SlideShare a Scribd company logo
Smartlogic
                                   TM




 Apache Lucene Eurocon
                                    	
  
                                    	
  
           Jeremy	
  Bentley,	
  CEO	
  
1st degree of order


Filing management
• 80% of enterprise information is
unstructured
• Doubling every 19 months and
accelerating [Gartner]
• Increasing burden of compliance
• Enterprise 2.0 additions
2nd degree of order


Index management
• File plans and metadata schema
• Mono- hierarchical standardised
taxonomies
• Manually applied classification
• Low level of consistency and quality
3rd degree of order
Computerised 1st and 2nd degrees
5	
  

A 10 year Flatline Expectation Gap
• 2001,	
  IDC,	
  “Quan5fying	
  Enterprise	
  Search”	
  
	
  Searchers	
  are	
  successful	
  in	
  finding	
  what	
  they	
  seek	
  50%	
  of	
  the	
  9me	
  or	
  less	
  	
  
       	
  
• 2011,	
  MindMetre/SmartLogic	
  
More	
  than	
  half	
  	
  (52%)	
  cannot	
  find	
  the	
  informa9on	
  they	
  need	
  using	
  their	
  
Enterprise	
  search	
  system	
  	
  
The explosion of information
                                                               80Tb	
  




                                                              ?	
  
                                    20	
  5mes	
  
      Terabytes	
  of	
  data	
  

                                    increase	
  in	
  
                                    Informa5on	
  
                                    volume	
  


                                          4Tb	
  




                                    1993-­‐2001	
          2001-­‐2009	
  

                                                         Source:	
  the	
  Na5onal	
  Archives	
  
7	
  

Search Gets Harder as Data sets Grow
	
  
       Circa	
  1996	
  
	
  



                           	
  
Different vocabulary and ambiguity
You	
  Say	
        I	
  Say	
  
Moon	
  Buggy	
     Lunar	
  Roving	
  Vehicle	
  
                    Manned	
  Lunar	
  Surface	
  Vehicle	
  
                                                                          Missing results
Swine	
  Flu	
      Swine	
  Influenza	
  Virus	
  
                    H1N1	
  
Touchscreen	
       Touch	
  screen	
  
                    Mul5-­‐touch	
  


You	
  Say	
        What	
  do	
  you	
  mean?	
  
Apple	
             A	
  fruit?	
  
                    Fiona	
  -­‐	
  A	
  singer	
  /	
  songwriter?	
  
                    An	
  electronics	
  company?	
  
Rights	
            Employment	
  rights?	
                               Too many results
                    Equal	
  rights?	
  
                    Right	
  of	
  way?	
  
Ford	
              Ford	
  Motor	
  
                    Forward	
  Industrials	
  (5cker=FORD)	
  
                    A	
  shallow	
  river	
  crossing	
  
Conventional Search - Ineffective, Frustrating, and Inadequate

                                                                        Drawbacks
                                                                           Apparent
                                                                  1   Needle in the Haystack

          2	
                                                     2   Multiple search terms

                           1	
                                    3   Irrelevant results

                                                                  4   Out of date results

                                                                  5   Multiple media forms

                                                                  6   Unrestricted geography

                                                                  7   Inappropriate ads

                                                                      Not So Apparent
                                                   7	
            8   Can’t filter, select subset

                                                                  9   No related topics

  4	
                                                            10   Missing results

                                                                 11   No context or guidance

                                                                 12   Best resource not clear
                  5	
                      3	
  



                                                                 ü  Time consuming
                                   6	
                           ü  Inefficient
                                                                 ü  Ineffective
Knowing what you have
Paradox of Effort
 Metadata	
  is	
  to	
  search,	
  what	
  pistons	
  are	
  to	
  a	
  petrol	
  engine.	
  


