SlideShare a Scribd company logo
Theory
          Observations




        Modified Gravity
               A brief tour


       Miguel Zumalac´rregui
                     a

Instituto de F´
              ısica Te´rica IFT-UAM-CSIC
                      o




 IFT-UAM Cosmology meeting
      IFT, February 2013, Madrid



 Miguel Zumalac´rregui
               a         Modified Gravity
Theory
                             Observations


Outline



   1   Theory
         Introduction
         Modified Gravities


   2   Observations
         Solar System
         Cosmology


   3) Conclusions



                    Miguel Zumalac´rregui
                                  a         Modified Gravity
Theory    Introduction
                            Observations   Modified Gravities


Introduction
    Why Modified Gravity?
      Mystery: Λ and CDM problems

      Observational Outliers
      (LSS bulk motions, halo profiles, satellite galaxies...)

      Testing General Relativity
      ⇒ Model independence of cosmological probes




                   Miguel Zumalac´rregui
                                 a         Modified Gravity
Theory    Introduction
                             Observations   Modified Gravities


Introduction
    Why Modified Gravity?
       Mystery: Λ and CDM problems

       Observational Outliers
       (LSS bulk motions, halo profiles, satellite galaxies...)

       Testing General Relativity
       ⇒ Model independence of cosmological probes

   Main Points
       Many different scenarios for modified gravity

       Need to analyze in a (sufficiently) self consistent way

                    Miguel Zumalac´rregui
                                  a         Modified Gravity
Theory    Introduction
                             Observations   Modified Gravities


Einstein’s Theory

   Lovelock’s Theorem (1971)
       gµν + Local + 4-D + Lorentz Theory with 2nd order Eqs∗
                           √          1
                               −g        (R − 2Λ)
                                    16πG
   ∗ Theories with higher time derivatives unstable: E → −∞
   (Ostrogradski’s Theorem)




                    Miguel Zumalac´rregui
                                  a         Modified Gravity
Theory    Introduction
                              Observations   Modified Gravities


Einstein’s Theory

   Lovelock’s Theorem (1971)
       gµν + Local + 4-D + Lorentz Theory with 2nd order Eqs∗
                             √          1
                                 −g        (R − 2Λ)
                                      16πG
   ∗ Theories with higher time derivatives unstable: E → −∞
   (Ostrogradski’s Theorem)
   Acceptable modifications (Clifton et al. 1106.2476):
        Higher derivatives
        Additional fields
        Extra dimensions
        Weird stuff: Lorentz violation, non-local, non-metric...

                     Miguel Zumalac´rregui
                                   a         Modified Gravity
Theory    Introduction
                            Observations   Modified Gravities


Beyond Einstein’s Theory: Examples

    Higher derivatives: f (R) gravity −→ Equivalent to h(φ)R + · · ·




                   Miguel Zumalac´rregui
                                 a         Modified Gravity
Theory    Introduction
                             Observations   Modified Gravities


Beyond Einstein’s Theory: Examples

    Higher derivatives: f (R) gravity −→ Equivalent to h(φ)R + · · ·
                      §                ¤
    Additional fields: Scalar: φ
                      ¦                ¥
   - Vector: Aµ , e.g. TeVeS (alternative to DM)
   - Tensor: hµν Massive gravity −→ scalar φ in decoupling limit




                    Miguel Zumalac´rregui
                                  a         Modified Gravity
Theory    Introduction
                             Observations   Modified Gravities


Beyond Einstein’s Theory: Examples

    Higher derivatives: f (R) gravity −→ Equivalent to h(φ)R + · · ·
                      §                ¤
    Additional fields: Scalar: φ
                      ¦                ¥
   - Vector: Aµ , e.g. TeVeS (alternative to DM)
   - Tensor: hµν Massive gravity −→ scalar φ in decoupling limit

     Extra dimensions:
   - DGP → φ = brane location in extra dim.
   - Kaluza-Klein → φ ∝ volume of compact dim.




                    Miguel Zumalac´rregui
                                  a         Modified Gravity
Theory    Introduction
                              Observations   Modified Gravities


Beyond Einstein’s Theory: Examples

     Higher derivatives: f (R) gravity −→ Equivalent to h(φ)R + · · ·
                       §                ¤
     Additional fields: Scalar: φ
                       ¦                ¥
   - Vector: Aµ , e.g. TeVeS (alternative to DM)
   - Tensor: hµν Massive gravity −→ scalar φ in decoupling limit

     Extra dimensions:
   - DGP → φ = brane location in extra dim.
   - Kaluza-Klein → φ ∝ volume of compact dim.
                                            2
                                        − /M∗
     Weird stuff: Non-local ⊃ R e                R
   - Lorentz violation: Horava-Lifschitz gravity                      ¨
                                                                 ξ → −ξ +   4ξ


                     Miguel Zumalac´rregui
                                   a         Modified Gravity
Theory    Introduction
                             Observations   Modified Gravities


Scalar-Tensor Theories

    Scalar fields arise in many contexts:
      geometry of extra dimensions
      f (R), decoupling limit of massive gravity, etc...

