1
Lecture No. : 5 ‫المحاضرة‬
‫الخامسة‬
2
Fixed End Moment
Relative Stiffness
Distribution Factor
Table :
FEM
RS
DF
Fixed End Moment
Distribution Moment
Carry Over Moment
Distribution Moment
Solution Steps :
3
Fixed End Moment FEM
L
P
L
w
8
L
P
12
L
w 2
L
w
L
P
a b
w L2
20
w L2
30
P a b2
L2
P b a2
L2
Solution Steps :
4
Relative Stiffness RS
K =
L
3 EI
K = 3/4 Ko
K = 1/2 Ko
Sym
K =
L
2 EI
K =
L
6 EI
Anti-Sym
K = 3/2 Ko
K =
L
4 EI
K = Ko
Solution Steps :
5
Distribution Factor DF
1
3
2
1
1+2+3
2
1+2+3
3
1+2+3
1
6
1
3
1
2
Solution Steps :
6
Table :
Fixed End Moment
‫تمهيدية‬ ‫مرحلة‬
Solution Steps :
7
Table :
Fixed End Moment
Distribution Moment
Carry Over Moment
Distribution Moment
Carry Over Moment
Distribution Moment
Carry Over Moment
Distribution Moment
‫مرحلة‬
‫أولية‬
‫مرحلة‬
‫متكررة‬
‫مرحلة‬
‫متكررة‬
‫مرحلة‬
‫متكررة‬
Solution Steps :
8
Table :
DF
FEM
DM
COM
DM
MFinal
COM
DM
COM
DM
Solution Steps :
9
Frames
Without Sway With Sway
Symmetry With Support
Solution Steps :
10
A D
2 t/m
8 t
8 t
B C
12
I I
4I
6
6
Solution Steps :
11
Take it
In first DM
only
Solution Steps :
12
Solution Steps :
13
Advanced Example
in beams
14
Beams with settlement
Fixed End Moment
D
15
Using 3M equation method
Apply 3M eqn. at A :
L
EI
MA
0+ ( )
0+
2
L
EI
MB
+ ( ) = 6
D
L
6EI
MA
2 MB
+ =
D
L2
D
A B
16
Apply 3M eqn. at B :
L
EI
MB
+ ( )
0+
2 0
+
L
EI
MA ( ) = 6
D
L
-6EI
MA 2MB
+ =
D
L2
D
A B
17
6EI
MA
2 MB
+ =
D
L2
By addition
MA 0
MB
+ =
MA
MB
-
=
MA 2MB
+ =
-6EI D
L2
6EI
MA=
D
L2
MB =
-6EI D
L2
18
D
A B
6EI
MA =
D
L2
MB =
-6EI D
L2
6EI D
L2
6EI D
L2
+
_
19
20
6
I
A
B
8
2I
C
EI=4800 t.m2
2 cm
FEM :
Example 16 :
6EI D
L2
6x4800x0.02
62
6x2x4800x0.02
82
-16 18
Draw B.M.D for the shown beam
21
RS :
KAB : KBC
1
6
2
8
:
1
6
1
4
:
:
2 3
6
I
A
B
8
2I
C
22
DF :
DFAB : DFBC
2
2+3
3
2+3
:
:
0.4 0.6
KAB : KBC
:
2 3
6
I
A
B
8
2I
C
23
A B C
DF 0.4 0.6
FEM - 16 -16 +18 +18
+2
DM 0 0
-
-0.8 1.2
COM -0.4 -0.6
0 0
DM 0 0
0 0
MFinal -16.4 -16.8 16.8 17.4
16.4 16.8 17.4
16.8
24
16.4
16.8
17.4
25
Frames
with Sway
26
A D
2 t/m
8 t
B C
12
I I
2 I
6