                                           Web                        Enterprise

 Metadata effort                           High                            Low

 Result Quality                            Low                            High
 requirement
How do I structure it?
 Information

   Subject	
                                                                                   Crea5on	
  Date	
  


 Loca5on	
                                                                                     Modified	
  Date	
  


    Project	
                                                                                  Author	
  


 Func5on	
                                                                                     Format	
  
                                                                                               (PDF,DOC,XLS)	
  
 (IT,HR,Finance)	
  
                                    Protec5ve	
  
                                       Marker	
  


                                                       Expiry	
  

                                                                    Publisher	
  
                       Expert	
  




                                                    Reten5on	
  




                                                                                    Site	
  
Process                                                                                        Structural
3rd degree content universe
                                     Enterprise	
        Content	
  
                                       Search	
        Management	
  

                   Portal	
  
               Infrastructure	
                                               Document	
  
                                                                         	
  Management	
  




     Social	
  collaboraFon	
                                                  Records	
  
                                                                             Management	
  



                Publishing	
                                              Process	
  	
  
                 Systems	
                                             Management	
  &	
  
                                    Digital	
                            Workflow	
  
                                     Asset	
  
                                  Management	
  
                                                      eDiscovery	
  
4th degree of order
                                     Enterprise	
        Content	
  
                                       Search	
        Management	
  

                   Portal	
  
               Infrastructure	
                                               Document	
  
                                                                         	
  Management	
  




     Social	
  collaboraFon	
                   Content                        Records	
  
                                              Intelligence                   Management	
  



                Publishing	
                                              Process	
  	
  
                 Systems	
                                             Management	
  &	
  
                                    Digital	
                            Workflow	
  
                                     Asset	
  
                                  Management	
  
                                                      eDiscovery	
  
4th degree of order
Content Intelligence




                                        Content	
  Intelligence	
  Plahorm	
  



                 	
  	
  	
  Solr	
  
Semaphore
                                    Business	
  	
  
                                   Vocabulary	
  




               Expose	
                                              Apply	
  




                                                                                  Classifica5on	
  
    User	
                                                                          Decision	
  
   Ac5on	
  
                                        Inform	
  




                       Copyright	
  @	
  2011	
  Smartlogic	
  Semaphore	
  Limited	
                16	
  
Semaphore
                                             Business	
  
                                            Vocabulary	
  




Seman6c	
  models	
     Expose	
                                              Apply	
              Metadata	
  


                                        Seman6c	
  So7ware	
  

                                                                                           Classifica5on	
  
             User	
                                                                          Decision	
  
            Ac5on	
  
                                                 Inform	
  

                            Contextual	
  User	
  Experience	
  


                                Copyright	
  @	
  2011	
  Smartlogic	
  Semaphore	
  Limited	
                    17	
  
Components
• Metadata	
  
• Seman5c	
  Models	
  
• Contextual	
  User	
  Experience	
  
• Seman5c	
  Sokware	
  




                           Copyright	
  @	
  2011	
  Smartlogic	
  Semaphore	
  Limited	
     18	
  
Metadata
                            Today	
                                                     With	
  Content	
  Intelligence	
  


                           Manual	
                                                                    Automa5c	
  
                           Process	
                                                                    Process	
  


                                                                                             Mul5ple	
  	
  approaches	
  	
  
 Single	
  Unified	
  ‘one	
  size	
  fits	
  all’	
  approach	
  	
  
                                                                                     for	
  various	
  domains/audiences	
  


                     Long	
  5me	
  to	
  crak	
                                                Short	
  5me	
  to	
  build	
  
           	
  &	
  build	
  ,	
  manually	
  applied	
                                    &	
  deploy,	
  automa5cally	
  	
  



                   Low	
  Quality	
  tags	
                                                      High	
  Quality	
  tags	
  
                   High	
  cost	
  to	
  apply	
                                                 Low	
  cost	
  to	
  apply	
  


                                          Copyright	
  @	
  2011	
  Smartlogic	
  Semaphore	
  Limited	
                          19	
  
