at load. III. MATHEMATICAL MODEL While doing mathematical modeling, certain assumptions are made, they are as follows: 1. Uniform air gap. 2. Balanced rotor and stator windings with sinusoidally distributed mmf. 3. Inductance vs. rotor position is sinusoidal & 4. Saturation and parameter changes are neglected. Fig. 4 shows the stator and rotor with respect to αβ frame. The first step in the mathematical modeling of an induction machine is by describing it as coupled stator and rotor three-phase circuits using phase variables, namely stator currents ias, ibs, ics and rotor currents iar, ibr, icr ; in addition to the rotor speed ωr and the angular displacement φr between stator and rotor windings. Fig 4.Stator and Rotor with respect to αβ frame The electrical parameters of machine are expressed in terms of a resistance matrix R [3x3] and an inductance matrix L [3x3] in which the magnetic mutual coupling elements are functions of position r. So that, for instance, the current vector is I = [ias ibs ics iar ibr icr]t , representing stator and rotor currents expressed in their respective stator and rotor frames.
  • 6. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME 133 Variables: V= [vas vbs vcs 0 0 0]t …………………………...(1) I= [ias ibs ics iar ibr icr]t …………………………..(2) Whereas, vas= Vs*sin(ωt), vb s= Vs*sin(ωt+ ଶగ ଷ ), vcs=Vs*sin(ωt- ଶగ ଷ ) Vs= peak voltage ω= 2πf, is the phase angle in radians t is the time in seconds f = frequency in cycles per second (Hz) & t=Transpose of the matrix Matrix analysis of Induction Machine The transformation matrix for conversion of abc frame stator and rotor quantities into ‘eo’ and ‘αβ’ frames respectively are given as follows, ………………………………….. (3) ……………………... (4) The voltage equation for 3-phase induction machine in abc frame, is represented as following, [vs,abc] =[Rs][is,abc] + p {[Ls][is,abc]} + p {[Lsr][ir,abc]}……………………………..(5) [vr,abc] =[Rr][ir,abc] + p [Lsr]T [is,abc] + p {[Lr][ir,abc]}……………………………..(6)
  • 7. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME 134 For, squirrel cage induction generator the rotor voltage is zero as the rotor is short circuited. As per the requirement of the TSCAOI configuration, the voltage and currents of the stator and rotor have to be transformed into the ‘eo’ frame and ‘αβ’ frame respectively. This can be done using the transformation matrices Q and Kr for stator and rotor respectively. [vseo]T = [Q][vsabc] …………………………………………..(7) [vr αβ]=[Kr][vrabc] …………………..…………………….....(8) So, after substituting the values of (3), (4), (5)and also (6), in equations (7) and (8), we will get the following equations, [vs,eo] =[Q][Rs][Q]−1 [is,eo] + [Q]p{[Ls][Q]−1 [is,eo]} + [Q]p{[Lsr][Kr]−1 [ir,αβ]} ………………(9) [vr,αβ] =[Kr][Rr][Kr]−1[ir,αβ] + [Kr]p {[Lsr]T [Q]−1 [is,eo]} + [Kr]p {[Lr][Kr]−1[ir,αβ]……….(10) After lengthy manipulations and substitutions we will get the following equations, ... (11) ……………. (12) Where, ωris the rotor speed in electrical radians per second. By observing above equation, we can say that the power winding and the excitation winding of the stator are totally decoupled. To complete the machine model, it is necessary to select state variables and derive the appropriate equations for integration. In this case, the elements of the machine current vector are chosen as the state variables. Equation (13) shows the state space model using the winding currents as the phase vector, as derived from (11) and (12), i.e., p[i]=[A][i]+[B][v] …………………………………… (13) Where, [i]= [iseisoirαirβ]t [v]= [vseo]=[vsevso]t
  • 8. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME 135 LM= ଷ ଶ Lms Lss=Lls+ LM Lrr= Llr+ LM D=(LssLrr- LM 2 ) D1=LlsLrr+ ଶ ଷ LlrLM The electromagnetic torque of the machine can be derived from ..... (14) Where, P denotes the number of poles. Equation (14) in “abc” quantities is transformed into the “eo” and “αβ” frames and can be given by …. (15) Equation (15) represents the torque components due to both load and excitation currents. At the steady state, the torque given in (15) is equal to the turbine torque. The equation of the motion of the generator is given by ……… (16) Where, J (in kg · m2) is the inertia and Tp(in Nm) is the torque of the prime mover. The above mathematical model shows the conversion of three phase induction machine which can be used for the single phase power generation when the prime mover torque is given to rotate the rotor.