    Isotropy friendly → no prefered directions




                    Miguel Zumalac´rregui
                                  a         Modified Gravity
Theory    Introduction
                             Observations   Modified Gravities


Scalar-Tensor Theories

    Scalar fields arise in many contexts:
      geometry of extra dimensions
      f (R), decoupling limit of massive gravity, etc...

    Isotropy friendly → no prefered directions

    Most general: Horndenski’s Theory → 4 functions of φ, (∂φ)2 :

      L2 = K[φ, (∂φ)2 ] → no φ ↔ Rµν interaction (dark energy)

      L3 , L4 , L5 explicit couplings φ ↔ Rµν (modified gravity)




                    Miguel Zumalac´rregui
                                  a         Modified Gravity
Theory    Introduction
                             Observations   Modified Gravities


Scalar-Tensor Theories

    Scalar fields arise in many contexts:
      geometry of extra dimensions
      f (R), decoupling limit of massive gravity, etc...

    Isotropy friendly → no prefered directions

    Most general: Horndenski’s Theory → 4 functions of φ, (∂φ)2 :

      L2 = K[φ, (∂φ)2 ] → no φ ↔ Rµν interaction (dark energy)

      L3 , L4 , L5 explicit couplings φ ↔ Rµν (modified gravity)

    Also interacing DM: scalar couples only to DM

                    Miguel Zumalac´rregui
                                  a         Modified Gravity
Theory    Solar System
                             Observations   Cosmology


Local Gravity Tests

                                            √
                                             −gR
   Transform to Einstein-frame: L =         16πG
                                                   + Lm (˜µν [φ]) +Lφ
                                                         g
                                                           matter metric

   Matter follows geodesic of gµν rather than gµν
                              ˜
   ⇒ φ mediates an additional force F ∝              φ




                    Miguel Zumalac´rregui
                                  a         Modified Gravity
Theory    Solar System
                                  Observations   Cosmology


Local Gravity Tests

                                                 √
                                                  −gR
   Transform to Einstein-frame: L =              16πG
                                                        + Lm (˜µν [φ]) +Lφ
                                                              g
                                                                matter metric

   Matter follows geodesic of gµν rather than gµν
                              ˜
   ⇒ φ mediates an additional force F ∝                   φ


   Constrained by laboratory and Solar System tests:

        Perihelion precession, Lunar laser ranging... → massive bodies

        Gravitational light bending, time delay... → light geodesics
   e.g. http://relativity.livingreviews.org/Articles/lrr-2001-4/



                         Miguel Zumalac´rregui
                                       a         Modified Gravity
Theory    Solar System
                               Observations   Cosmology


Screening Mechanisms
   §                                                                    ¤
   Non-linear interactions → Hide φ around massive bodies
   ¦                                                                    ¥
   Screening from V (φ)
                                                                −mφ r
                                                                e
        Chameleon: ρ dependent field range: φ ∝                      r
        Symmetron: ρ dependent coupling to matter
        Only surface contribution from screened objects: Qφ                 QG .




   (Lam Hui’s lectures: www.slideshare.net/CosmoAIMS/hui-modified-gravity)
                      Miguel Zumalac´rregui
                                    a         Modified Gravity
Theory    Solar System
                               Observations   Cosmology


Screening Mechanisms
   §                                                                     ¤
   Non-linear interactions → Hide φ around massive bodies
   ¦                                                                     ¥
   Screening from V (φ)
                                                                −mφ r
                                                                e
        Chameleon: ρ dependent field range: φ ∝                      r
        Symmetron: ρ dependent coupling to matter
        Only surface contribution from screened objects: Qφ                      QG .

   Screening from          φ
                                                                             1
                                                                        rs   3
        Vainshtein: interaction suppressed for r                rV =    m2
                                                                         ∗

        significant scalar force for r > rV : Qφ ≈ QG
        Disformal: field evolution independent of ρ (if ρ                m4 )
                                                                         ∗

   (Lam Hui’s lectures: www.slideshare.net/CosmoAIMS/hui-modified-gravity)
                      Miguel Zumalac´rregui
                                    a         Modified Gravity
Theory    Solar System
                            Observations   Cosmology


Cosmology

    Scalars can source cosmic acceleration:
      Effective Cosmological Constant: Λ → V (φ) + 1 (∂φ)2
                                                  2
      Self-acceleration: H ≈ constant is solution.




                   Miguel Zumalac´rregui
                                 a         Modified Gravity
Theory      Solar System
                            Observations     Cosmology


Cosmology

    Scalars can source cosmic acceleration:
      Effective Cosmological Constant: Λ → V (φ) + 1 (∂φ)2
                                                  2
      Self-acceleration: H ≈ constant is solution.