Semantic Models

                     Organising                           Contextualising                    Harnessing

      Parent topics                                       Content-types available                         Automate
                                    Covered by
     – Automotive sector                                          – Flashnotes                 compliance and
                                    – Bob Smith
       – Bond issuers                                          – Research reports             distribution tasks
                                                                 – Trade ideas                – ‘Watch list’ lookup
                                                            Analytics available         – Distribution according to preset
                                                              – Current bond price                     rules
    Preferred term (Agreed Label)
                                                            – Relative bond spreads          – Automated mapping
   Ford Motor Company                                          Influenced by              to create aggregator metadata
                                                               – Credit ratings on
                                                           Ford Motor Credit Company                User Experience
                                                         – European and US economies           – Conceptual relevance
       Also known as                 Location of         – Changes in consumer demand             – Related topics
             – Ford              fundamental data                                               – Links to analytics
         – Ford Motor             – Earnings estimates                                    Search engine enhancement
        – F (Bloomberg)              – Historic sales         Key competitors                     – Search results
           – FoMoCo                     and profits                – BMW                          – Email alerts
           – blue oval                                        – Daimler Chrysler
                                                               – General Motors                      Unstructured
                    Subsidiaries                                   – Toyota                 content integration
             – Ford Motor Credit Company                         – Volkswagen                – Published reports
                       – Mazda                                    Products                     – Related topics
                                                                    – Focus                  – Links to analytics
                                                                     – Ka                      – Search results
                                                                    – MX5                      – Email alerts
Contextual User Experience
                                           9	
  
                                                                            Key Features
                                                                    1   Taxonomy enables
                                                                        discovery, related searches
                                1	
                                 2   Related topics and content
                                                   2	
  
            3	
                                                     3   Facets enable filtering
                                                                        results by:
    4	
  
                                                                    4   -  Source

                                                                    5   -  Numerous topics

                                                                    6   -   Date

                5	
                                        7	
      7   Best Bets
                                        8	
                         8   Automated doc. Tagging

                                                                    9   A-Z




                                                                   ü  More relevant results
                                                                   ü  Fewer “bad hits”
                                                                   ü  Powerful navigation




                        6	
  
Content	
  ExploraFon




Highligh5ng	
  rela5onships	
  in	
  a	
  result	
  set	
  greatly	
  improves	
  the	
  user	
  experience.	
  
Semantic Software




                                 Semaphore	
  
                 Ontology	
  	
  &	
  Metadata	
  Management	
  
                     Text	
  Analysis	
  &	
  Extrac5on	
  
             Automa5c	
  	
  and	
  assisted	
  	
  Content	
  classifica5on	
  
                   Contextual	
  Naviga5on	
  Services	
  
                  Seman5c	
  Reasoning	
  &	
  Processing	
  
Semaphore Search Integration




                                                                                                                                            Classifica5on	
  
                                    Search	
                                                          Local	
  
                                                                                                      Term	
  




                                                                                                                                            Rules	
  
                                 Enhancement	
                                                        Index	
     Ontology	
  Manager	
                                Classifica5on	
  Server	
  
                                    Server	
  


                                 Web	
  Services	
  API	
                                                              Text	
  Miner	
                                             XML	
  API	
  

                                                                             Ontology	
  Informa5on	
  

                                                                                                                                                               Document	
  “Tags”	
            Extracted	
  Text	
  
                                           Sample	
  Interface	
  Code	
  
     User	
  Requests	
  




                                                                                                     Query	
                Index    	
                              Collector/Normalizer	
  
                                Search	
  
                              Applica5on	
  
                              Framework	
  

                            Portal	
                                                        Search	
  Engine	
                                                                                                         Corpus	
  


    Semaphore	
  core	
  module	
  
    Semaphore	
  op5onal	
  module	
  
4th degree of order
                                     Enterprise	
        Content	
  