  • 9. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME 136 IV. EXPERIMENTAL ANALYSIS Fig. 5. Experimental setup In order to demonstrate the practical viability of the proposed concept, a four-pole 3.7KW ,415V,7.3A cage induction machine in TSCAOI configuration was used. The experimental setup is shown in Fig. 5.1(a). The rotor of proposed 3.7KW induction generator was driven by another DC motor to emulate the variable wind conditions, to supply power to a standalone and electronic load at constant voltage at 50 Hz under varying rotor speeds. A experimental observation have taken on different capacitor (25-µF, 50-µF, 75-µF, 105-µF), shown as C0 in Fig. 5, was employed to reduce the reactive-power requirement of the excitation source and to keep the magnitude of the excitation current below the rated value of the machine. (a) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 1300 1400 1500 1600 1700 ExcitationCurrent(A) Rotor Speed (rpm) C=50µF,Vse=150V C=50µF,Vse=100V C=75µF,Vse=100V C=75µF,Vse=150V
  • 10. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME 137 (b) (c) Fig.6. Rotor speed verses (a) Excitation current (b) Output voltage (c) Output power for different rotor speeds and different capacitor. Fig. 6 The graph between roter speed verses diffirent quantity is plotted as shown in Fig.6. It is observed from Fig.6 (a) that the excitation current is minimum for 50 µF capacitor connected across power winding. The variation of the output voltage versus the rotor speed is shown in Fig.6 (b). The impedance seen by the excitation source is complex in nature, being dependent on both the excitation frequency and the slip frequency. It appears from results that the variation of both the output voltage and current is largely governed by the rotor- speed. It is observed from above Fig. 6(a) and (c) that with increse in excitation voltage and value of the capacitance the output power and output voltage increses.But it is also observed 0.0 50.0 100.0 150.0 200.0 250.0 1300 1500 1700 OutputVoltage Rotor Speed(rpm) C=50µF,Vse=1 50V C=50µF,Vse=1 00V C=75µF,Vse=1 00V C=75µF,Vse=1 50V C=105µF,Vse= 100V 0.0 50.0 100.0 150.0 200.0 250.0 300.0 1300 1500 1700 OutputPower Rotor Speed(rpm) C=50µF,Vse=1 50V C=50µF,Vse=1 00V C=75µF,Vse=1 00V C=75µF,Vse=1 50V
  • 11. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME 138 that before or after the perticular range of rotor speed the output power and output voltage decreases.At this speed the excitation current is minimum in each case of diffirent capacitor value.It is seen that at this speed with increse in capacitor value the excitation current increses but it is in safe limit of excitation current upto Co =105 µF. Fig. 7. Rotor speed verses Excitation power for different rotor speeds and different capacitor Fig.7 demonstrates the variation of the power of the excitation source for different rotor speeds for different value of capacitor. The positive power and the negative power indicate the power supplied and absorbed by the source, respectively. The rotor speed was simply increased or decreased by increasing or decreasing the torque setting of the prime mover of the proposed generator that is DC motor. It is seen that after adding the more value of capacitor the excitation power increases due to increase in the value of excitation current as shown in Fig.7. Fig.8 shows the relation between efficiency of the proposed generator verses output power. It is observed that with increase in output power efficiency is more around 1500rpm.The efficiency is less with increases in speed beyond 1600rpm.With increase in capacitance value output power is increases at same excitation voltage. It should be noted that the excitation voltage can never be as high so that the rated current should not be exceeded and the flux required to generate output voltage across the power winding is less. The performance of the proposed generator was evaluated by measuring the efficiency for a range of output and excitation power levels, as shown in Fig.8. A maximum efficiency of approximately 60% is observed. The above observations conclusively prove that the newly developed Induction generator has certain distinct qualities and advantages which promise to make it a success for consumer applications for remote application. The experimental investigation reported in this part of the project proves the technical viability of the use of induction generator in TSCAOI configuration to generate single phase power. -500.0 -400.0 -300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 13001400150016001700 ExcitationPower(W) Rotor Speed (rpm) C=50µF,Vse=150V C=50µF,Vse=100V C=75µF,Vse=100V C=75µF,Vse=150V