Example 17 :
Draw B.M.D & N.F.D and S.F.D for the shown frame
27
A D
2 t/m
8 t
B C
12
6
FEM :
M FBC
12
L
w 2
=
12
12
2 2

= = - 24 tm
8
L
P
M FAB = =
8
6
8
= - 6 tm M FBA
= 6 tm
M FCB
= 24 tm
28
A D
B C
12
I I
2 I
6
RS :
KAB : KBC
1
6
2
12
:
:
1 1
: KCD
1
6
:
: 1
DF :
DFBA : DFBC
1
2
1
2
:
DFCB : DFCD
1
2
1
2
:
29
6
I
A B D
2 t/m
2I I
12 6
C
8 t
DF 0.5 0.5 0.5 0.5
FEM
DM
COM
DM
- 6 +6 -24 +24 0 0
0 0
+9 +9 -12 -12
+4.5 0 +4.5
-6 -6
0
0 0
+3 +3 -2.25 -2.25
COM
DM
+1.5 0 +1.5
-1.13 -1.13
0
0 0
+0.57 +0.56 -0.75 -0.75
30
DF 0.5 0.5 0.5 0.5
FEM
DM
COM
DM
- 6 +6 -24 +24 0 0
0 0
+9 +9 -12 -12
+4.5 0 +4.5
-6 -6
0
0 0
+3 +3 -2.25 -2.25
COM
DM
+1.5 0 +1.5
-1.13 -1.13
0
0 0
+0.57 +0.56 -0.75 -0.75
MFinal
+0.28 +18.76 +15.14 -15.14 -7.51
COM
DM
+0.28 0 +0.28
-0.38 -0.38
0
0 0
+0.19 +0.19 -0.14 -0.14
-18.76
31
MFinal
+0.28 +18.76 +15.14 -15.14 -7.51
-18.76
0.28
18.76
18.76
15.14
15.14
7.51
32
2 t/m
12
6
18.76
0.28
7.51
15.14
18.76 15.14
8 t
4 t
4 t
19.04/6
19.04/6
7.17 t
0.83 t
3.17
12+? t 12-? t
3.78 t
3.78 t
Free Body Diagram 24 t
33
2 t/m
7.17 t
0.83 t
? t ? t
3.78 t
3.78 t
8 t
7.17 t 3.78 t
S Fx ≠ 0
Free Body Diagram
34
2 t/m
? t ? t
7.17 t 3.78 t
S Fx ≠ 0
Reason
Sway do not included in the solution
Solution
Take Sway into consideration
Sway is unknown ?
35
A D
2 t/m
8 t
B C
Ro
A D
B C
R1
d
Mo
M1
First Stage
Second Stage
Solution Stages
36
First Stage
Second Stage
Sway Moment Reaction
Mo
Ro
0
d R1
M1
2 d 2 R1
2 M1
3 d 3 R1
3 M1
D d D R1
D M1
.
.
.
.
.
.
.
.
.
.
.
.
Final Stage D d Mo + D M1
Ro
- D R1
37
Sway Moment Reaction
Final Case D d Mo + D M1
Ro - D R1
RFinal
No support
In original structure
Ro - D R1 = 0
Ro = D R1
D
R1
Ro
=
MFinal= Mo+ D M1
MFinal= Mo+ M1
R1
Ro
= 0
38
Return to our problem
39
2 t/m
7.17 t
0.83 t
? t ? t
3.78 t
3.78 t
8 t
7.17 t 3.78 t
S Fx ≠ 0
First Stage :
40
2 t/m
7.17 t
3.78 t
S Fx = 0
Ro
7.17 - 3.78 - Ro = 0
Ro = 3.39
41
Second Stage :
A D
B C
d
FEM :
6EI d
L2
A D
B C
12
I I
2 I
6
6EI d
62
42
6EI d
L2
6EI d
62
EI is unknown
Assume :
EI d = 60
6 x 60
62
= 10
M FAB
= - 10 tm M FBA
= - 10 tm