                                       Search	
        Management	
  

                   Portal	
  
               Infrastructure	
                                               Document	
  
                                                                         	
  Management	
  




     Social	
  collaboraFon	
                   Content                        Records	
  
                                              Intelligence                   Management	
  



                Publishing	
                                              Process	
  	
  
                 Systems	
                                             Management	
  &	
  
                                    Digital	
                            Workflow	
  
                                     Asset	
  
                                  Management	
  
                                                      eDiscovery	
  
Content Intelligence


                                                Informa5on	
  
                                               Manufacturing	
  
             Mone5sa5on	
  



                                                               Knowledge	
  
                                         Metadata	
             Recovery	
  
         Data	
  Loss	
  Preven5on	
  
          Risk	
  &	
  Compliance	
  


                                             Content	
  	
  
                                             Analy5cs	
  
Content Intelligent Solutions
                              Micro-­‐Targe5ng	
  &	
  
                                Distribu5on	
  	
  




Web	
  	
                                                 Knowledge	
  	
  
Self	
  Service	
                                         Acquisi5on	
  
                                                          &	
  Recovery	
  




                                               Governance	
  
  Cross	
  Plahorm	
                           Risk	
  	
  
  Content	
  Integra5on	
                      Compliance	
  
www.smartlogic.com	
     28	
  
Smartlogic
                               TM




Jeremy.Bentley@Smartlogic.com



      www.smartlogic.com	
     29	
  

More Related Content

PPT
Webinar: Real-time Risk Management and Regulatory Reporting with MongoDB
PDF
DocValues aka. Column Stride Fields in Lucene 4.0 - By Willnauer Simon
KEY
Rainbird: Realtime Analytics at Twitter (Strata 2011)
PDF
Etsy Activity Feeds Architecture
PDF
Big Data Meets Metadata – Analyzing Large Data Sets
PDF
Big Data Meets Metadata – Analyzing Large Data Sets
PDF
How Search 2.0 Has Been Redefined by Enterprise 2.0
PDF
Sora Web Analytics Getting Buy In Oct132009 V Final
Webinar: Real-time Risk Management and Regulatory Reporting with MongoDB
DocValues aka. Column Stride Fields in Lucene 4.0 - By Willnauer Simon
Rainbird: Realtime Analytics at Twitter (Strata 2011)
Etsy Activity Feeds Architecture
Big Data Meets Metadata – Analyzing Large Data Sets
Big Data Meets Metadata – Analyzing Large Data Sets
How Search 2.0 Has Been Redefined by Enterprise 2.0
Sora Web Analytics Getting Buy In Oct132009 V Final

Similar to More Powerful Solr Search with Semaphore - Jeremy Bentley (20)

PDF
SharePoint ECM with KnowledgeLake
PDF
Micro-Blogging in the Enterprise Focus Groups Evaluation
PPTX
SLAS Informatics SIG: SLAS2013 Presentation
PDF
Soeren okfn greece meetup
PDF
Practical considerations for eTMF Planning
PDF
Improving Findability: The Role of Information Architecture in Effective Search
PDF
GoodRelations Tutorial Part 1
PDF
ISWC GoodRelations Tutorial Part 1
PDF
Early Warning Signs of IT Project Failure -- The Deadly Dozen and the Four Ho...
PPT
Big spend questions
PDF
Core and Paths: Designing Findability from the Inside and Out
PPTX
1 solution 4 each maturity level
PDF
Brightspot what do you make of this - pkal lsc 11
PDF
Innovative it project management practices
PDF
Van putten
PDF
Business Model Innovation | Lynch
PDF
Why Should Consultants and Systems Integrators Become Certified Information P...
PDF
Next generation MDM
PDF
Digital Channel Tender Maturity Evaluation 12 01 10
SharePoint ECM with KnowledgeLake
Micro-Blogging in the Enterprise Focus Groups Evaluation
SLAS Informatics SIG: SLAS2013 Presentation
Soeren okfn greece meetup
Practical considerations for eTMF Planning
Improving Findability: The Role of Information Architecture in Effective Search
GoodRelations Tutorial Part 1
ISWC GoodRelations Tutorial Part 1
Early Warning Signs of IT Project Failure -- The Deadly Dozen and the Four Ho...
Big spend questions
Core and Paths: Designing Findability from the Inside and Out
1 solution 4 each maturity level
Brightspot what do you make of this - pkal lsc 11
Innovative it project management practices
Van putten
Business Model Innovation | Lynch
Why Should Consultants and Systems Integrators Become Certified Information P...
Next generation MDM
Digital Channel Tender Maturity Evaluation 12 01 10
Ad