  Einstein frame: Energy transfer

                          µν                  µν
                       µ Tm     =−         µ Tφ    = −Qφ,ν

    Geometric measurements (DL , DA ) can’t distinguish
  dark energy (Q = 0) from modified gravity (Q = 0)

    Perturbations: Additional force if Q = 0

                   Miguel Zumalac´rregui
                                 a           Modified Gravity
Theory    Solar System
                              Observations   Cosmology


Linear Perturbations

   Quasi-static approximation on sub-horizon scales
                                                   k2           δρ
   Neglect time derivatives, keep terms ∝          a2
                                                      ,δ    ≡   ρ

       ¨      ˙
       δ + 2H δ ≈ 4π Geff (k, t) ρm δ (effective gravitational constant)
       Φ = − η(k, t) Ψ (anisotropic parameter)




                     Miguel Zumalac´rregui
                                   a         Modified Gravity
Theory    Solar System
                                   Observations   Cosmology


Linear Perturbations

   Quasi-static approximation on sub-horizon scales
                                                        k2            δρ
   Neglect time derivatives, keep terms ∝               a2
                                                           ,δ    ≡    ρ

          ¨      ˙
          δ + 2H δ ≈ 4π Geff (k, t) ρm δ (effective gravitational constant)
          Φ = − η(k, t) Ψ (anisotropic parameter)

                        Geff   1 1 + 4(f /f )(k/a)2                    1 + 2(f /f )(k/a)2
       f (R) gravity:       =                      ,             η=
                         G    f 1 + 3(f /f )(k/a)2                    1 + 4(f /f )(k/a)2
   4
   3
       enhancement on small scales (De Felice et al. 1108.4242).




                          Miguel Zumalac´rregui
                                        a         Modified Gravity
Theory    Solar System
                                   Observations   Cosmology


Linear Perturbations

   Quasi-static approximation on sub-horizon scales
                                                        k2            δρ
   Neglect time derivatives, keep terms ∝               a2
                                                           ,δ    ≡    ρ

          ¨      ˙
          δ + 2H δ ≈ 4π Geff (k, t) ρm δ (effective gravitational constant)
          Φ = − η(k, t) Ψ (anisotropic parameter)

                        Geff   1 1 + 4(f /f )(k/a)2                    1 + 2(f /f )(k/a)2
       f (R) gravity:       =                      ,             η=
                         G    f 1 + 3(f /f )(k/a)2                    1 + 4(f /f )(k/a)2
   4
   3
       enhancement on small scales (De Felice et al. 1108.4242).

   Parameterized Post-Friedmann framework (PPF)
   General treatment of linear perturbations → O(20) free functions
   (e.g. Baker et al. 1209.2117).

                          Miguel Zumalac´rregui
                                        a         Modified Gravity
Theory    Solar System
                              Observations   Cosmology


Non-Linear Perturbations
   - Higher order PT very hard, especially beyond GR




                                                               from
                                                               M. Baldi

                                                               1109.5695




   - N-body simulations computationally expensive:
       Non-linear equation for φ(x, t): Solve on a grid.
                                                   ˙ ¨
       Usually assume quasi-static field evolution φ, φ ∼ 0
   yet necessary to access small scales!
                     Miguel Zumalac´rregui
                                   a         Modified Gravity
Theory    Solar System
                            Observations   Cosmology


Dynamical Observables: Matter and Light

    Large Scale Structure:
      P (k) → linear & non-linear, limited by bias
                                             d log(δ)
      Peculiar velocities/RSD → f =          d log(a)     (linear)




                   Miguel Zumalac´rregui
                                 a         Modified Gravity
Theory    Solar System
                            Observations   Cosmology


Dynamical Observables: Matter and Light

    Large Scale Structure:
      P (k) → linear & non-linear, limited by bias
                                             d log(δ)
      Peculiar velocities/RSD → f =          d log(a)     (linear)
      Bispectrum → non-linear
      Cluster abundances & profiles → non-linear scales!




                   Miguel Zumalac´rregui
                                 a         Modified Gravity
Theory    Solar System
                            Observations   Cosmology


Dynamical Observables: Matter and Light

    Large Scale Structure:
      P (k) → linear & non-linear, limited by bias
                                             d log(δ)
      Peculiar velocities/RSD → f =          d log(a)     (linear)
      Bispectrum → non-linear
      Cluster abundances & profiles → non-linear scales!
      Voids → test low ρ environments




                   Miguel Zumalac´rregui
                                 a         Modified Gravity
Theory    Solar System
                            Observations   Cosmology


Dynamical Observables: Matter and Light

    Large Scale Structure:
      P (k) → linear & non-linear, limited by bias
                                             d log(δ)
      Peculiar velocities/RSD → f =          d log(a)     (linear)
      Bispectrum → non-linear
      Cluster abundances & profiles → non-linear scales!
      Voids → test low ρ environments

    Cosmic Microwave Background
                                        ˙   ˙
      Integrated Sachs Wolfe → measures Φ − Ψ, small statistics




                   Miguel Zumalac´rregui
                                 a         Modified Gravity
Theory    Solar System
                            Observations   Cosmology