M FCD
= - 10 tm M FDC
= - 10 tm
d is unknown
43
Second Stage can be solved as previous
DF 0.5 0.5 0.5 0.5
FEM
DM
- 10 - 10 0 0 - 10 - 10
44
solved as anti-symmetry problem
A D
B C
Or
45
A D
B C
12
I I
2 I
6
RS :
KAB : KBC
1
6
2
12
:
:
2 3
DF :
DFBA : DFBC
2
5
3
5
:
3
2
x
46
DF
A B D
C
0.4 0.6
FEM
DM
COM
DM
- 10 -10 0
0 +4 +6
+2 0 0
0 0 0
MFinal - 8 - 6 + 6 + 6 - 6 - 8
47
MFinal
6
6
8
- 8 - 6 + 6 + 6 - 6 - 8
6
8
6
M1
48
12
6
6
8
14/6
14/6
6
14/6
14/6
14/6
14/6
R1
Free Body Diagram
8
49
14/6
14/6
R1
S Fx = 0
14/6 + 14/6 - R1 = 0
R1 = 14/3
50
Ro
Ro = 3.39
R1
R1 =14 / 3
RFinal = Ro - D R1 = 0
Ro = D R1
D
R1
Ro
=
14 / 3
3.39
= 0.726
=
MFinal= Mo+ 0.726 M1
51
0.28
18.76
18.76
15.14
15.14
7.51
6
6
8
6
8
6
M1
Mo
MFinal= Mo+ 0.726 M1
-
+
-
-
-
+
+ +
-
-
+.28+.726x-8
+7.51+.726x+8
-18.76+.726x6
-15.14+.726x-6
- 5.53
13.32
- 14.40 - 19.50
52
- 5.53 13.32
- 14.40 - 19.50
5.53
14.40
13.32
19.50
14.40
19.50
53
A D
2 t/m
8 t
B C
12
6
5.53
14.40
13.32
19.50
14.40
19.50
9.97
16.95
12
2.03
36
19.05
+
+
+
-
-
- -
-
54
2 t/m
8 t
12
6
14.40
5.53 13.32
19.50
14.40 19.50
4 t
4 t
8.87/6
8.87/6
5.48 t
2.52 t
1.47
5.47 t
32.82/6
32.82/6
5.48 t
Free Body Diagram
- 5.53 13.32
- 14.40 - 19.50
55
2 t/m
14.40 19.50
24 t
12 t 12 t
5.1/12 t
5.1/12 t 0.425 t
11.575 t 12.425 t
56
2 t/m
8 t
5.48 t
2.52 t
5.48 t
5.48 t
24 t
11.575 t 12.425 t
5.48 t
5.48 t
11.575 t
12.425 t
57
2.52
5.48
5.48
11.575
12.425
SFD
- -
+
+
+
2 t/m
8 t
5.48 t
2.52 t
5.48 t
5.48 t
24 t
11.575 t 12.425 t
5.48 t
5.48 t
11.575 t
12.425 t
58
2 t/m
8 t
5.48 t
2.52 t
5.48 t
5.48 t
24 t
11.575 t 12.425 t
5.48 t
5.48 t
11.575 t
12.425 t
11.575
5.48
NFD
-
-
-
12.425
59
A D
16 t
B C
12
I 2 I
2 I
6
Example 18 :
Draw B.M.D for the shown frame
3
60
A D
16 t
B C
12
6
3
First Stage :
61
FEM :
M FBC= -27 tm
A
D
16 t
B C
12
6
3
B C
16 t
9
3
16 x 3 x 92
122
16 x 9 x 32
122
- 27 + 9
M FCB= +9 tm
62
RS :
KAB : KBC
1
6
2
12
:
:
2 2
: KCD
2
6
:
: 3
DF :
DFBA : DFBC
1
2
1
2
:
DFCB : DFCD
2
5
3
5
:
A D
B C
12
I 2 I
2 I
6
3
4
x
63
DF 0.5 0.5 0.4 0.6
FEM
DM
COM
DM
0 0 -27 +9 0 0
0 0