  • 12. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME 139 (a) (b) Fig.8 Output power verses efficiency of for different rotor speeds and different capacitor The above mentioned experimental results can be verified through approximate theoretical analysis. In the proposed TSCAOI configuration of the machine, the power can be generated through both the excitation and power windings, whereas the var requirement of the machine is met by the excitation winding, supplemented by a capacitor connected to the power winding. This is because the total var requirement of the three-phase machine can never be met by the single excitation winding without exceeding its rated current, even at zero excitation real power. 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 0.0 100.0 200.0 300.0 %ηgenerator Outpu Power C=50µF,Vse=150V ,N=1500rpm C=50µF,Vse=150V ,N=1400rpm C=50µF,Vse=150V ,N=1600rpm C=50µF, Vse=150 V,N=1650rpm 0 10 20 30 40 50 60 70 80 90 100 0 100 200 300 %ηgenerator Output Power C=75µF, Vs e=150V,…
  • 13. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 4, Issue 3, May - June (2013), © IAEME 140 V. CONCLUSION The mathematical model of a three-phase induction generator in TSCAOI configuration are presented in a step-by-step manner. The above experimental verification is analyzed for different value of capacitor at different rotor speed. The above experimental analysis indicates that the proposed machine can be used to generate the power at sub or super synchronous speed at constant frequency at any excitation voltage. As, we have seen the experimental results, the novel cage three phase induction generator can be used for the single phase power generation. The proposed generator is easy to implement and low in cost and it is an ideal machine for small-scale renewable energy applications. The project conclusively proves that the new proposed machine described here is technically viable and commercially reliable due to its simplicity, ruggedness and maintenance free operation. The experiments conducted are detailed along with the corresponding results. Special tests to identify the parameters for analysis have been explained with typical results. The voltage drop from 264V to 220V at 420W output power at 1540 rpm for Co of 105µF show good performance of the proposed machine. REFERENCES 1. GLOBAL Wind Energy Outlook 2012, Global wind energy council- November 2012 2. R. C. Bansal, “Three phase self excited induction generators: Overview,” IEEE Trans. Energy Convers., vol. 20, no. 2, pp. 292– 299,Jun. 2005. 3. J.-C. Wu, “Novel circuit configuration for the compensation for the reactive power of induction generator,” IEEE Trans. Energy Convers., vol. 23,no. 1, pp. 156–162, Mar. 2008. 4. B. Singh, S. S. Murthy, and S. Gupta, “STATCOM based voltage regulatorfor self-excited induction generator feeding non-liner loads,” IEEE Trans 5. T. F. Chan and L. L. Lai, “Single phase operation of a three-phase induction generator using a novel line current injection method,” IEEE Trans Energy Convers., vol. 22, no. 3, pp. 798–799, Sep. 2007. 6. S. S. Murthy, “A novel self-excited self-regulated single phase induction generator—Part 1,” IEEE Trans. Energy Convers., vol. 8, no. 3, pp. 377–382, Sep. 1993. 7. L. Shridar, B. Singh, and S. S. Murthy, “Selection of capacitors for self regulated short shunt self excited induction generator,” IEEE Trans. Energy Convers., vol. 10, no. 1, pp. 10–17, Mar. 1995 8. O. Ojo and I. Bhat, “An analysis of single phase self excited inductiongenerators,” IEEE Trans. Energy Convers., vol. 10, no. 2, pp. 254–260,Jun. 1995 9. Self-Regulated Single-Phase Induction Generator, M. M. Ahmed and M.Y. Abdelfatah International Conference On Communication, Computer And Power (ICCCP'09) Muscat, February 15-18, 2009 10. U. K. Madawala, T. Geyer, J. Bradshaw, and D. M. Vilathgamuwa,“A model for a novel induction generator,” in Proc. IEEE IECON,Nov. 3–5, 2009, pp. 64–69. 11. Analysis Of An Isolated Self-Excited Induction Generator Driven By AVariable Speed Prime Mover, D. Seyoum, C. Grantham and F. Rahman School of Electrical Engineering and Telecommunications, The University of New South Wales 12. N. S. Wani and W. Z. Gandhare, “Voltage Recovery of Induction Generator using Indirect Torque Control Method”, International Journal of Electrical Engineering & Technology (IJEET), Volume 3, Issue 3, 2012, pp. 146 - 155, ISSN Print : 0976-6545, ISSN Online: 0976-6553. 13. Youssef A. Mobarak, “Svc, Statcom, and Transmission Line Rating Enhancments on Induction Generator Driven by Wind Turbine”, International Journal of Electrical Engineering & Technology (IJEET), Volume 3, Issue 1, 2012, pp. 326 - 343, ISSN Print : 0976-6545, ISSN Online: 0976-6553.