Dynamical Observables: Matter and Light

    Large Scale Structure:
      P (k) → linear & non-linear, limited by bias
                                             d log(δ)
      Peculiar velocities/RSD → f =          d log(a)     (linear)
      Bispectrum → non-linear
      Cluster abundances & profiles → non-linear scales!
      Voids → test low ρ environments

    Cosmic Microwave Background
                                        ˙   ˙
      Integrated Sachs Wolfe → measures Φ − Ψ, small statistics
    Weak gravitational lensing:
      Shear → measures Φ + Ψ, complementary to P (k),
              non-linear scales, systematics

                   Miguel Zumalac´rregui
                                 a         Modified Gravity
Theory    Solar System
                            Observations   Cosmology


Theory vs Observations

      No pure test of gravity: probes sensitive to several effects
      (expansion, neutrinos, primordial non-Gaussianity...)
      ⇒ Complementarity is essential




                   Miguel Zumalac´rregui
                                 a         Modified Gravity
Theory    Solar System
                            Observations   Cosmology


Theory vs Observations

      No pure test of gravity: probes sensitive to several effects
      (expansion, neutrinos, primordial non-Gaussianity...)
      ⇒ Complementarity is essential


      Ideally: self consistent analysis → assume MG on all steps
      or at least keep track of assumptions:

          Poisson eq. Φ = 4πk 2 Gρk
          Matter geodesics xi = − i Φ
                            ¨
          Galaxy bias
          Calibration with simulations
          ···


                   Miguel Zumalac´rregui
                                 a         Modified Gravity
Theory    Solar System
                                Observations   Cosmology


Conclusions

        Many possible modifications of gravity (not only f (R)!)

        Scalar-tensor encompass many of them in some limit

        Screening mechanisms to pass local gravity tests

        Cosmology: need dynamical data to distinguish DE from MG
        (LSS, CMB, lensing...)

        Theory vs Data: exploit complementarity and bear
        assumptions in mind

   Doubts? check the Bible of modified gravity:
   - Clifton et al. 2011 ”Modified Gravity and Cosmology” 1106.2476


                       Miguel Zumalac´rregui
                                     a         Modified Gravity
Theory    Solar System
         Observations   Cosmology




          Backup Slides




Miguel Zumalac´rregui
              a         Modified Gravity
Theory    Solar System
                                 Observations   Cosmology


The Frontiers of Gravity
   What is the most general possible theory of gravity?

   Ostrogradski’s Theorem (1850)
                                           ∂nq
                Theories with L ⊃              , n ≥ 2 are unstable∗
                                           ∂tn

                                       ∂L   d ∂L     d2 ∂L
              q(t), L(q, q, q ) →
                         ˙ ¨              −        +         =0
                                       ∂q   dt ∂ q
                                                 ˙   dt2 ∂ q
                                                           ¨
                      ...                                           ¨
            q, q, q , q → Q1 , Q2 , P1 , P2
               ˙ ¨                                      P1,2 ≡ ∂L/∂ Q1,2


                      H = P1 Q2 + terms independent of P1
   ∗
             ... ....
       If no q , q in the Equations ⇒ Loophole
                        Miguel Zumalac´rregui
                                      a         Modified Gravity
Theory    Solar System
                             Observations   Cosmology


Most General Scalar-Tensor theory

   Horndenski’s Theory (1974)
        £  
   gµν + φ    + Local + 4-D + Lorentz Theory with 2nd order Eqs.
        ¢ ¡
                                     1
    ⇒ ∃ 4 free functions of φ, X ≡ − 2 φ,µ φ,µ

       L2 = G2 (X, φ)      −→ No φ ↔ gµν interaction

       L3 = −G3 φ        −→ eqs ⊃ G3,X Rµν φ,µ φ,ν

       L4 = G4 R + G4,X ( φ)2 − φ;µν φ;µν

       L5 = G5 Gµν φ;µν
             − 1 G5,X ( φ)3 − 3( φ)φ;µν φ;µν + 2φ;µ;ν φ;ν ;λ φ;λ;µ
               6

                    Miguel Zumalac´rregui
                                  a         Modified Gravity

More Related Content

PPTX
Space and time
PDF
Introduction to Cosmology
PPTX
Relativity theory project & albert einsten
PPTX
Cosmology,bigbang and dark energy
PPTX
Dark matter
PPTX
B.tech sem i engineering physics u iii chapter 1-the special theory of relati...
PPTX
Entanglement and its applications
PDF
General Relativity and Cosmology
Space and time
Introduction to Cosmology
Relativity theory project & albert einsten
Cosmology,bigbang and dark energy
Dark matter
B.tech sem i engineering physics u iii chapter 1-the special theory of relati...
Entanglement and its applications
General Relativity and Cosmology

What's hot (20)