+13.5 +13.5 -3.6 -5.4
+6.75 0 +6.75
- 1.8 0
0
0 0
+0.9 +0.9 -2.7 -4.05
COM
DM
+0.45 0 +0.45
-1.35 0
0
0 0
+0.67 +0.68 -0.18 -0.27
6
I
A B D
2 t/m
2I 2I
12 6
C
8 t
64
DF 0.5 0.5 0.4 0.6
MFinal
+7.54 +15.11 +9.92 -9.92 0
COM
DM
+0.34 0 +0.34
-0.09 0
0
0 0
+0.04 +0.05 -0.14 -0.20
-15.11
FEM
DM
COM
DM
0 0 -27 +9 0 0
0 0
+13.5 +13.5 -3.6 -5.4
+6.75 0 +6.75
- 1.8 0
0
0 0
+0.9 +0.9 -2.7 -4.05
COM
DM
+0.45 0 +0.45
-1.35 0
0
0 0
+0.67 +0.68 -0.18 -0.27
65
MFinal
7.54
15.11
15.11
9.92
9.92
+7.54 +15.11 +9.92 -9.92 0
-15.11
66
12
6
15.11
7.54
9.92
15.11 9.92
22.65/6
22.65/6
3.78
9.92/6
1.65 t
Free Body Diagram
9.92/6
67
3.78 t
3.78 t
? t ? t
1.65 t
1.65 t
3.78 t 1.65 t
First Stage :
68
3.78 t
1.65 t
S Fx = 0
Ro
3.78 - 1.65 - Ro = 0
Ro = 2.13
69
Second Stage :
A D
B C
d
FEM :
6EI d
L2
6EI d
62
A D
B C
12
I I
2 I
6
70
6EI d
L2
6EI d
62
EI is unknown
Assume :
EI d = 60
6 x 60
62
= 10
M FAB
= - 10 tm M FBA
= - 10 tm
M FCD
= - 10 tm M FDC
= - 10 tm
d is unknown
71
DF 0.5 0.5 0.4 0.6
FEM
DM
COM
DM
-10 -10 0 0 -5 0
0 0
+5 +5 +2 +3
+2.5 0 +2.5
+1 0
0
0 0
-0.5-0.5 -1 -1.5
COM
DM
-0.25 0 -0.25
-0.5 0
0
0 0
+0.25 +0.25 +0.1 +0.15
A B D
C
-10 -10 0 0 -10 -10
+10
+5
FEM
72
DF 0.5 0.5 0.4 0.6
MFinal
- 7.62 - 5.27 +3.43 - 3.43 0
COM
DM
+0.13 0 +0.13
+0.05 0
0
0 0
-0.02 -0.03 -0.05 -0.08
5.27
FEM
DM
COM
DM
-10 -10 0 0 -5 0
0 0
+5 +5 +2 +3
+2.5 0 +2.5
+1 0
0
0 0
-0.5-0.5 -1 -1.5
COM
DM
-0.25 0 -0.25
-0.5 0
0
0 0
+0.25 +0.25 +0.1 +0.15
73
MFinal
3.43
3.43
5.27
7.62
5.27
M1
- 7.62 - 5.27 +3.43 - 3.43 0
5.27
74
12
6
5.27
7.62
12.89/6
12.89/6
3.43
3.43/6
3.43/6
12.89/6
3.43/6
R1
Free Body Diagram
75
R1
S Fx = 0
12.89/6 + 3.43/6 - R1 = 0
R1 = 2.72
12.89/6
3.43/6
76
Ro
Ro = 2.13
R1
R1 =2.72
RFinal = Ro - D R1 = 0
Ro = D R1
D
R1
Ro
=
2.72
2.13
= 0.783
=
MFinal= Mo+ 0.783 M1
77
M1
Mo
MFinal= Mo+ 0.783 M1
-
-
-
-
+
+
-
-
+7.54+.783x-7.62
-15.11+.783x5.27
-9.92+.783x-3.43
+1.57
- 10.98 - 12.61
7.54
15.11
15.11
9.92
9.92
3.43
3.43
5.27
7.62
5.27
78
+1.57
- 10.98 - 12.61
1.57
10.98
12.61
10.98
12.61
79
1.57
10.98
12.61
10.98
12.61
A
D
16 t
B C
12
6
3
?
80
10.98
12.61
16 t
B C
9
3
1.63
1.63/4=0.41
11.39
16 x 3 x 9
12
= 36
24.61
81
1.57
10.98
12.61
10.98
12.61
11.39
24.61
+
+
-
- -
-
BMD
82
A
D
16 t
B C
12
I 2 I
2 I
6
Example 19 :
Draw B.M.D for the shown frame
8
4 t
83
First Stage :
A
D
16 t
B C
12
6
8
4 t
84
FEM :
A
D
16 t
B C
12
6 8
4 t
L
P
8
L
P
8
L
P
M FBC = = - 24 tm
M FCB = 24 tm
16 x 12
8
=
85
RS :
KAB : KBC
1
6
2
12
:
:
2 2
: KCD
2
8
:
: 3
DF :
DFBA : DFBC
1
2
1
2
:
DFCB : DFCD
2
5
3
5
:
A
D
B C
12
I
2 I
2 I
6 8
86
DF 0.5 0.5 0.4 0.6
FEM
DM
COM
DM
0 0 -24 +24 0 0
0 0
+12 +12 -9.6 -14.4
+6 0 +6
- 4.8 -7.2
0
0 0
+2.4 +2.4 -2.4 -3.6
COM
DM
+1.2 0 +1.2
-1.2 -1.8
0
0 0
+0.6 +0.6 -0.48 -0.72
6
I
A B D
2I 2I
12 8
C
87
DF 0.5 0.5 0.4 0.6
MFinal
+7.5 +15.12 +18.9 -18.9 9.36
COM
DM
+0.3 0 +0.3
-0.24 -0.36
0
0 0
+0.12 +0.12 -0.12 -0.18
-15.12
FEM
DM
COM
DM
0 0 -24 +24 0 0
0 0
+12 +12 -9.6 -14.4
+6 0 +6
- 4.8 -7.2
0
0 0
+2.4 +2.4 -2.4 -3.6
COM
DM
+1.2 0 +1.2
-1.2 -1.8
0
0 0
+0.6 +0.6 -0.48 -0.72
88
7.5
15.12
15.12
18.9
18.9
MFinal
+7.5 +15.12 +18.9 -18.9
-15.12 9.36
9.36
89
12
6
15.12
7.5
18.9
15.12 18.9
22.62/6
22.62/6
3.77
28.26/8
3.53 t
Free Body Diagram
28.86/8
9.36
8
90
3.77 t
3.77 t
? t ? t
3.53 t
3.53 t
3.77 t
3.53 t
First Stage :
A
D
16 t
B C
4 t
4 t
91
3.77 t
3.53 t
S Fx = 0
Ro
3.77 - 3.53 - 4 - Ro = 0
Ro = -3.76
4 t
92
Second Stage :
A
D
B C
d
FEM :
6EI d
L2
6EI d
62
6x2EI d
82
A
D
B C
12
I
2 I
2 I
6 8
93
6EI d
L2
6EI d
62
EI is unknown
Assume :
EI d = 48
6 x 48
62
= 8
M FAB
= - 8 tm M FBA
= - 8 tm
M FCD
= - 9 tm M FDC
= - 9 tm
d is unknown
12 x 48
82
= 9
6x2EI d
82
94
DF 0.5 0.5 0.4 0.6
FEM
DM
COM
DM
- 8 - 8 0 0 - 9 - 9
0 0
+4 +4 +3.6 +5.4
+2 0 +2
+1.8 +2.7
0
0 0
-0.9 -0.9 -0.8 -1.2
COM
DM
-0.45 0 -0.45
-0.4 -0.6
0
0 0
+0.2 +0.2 +0.18 +0.27