PPTX
An Introduction about The Black Hole and its types
PDF
Einstein's theory of general relativity
PPTX
Quantum entanglement (1).pptx
PPT
Dark Matter And Energy
PPTX
Quantum entanglement
PPTX
Spacetime
PPT
special relativity
PPT
Gravitational Waves
PPTX
Introduction to the General Theory of Relativity
PPTX
The wave-particle duality and the double slit experiment
PPTX
Solar wind presentation final
PDF
Applications of Quantum Entanglement Presentation
PPTX
EPR paradox
PPTX
L i g o ( Laser Interferometer Gravitational-Wave Observatory)
PPTX
Seminar presentation on Hubble's Law and Expanding Universe
PPTX
BASICS OF COSMOLOGY
PPTX
Ch 1 -keplers laws of motion
PPTX
The universe & mathematical cosmology
PPT
Quasa rs
PPT
Chapter 17 Lecture
An Introduction about The Black Hole and its types
Einstein's theory of general relativity
Quantum entanglement (1).pptx
Dark Matter And Energy
Quantum entanglement
Spacetime
special relativity
Gravitational Waves
Introduction to the General Theory of Relativity
The wave-particle duality and the double slit experiment
Solar wind presentation final
Applications of Quantum Entanglement Presentation
EPR paradox
L i g o ( Laser Interferometer Gravitational-Wave Observatory)
Seminar presentation on Hubble's Law and Expanding Universe
BASICS OF COSMOLOGY
Ch 1 -keplers laws of motion
The universe & mathematical cosmology
Quasa rs
Chapter 17 Lecture
Ad

Similar to Modified Gravity - a brief tour (20)

PDF
Astrophysical tests of_modified_gravity
PDF
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
PDF
NCTS--FGCPA-LeCosPA-[Kazuharu-Bamba].pdf
PDF
May the Force NOT be with you
PPTX
EMU M.Sc. Thesis Presentation "Dark Matter; Modification of f(R) or WIMPS M...
PDF
Hui - modified gravity
PDF
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Astro parti...
PDF
Quantum-systems investigations vs optical-systems ones
PDF
General relativity 2010
PPT
Overview of GTR and Introduction to Cosmology
PDF
The Scalartensor Theory Of Gravitation 1st Edition Yasunori Fujii
PDF
Particles Here And Beyond The Mirror D Rabounski L Borissova
PDF
Comp3 gravitation
PDF
The Scalartensor Theory Of Gravitation 1st Edition Yasunori Fujii
PDF
Explorations in Higher-Dimensional Gravity Theory.pdf
PDF
A short introduction to massive gravity... or ... Can one give a mass to the ...
PDF
Dark Matter - Or What?
PDF
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
PDF
Evaluation of post-Einsteinian gravitational theories through parameterized p...
PDF
Shamit Kachru on "Extra dimensions" at a LASER
Astrophysical tests of_modified_gravity
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012Nonlinear ele...
NCTS--FGCPA-LeCosPA-[Kazuharu-Bamba].pdf
May the Force NOT be with you
EMU M.Sc. Thesis Presentation "Dark Matter; Modification of f(R) or WIMPS M...
Hui - modified gravity
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Astro parti...
Quantum-systems investigations vs optical-systems ones
General relativity 2010
Overview of GTR and Introduction to Cosmology
The Scalartensor Theory Of Gravitation 1st Edition Yasunori Fujii
Particles Here And Beyond The Mirror D Rabounski L Borissova
Comp3 gravitation
The Scalartensor Theory Of Gravitation 1st Edition Yasunori Fujii
Explorations in Higher-Dimensional Gravity Theory.pdf
A short introduction to massive gravity... or ... Can one give a mass to the ...
Dark Matter - Or What?
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
Evaluation of post-Einsteinian gravitational theories through parameterized p...
Shamit Kachru on "Extra dimensions" at a LASER
Ad

Modified Gravity - a brief tour

  • 1. Theory Observations Modified Gravity A brief tour Miguel Zumalac´rregui a Instituto de F´ ısica Te´rica IFT-UAM-CSIC o IFT-UAM Cosmology meeting IFT, February 2013, Madrid Miguel Zumalac´rregui a Modified Gravity
  • 2. Theory Observations Outline 1 Theory Introduction Modified Gravities 2 Observations Solar System Cosmology 3) Conclusions Miguel Zumalac´rregui a Modified Gravity
  • 3. Theory Introduction Observations Modified Gravities Introduction Why Modified Gravity? Mystery: Λ and CDM problems Observational Outliers (LSS bulk motions, halo profiles, satellite galaxies...) Testing General Relativity ⇒ Model independence of cosmological probes Miguel Zumalac´rregui a Modified Gravity
  • 4. Theory Introduction Observations Modified Gravities Introduction Why Modified Gravity? Mystery: Λ and CDM problems Observational Outliers (LSS bulk motions, halo profiles, satellite galaxies...) Testing General Relativity ⇒ Model independence of cosmological probes Main Points Many different scenarios for modified gravity Need to analyze in a (sufficiently) self consistent way Miguel Zumalac´rregui a Modified Gravity
  • 5. Theory Introduction Observations Modified Gravities Einstein’s Theory Lovelock’s Theorem (1971) gµν + Local + 4-D + Lorentz Theory with 2nd order Eqs∗ √ 1 −g (R − 2Λ) 16πG ∗ Theories with higher time derivatives unstable: E → −∞ (Ostrogradski’s Theorem) Miguel Zumalac´rregui a Modified Gravity
  • 6. Theory Introduction Observations Modified Gravities Einstein’s Theory Lovelock’s Theorem (1971) gµν + Local + 4-D + Lorentz Theory with 2nd order Eqs∗ √ 1 −g (R − 2Λ) 16πG ∗ Theories with higher time derivatives unstable: E → −∞ (Ostrogradski’s Theorem) Acceptable modifications (Clifton et al. 1106.2476): Higher derivatives Additional fields Extra dimensions Weird stuff: Lorentz violation, non-local, non-metric... Miguel Zumalac´rregui a Modified Gravity
  • 7. Theory Introduction Observations Modified Gravities Beyond Einstein’s Theory: Examples Higher derivatives: f (R) gravity −→ Equivalent to h(φ)R + · · · Miguel Zumalac´rregui a Modified Gravity
  • 8. Theory Introduction Observations Modified Gravities Beyond Einstein’s Theory: Examples Higher derivatives: f (R) gravity −→ Equivalent to h(φ)R + · · · § ¤ Additional fields: Scalar: φ ¦ ¥ - Vector: Aµ , e.g. TeVeS (alternative to DM) - Tensor: hµν Massive gravity −→ scalar φ in decoupling limit Miguel Zumalac´rregui a Modified Gravity
  • 9. Theory Introduction Observations Modified Gravities Beyond Einstein’s Theory: Examples Higher derivatives: f (R) gravity −→ Equivalent to h(φ)R + · · · § ¤ Additional fields: Scalar: φ ¦ ¥ - Vector: Aµ , e.g. TeVeS (alternative to DM) - Tensor: hµν Massive gravity −→ scalar φ in decoupling limit Extra dimensions: - DGP → φ = brane location in extra dim. - Kaluza-Klein → φ ∝ volume of compact dim. Miguel Zumalac´rregui a Modified Gravity
  • 10. Theory Introduction Observations Modified Gravities Beyond Einstein’s Theory: Examples Higher derivatives: f (R) gravity −→ Equivalent to h(φ)R + · · · § ¤ Additional fields: Scalar: φ ¦ ¥ - Vector: Aµ , e.g. TeVeS (alternative to DM) - Tensor: hµν Massive gravity −→ scalar φ in decoupling limit Extra dimensions: - DGP → φ = brane location in extra dim. - Kaluza-Klein → φ ∝ volume of compact dim. 2 − /M∗ Weird stuff: Non-local ⊃ R e R - Lorentz violation: Horava-Lifschitz gravity ¨ ξ → −ξ + 4ξ Miguel Zumalac´rregui a Modified Gravity
  • 11. Theory Introduction Observations Modified Gravities Scalar-Tensor Theories Scalar fields arise in many contexts: geometry of extra dimensions f (R), decoupling limit of massive gravity, etc... Isotropy friendly → no prefered directions Miguel Zumalac´rregui a Modified Gravity
  • 12. Theory Introduction Observations Modified Gravities Scalar-Tensor Theories Scalar fields arise in many contexts: geometry of extra dimensions f (R), decoupling limit of massive gravity, etc... Isotropy friendly → no prefered directions Most general: Horndenski’s Theory → 4 functions of φ, (∂φ)2 : L2 = K[φ, (∂φ)2 ] → no φ ↔ Rµν interaction (dark energy) L3 , L4 , L5 explicit couplings φ ↔ Rµν (modified gravity) Miguel Zumalac´rregui a Modified Gravity