A B D
C
95
DF 0.5 0.5 0.4 0.6
MFinal
- 6.35 - 4.75 +4.59 - 4.59 -6.76
COM
DM
+0.1 0 +0.1
+0.09 +0.14
0
0 0
-0.05 -0.04 -0.04 -0.06
4.75
FEM
DM
COM
DM
- 8 - 8 0 0 - 9 - 9
0 0
+4 +4 +3.6 +5.4
+2 0 +2
+1.8 +2.7
0
0 0
-0.9 -0.9 -0.8 -1.2
COM
DM
-0.45 0 -0.45
-0.4 -0.6
0
0 0
+0.2 +0.2 +0.18 +0.27
96
MFinal
4.59
4.59
4.75
6.35
4.75
M1
- 6.35 - 4.75 +4.59 - 4.59 -6.76
4.75
6.76
97
6
4.75
6.35
11.1/6
11.1/6
4.59
11.35/8
11.35/8
11.1/6
11.35/8
R1
Free Body Diagram
6.76
4.59
4.59
4.75
6.35
4.75
6.76
98
R1
S Fx = 0
11.1/6 + 11.35/8 - R1 = 0
R1 = 3.27
11.1/6
11.35/8
99
Ro
Ro = 3.76
R1
R1 = 3.27
RFinal = Ro + D R1 = 0
Ro = - D R1
D =
R1
- Ro
3.27
-3.76
= -1.15
=
MFinal= Mo-1.15 M1
100
M1
Mo
MFinal= Mo- 1.15 M1
-
-
-
-
+
+
-
-
+7.5-1.15x-6.35
-15.12-1.15x4.75
-18.9-1.15x-4.59
+14.8
- 20.58 - 13.62
4.59
4.59
4.75
6.35
4.75
6.76
7.5
15.12
15.12
18.9
18.9
9.36 +
+
+9.36-1.15x+6.76
1.83
101
14.8
20.58 13.62
20.58
13.62
- 20.58 - 13.62
+1.83
+14.8
1.83
102
14.8
20.58 13.62
20.58
13.62
1.83
8
A
D
16 t
B C
12
6
4 t
17.1
48
30.9
BMD
+
-
+
-
103
Advanced Idea
104
Beams with springs
First Stage :
105
First Stage :
Ro
Second Stage :
R1
1 cm
106
First Stage
Second Stage
Settlement Moment Reaction
Mo
Ro
0
1 cm R1
M1
2 cm 2 R1
2 M1
3 cm 3 R1
3 M1
D cm D R1
D M1
.
.
.
.
.
.
.
.
.
.
.
.
Final Stage Mo + D M1
Ro
+ D R1
D cm
107
Settlement Moment Reaction
Final Stage Mo + D M1
Ro
+ D R1
D cm
F = K d
Ro + D R1 = K
D
MFinal= Mo+ D M1
108
Beams with Intermediate Hinge
Determinate Part Indeterminate Part
Determinate Part
Determinate Part
109
Indeterminate Part
Indeterminate Parts
110
Solution Steps :
Ro
R1
Mo
M1
d
111
First Stage
Second Stage
Moment Reaction
Mo
Ro
0
d R1
M1
2 d 2 R1
2 M1
3 d 3 R1
3 M1
D d D R1
D M1
.
.
.
.
.
.
.
.
.
.
.
.