  • 13. Theory Introduction Observations Modified Gravities Scalar-Tensor Theories Scalar fields arise in many contexts: geometry of extra dimensions f (R), decoupling limit of massive gravity, etc... Isotropy friendly → no prefered directions Most general: Horndenski’s Theory → 4 functions of φ, (∂φ)2 : L2 = K[φ, (∂φ)2 ] → no φ ↔ Rµν interaction (dark energy) L3 , L4 , L5 explicit couplings φ ↔ Rµν (modified gravity) Also interacing DM: scalar couples only to DM Miguel Zumalac´rregui a Modified Gravity
  • 14. Theory Solar System Observations Cosmology Local Gravity Tests √ −gR Transform to Einstein-frame: L = 16πG + Lm (˜µν [φ]) +Lφ g matter metric Matter follows geodesic of gµν rather than gµν ˜ ⇒ φ mediates an additional force F ∝ φ Miguel Zumalac´rregui a Modified Gravity
  • 15. Theory Solar System Observations Cosmology Local Gravity Tests √ −gR Transform to Einstein-frame: L = 16πG + Lm (˜µν [φ]) +Lφ g matter metric Matter follows geodesic of gµν rather than gµν ˜ ⇒ φ mediates an additional force F ∝ φ Constrained by laboratory and Solar System tests: Perihelion precession, Lunar laser ranging... → massive bodies Gravitational light bending, time delay... → light geodesics e.g. http://relativity.livingreviews.org/Articles/lrr-2001-4/ Miguel Zumalac´rregui a Modified Gravity
  • 16. Theory Solar System Observations Cosmology Screening Mechanisms § ¤ Non-linear interactions → Hide φ around massive bodies ¦ ¥ Screening from V (φ) −mφ r e Chameleon: ρ dependent field range: φ ∝ r Symmetron: ρ dependent coupling to matter Only surface contribution from screened objects: Qφ QG . (Lam Hui’s lectures: www.slideshare.net/CosmoAIMS/hui-modified-gravity) Miguel Zumalac´rregui a Modified Gravity
  • 17. Theory Solar System Observations Cosmology Screening Mechanisms § ¤ Non-linear interactions → Hide φ around massive bodies ¦ ¥ Screening from V (φ) −mφ r e Chameleon: ρ dependent field range: φ ∝ r Symmetron: ρ dependent coupling to matter Only surface contribution from screened objects: Qφ QG . Screening from φ 1 rs 3 Vainshtein: interaction suppressed for r rV = m2 ∗ significant scalar force for r > rV : Qφ ≈ QG Disformal: field evolution independent of ρ (if ρ m4 ) ∗ (Lam Hui’s lectures: www.slideshare.net/CosmoAIMS/hui-modified-gravity) Miguel Zumalac´rregui a Modified Gravity
  • 18. Theory Solar System Observations Cosmology Cosmology Scalars can source cosmic acceleration: Effective Cosmological Constant: Λ → V (φ) + 1 (∂φ)2 2 Self-acceleration: H ≈ constant is solution. Miguel Zumalac´rregui a Modified Gravity
  • 19. Theory Solar System Observations Cosmology Cosmology Scalars can source cosmic acceleration: Effective Cosmological Constant: Λ → V (φ) + 1 (∂φ)2 2 Self-acceleration: H ≈ constant is solution. Einstein frame: Energy transfer µν µν µ Tm =− µ Tφ = −Qφ,ν Geometric measurements (DL , DA ) can’t distinguish dark energy (Q = 0) from modified gravity (Q = 0) Perturbations: Additional force if Q = 0 Miguel Zumalac´rregui a Modified Gravity
  • 20. Theory Solar System Observations Cosmology Linear Perturbations Quasi-static approximation on sub-horizon scales k2 δρ Neglect time derivatives, keep terms ∝ a2 ,δ ≡ ρ ¨ ˙ δ + 2H δ ≈ 4π Geff (k, t) ρm δ (effective gravitational constant) Φ = − η(k, t) Ψ (anisotropic parameter) Miguel Zumalac´rregui a Modified Gravity
  • 21. Theory Solar System Observations Cosmology Linear Perturbations Quasi-static approximation on sub-horizon scales k2 δρ Neglect time derivatives, keep terms ∝ a2 ,δ ≡ ρ ¨ ˙ δ + 2H δ ≈ 4π Geff (k, t) ρm δ (effective gravitational constant) Φ = − η(k, t) Ψ (anisotropic parameter) Geff 1 1 + 4(f /f )(k/a)2 1 + 2(f /f )(k/a)2 f (R) gravity: = , η= G f 1 + 3(f /f )(k/a)2 1 + 4(f /f )(k/a)2 4 3 enhancement on small scales (De Felice et al. 1108.4242). Miguel Zumalac´rregui a Modified Gravity
  • 22. Theory Solar System Observations Cosmology Linear Perturbations Quasi-static approximation on sub-horizon scales k2 δρ Neglect time derivatives, keep terms ∝ a2 ,δ ≡ ρ ¨ ˙ δ + 2H δ ≈ 4π Geff (k, t) ρm δ (effective gravitational constant) Φ = − η(k, t) Ψ (anisotropic parameter) Geff 1 1 + 4(f /f )(k/a)2 1 + 2(f /f )(k/a)2 f (R) gravity: = , η= G f 1 + 3(f /f )(k/a)2 1 + 4(f /f )(k/a)2 4 3 enhancement on small scales (De Felice et al. 1108.4242). Parameterized Post-Friedmann framework (PPF) General treatment of linear perturbations → O(20) free functions (e.g. Baker et al. 1209.2117). Miguel Zumalac´rregui a Modified Gravity
  • 23. Theory Solar System Observations Cosmology Non-Linear Perturbations - Higher order PT very hard, especially beyond GR from M. Baldi 1109.5695 - N-body simulations computationally expensive: Non-linear equation for φ(x, t): Solve on a grid. ˙ ¨ Usually assume quasi-static field evolution φ, φ ∼ 0 yet necessary to access small scales! Miguel Zumalac´rregui a Modified Gravity
  • 24. Theory Solar System Observations Cosmology Dynamical Observables: Matter and Light Large Scale Structure: P (k) → linear & non-linear, limited by bias d log(δ) Peculiar velocities/RSD → f = d log(a) (linear) Miguel Zumalac´rregui a Modified Gravity
  • 25. Theory Solar System Observations Cosmology Dynamical Observables: Matter and Light Large Scale Structure: P (k) → linear & non-linear, limited by bias d log(δ) Peculiar velocities/RSD → f = d log(a) (linear) Bispectrum → non-linear Cluster abundances & profiles → non-linear scales! Miguel Zumalac´rregui a Modified Gravity
  • 26. Theory Solar System Observations Cosmology Dynamical Observables: Matter and Light Large Scale Structure: P (k) → linear & non-linear, limited by bias d log(δ) Peculiar velocities/RSD → f = d log(a) (linear) Bispectrum → non-linear Cluster abundances & profiles → non-linear scales! Voids → test low ρ environments Miguel Zumalac´rregui a Modified Gravity
  • 27. Theory Solar System Observations Cosmology Dynamical Observables: Matter and Light Large Scale Structure: P (k) → linear & non-linear, limited by bias d log(δ) Peculiar velocities/RSD → f = d log(a) (linear) Bispectrum → non-linear Cluster abundances & profiles → non-linear scales! Voids → test low ρ environments Cosmic Microwave Background ˙ ˙ Integrated Sachs Wolfe → measures Φ − Ψ, small statistics Miguel Zumalac´rregui a Modified Gravity
  • 28. Theory Solar System Observations Cosmology Dynamical Observables: Matter and Light Large Scale Structure: P (k) → linear & non-linear, limited by bias d log(δ) Peculiar velocities/RSD → f = d log(a) (linear) Bispectrum → non-linear Cluster abundances & profiles → non-linear scales! Voids → test low ρ environments Cosmic Microwave Background ˙ ˙ Integrated Sachs Wolfe → measures Φ − Ψ, small statistics Weak gravitational lensing: Shear → measures Φ + Ψ, complementary to P (k), non-linear scales, systematics Miguel Zumalac´rregui a Modified Gravity
  • 29. Theory Solar System Observations Cosmology Theory vs Observations No pure test of gravity: probes sensitive to several effects (expansion, neutrinos, primordial non-Gaussianity...) ⇒ Complementarity is essential Miguel Zumalac´rregui a Modified Gravity
  • 30. Theory Solar System Observations Cosmology Theory vs Observations No pure test of gravity: probes sensitive to several effects (expansion, neutrinos, primordial non-Gaussianity...) ⇒ Complementarity is essential Ideally: self consistent analysis → assume MG on all steps or at least keep track of assumptions: Poisson eq. Φ = 4πk 2 Gρk Matter geodesics xi = − i Φ ¨ Galaxy bias Calibration with simulations ··· Miguel Zumalac´rregui a Modified Gravity
  • 31. Theory Solar System Observations Cosmology Conclusions Many possible modifications of gravity (not only f (R)!) Scalar-tensor encompass many of them in some limit Screening mechanisms to pass local gravity tests Cosmology: need dynamical data to distinguish DE from MG (LSS, CMB, lensing...) Theory vs Data: exploit complementarity and bear assumptions in mind Doubts? check the Bible of modified gravity: - Clifton et al. 2011 ”Modified Gravity and Cosmology” 1106.2476 Miguel Zumalac´rregui a Modified Gravity
  • 32. Theory Solar System Observations Cosmology Backup Slides Miguel Zumalac´rregui a Modified Gravity
  • 33. Theory Solar System Observations Cosmology The Frontiers of Gravity What is the most general possible theory of gravity? Ostrogradski’s Theorem (1850) ∂nq Theories with L ⊃ , n ≥ 2 are unstable∗ ∂tn ∂L d ∂L d2 ∂L q(t), L(q, q, q ) → ˙ ¨ − + =0 ∂q dt ∂ q ˙ dt2 ∂ q ¨ ... ¨ q, q, q , q → Q1 , Q2 , P1 , P2 ˙ ¨ P1,2 ≡ ∂L/∂ Q1,2 H = P1 Q2 + terms independent of P1 ∗ ... .... If no q , q in the Equations ⇒ Loophole Miguel Zumalac´rregui a Modified Gravity
  • 34. Theory Solar System Observations Cosmology Most General Scalar-Tensor theory Horndenski’s Theory (1974) £   gµν + φ + Local + 4-D + Lorentz Theory with 2nd order Eqs. ¢ ¡ 1 ⇒ ∃ 4 free functions of φ, X ≡ − 2 φ,µ φ,µ L2 = G2 (X, φ) −→ No φ ↔ gµν interaction L3 = −G3 φ −→ eqs ⊃ G3,X Rµν φ,µ φ,ν L4 = G4 R + G4,X ( φ)2 − φ;µν φ;µν L5 = G5 Gµν φ;µν − 1 G5,X ( φ)3 − 3( φ)φ;µν φ;µν + 2φ;µ;ν φ;ν ;λ φ;λ;µ 6 Miguel Zumalac´rregui a Modified Gravity