Final Stage D d Mo + D M1
Ro
- D R1
Settlement
112
Sway Moment Reaction
Final Case D d Mo + D M1
Ro - D R1
RFinal
No support
In original structure
Ro - D R1 = 0
Ro = D R1
D
R1
Ro
=
MFinal= Mo+ D M1
MFinal= Mo+ M1
R1
Ro
= 0
113
Summary
Frames
Without Sway With Sway
Symmetry With Support
114
Frames With Sway
Summary
115
First Stage :
Mo
Ro
S Fx = 0
116
Second Stage :
A D
B C
d
M1
R1
S Fx = 0
117
Sway Moment Reaction
Final Case Mo + D M1
Ro - D R1
RFinal
No support
In original structure
Ro - D R1 = 0
Ro = D R1
D
R1
Ro
=
MFinal= Mo+ D M1
MFinal= Mo+ M1
R1
Ro
= 0
118
Questions

More Related Content

PPTX
Free Body Diagram - FBD
PPT
Engineering Mechanics Chapter 5 Equilibrium of a Rigid Body
PPTX
Lecture 6(E)_Zeb (1).pptx
PDF
indeterminate-truss-lab-report.pdf
PDF
Structur e very helpfull
PDF
Structural engineering i
PPTX
Rigid body equilibrium
DOCX
Calculation template
Free Body Diagram - FBD
Engineering Mechanics Chapter 5 Equilibrium of a Rigid Body
Lecture 6(E)_Zeb (1).pptx
indeterminate-truss-lab-report.pdf
Structur e very helpfull
Structural engineering i
Rigid body equilibrium
Calculation template

Similar to Moment Distribution Method.ppt (20)

PPT
4 intro to fbd chap3.1and3.2
PDF
4 mechanics and materials lec2
PDF
Me202 engineering mechanics l3
PPT
Engineering Mechanics: Statics.ppt
PPT
Lecture 8- Rigid Bodies- Equilibrium 3D.ppt
PPTX
3.3 Beam 2 _ cables civil engineering .pptx
PPTX
Equilibrium & Equation of Equilibrium : 2 D (ID no:10.01.03.014)
PDF
9789810682460 sm 05
PDF
Lecture-18 for the static course engineering.pdf
PPT
intro.ppt
PDF
Lecture Statics Analysis of Trusses
PPT
PPTX
Unit 2 AR Equilibrium of Force Systems.pptx
PPT
Dynamics of multiple degree of freedom linear systems
PDF
Iast.lect19.slides
PDF
Mechanical viberation
PDF
Mechanical vibration by janusz krodkiewski
PDF
Mechanical vibration by janusz krodkiewski
PDF
Libro mechanical vibration jm krodkiewski
4 intro to fbd chap3.1and3.2
4 mechanics and materials lec2
Me202 engineering mechanics l3
Engineering Mechanics: Statics.ppt
Lecture 8- Rigid Bodies- Equilibrium 3D.ppt
3.3 Beam 2 _ cables civil engineering .pptx
Equilibrium & Equation of Equilibrium : 2 D (ID no:10.01.03.014)
9789810682460 sm 05
Lecture-18 for the static course engineering.pdf
intro.ppt
Lecture Statics Analysis of Trusses
Unit 2 AR Equilibrium of Force Systems.pptx
Dynamics of multiple degree of freedom linear systems
Iast.lect19.slides
Mechanical viberation
Mechanical vibration by janusz krodkiewski
Mechanical vibration by janusz krodkiewski
Libro mechanical vibration jm krodkiewski
Ad

Recently uploaded (20)

PPTX
Software Engineering and software moduleing
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PDF
Design Guidelines and solutions for Plastics parts
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
PPTX
CyberSecurity Mobile and Wireless Devices
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PDF
Visual Aids for Exploratory Data Analysis.pdf
PDF
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
PPTX
Management Information system : MIS-e-Business Systems.pptx
PPTX
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
PDF
Abrasive, erosive and cavitation wear.pdf
PPTX
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PPTX
introduction to high performance computing
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
Software Engineering and software moduleing
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Design Guidelines and solutions for Plastics parts
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
CyberSecurity Mobile and Wireless Devices
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
Visual Aids for Exploratory Data Analysis.pdf
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
Management Information system : MIS-e-Business Systems.pptx
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
Abrasive, erosive and cavitation wear.pdf
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
distributed database system" (DDBS) is often used to refer to both the distri...
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
introduction to high performance computing
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
Ad

Moment Distribution Method.ppt