More from lucenerevolution (20)

PDF
Text Classification Powered by Apache Mahout and Lucene
PDF
State of the Art Logging. Kibana4Solr is Here!
PDF
Search at Twitter
PDF
Building Client-side Search Applications with Solr
PDF
Integrate Solr with real-time stream processing applications
PDF
Scaling Solr with SolrCloud
PDF
Administering and Monitoring SolrCloud Clusters
PDF
Implementing a Custom Search Syntax using Solr, Lucene, and Parboiled
PDF
Using Solr to Search and Analyze Logs
PDF
Enhancing relevancy through personalization & semantic search
PDF
Real-time Inverted Search in the Cloud Using Lucene and Storm
PDF
Solr's Admin UI - Where does the data come from?
PDF
Schemaless Solr and the Solr Schema REST API
PDF
High Performance JSON Search and Relational Faceted Browsing with Lucene
PDF
Text Classification with Lucene/Solr, Apache Hadoop and LibSVM
PDF
Faceted Search with Lucene
PDF
Recent Additions to Lucene Arsenal
PDF
Turning search upside down
PDF
Spellchecking in Trovit: Implementing a Contextual Multi-language Spellchecke...
PDF
Shrinking the haystack wes caldwell - final
Text Classification Powered by Apache Mahout and Lucene
State of the Art Logging. Kibana4Solr is Here!
Search at Twitter
Building Client-side Search Applications with Solr
Integrate Solr with real-time stream processing applications
Scaling Solr with SolrCloud
Administering and Monitoring SolrCloud Clusters
Implementing a Custom Search Syntax using Solr, Lucene, and Parboiled
Using Solr to Search and Analyze Logs
Enhancing relevancy through personalization & semantic search
Real-time Inverted Search in the Cloud Using Lucene and Storm
Solr's Admin UI - Where does the data come from?
Schemaless Solr and the Solr Schema REST API
High Performance JSON Search and Relational Faceted Browsing with Lucene
Text Classification with Lucene/Solr, Apache Hadoop and LibSVM
Faceted Search with Lucene
Recent Additions to Lucene Arsenal
Turning search upside down
Spellchecking in Trovit: Implementing a Contextual Multi-language Spellchecke...
Shrinking the haystack wes caldwell - final
Ad

Recently uploaded (20)

PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Empathic Computing: Creating Shared Understanding
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PPTX
Big Data Technologies - Introduction.pptx
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PPTX
Spectroscopy.pptx food analysis technology
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PPT
Teaching material agriculture food technology
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PPTX
sap open course for s4hana steps from ECC to s4
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PPTX
MYSQL Presentation for SQL database connectivity
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Assigned Numbers - 2025 - Bluetooth® Document
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Encapsulation_ Review paper, used for researhc scholars
Empathic Computing: Creating Shared Understanding
“AI and Expert System Decision Support & Business Intelligence Systems”
Big Data Technologies - Introduction.pptx
Spectral efficient network and resource selection model in 5G networks
Mobile App Security Testing_ A Comprehensive Guide.pdf
Spectroscopy.pptx food analysis technology
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Teaching material agriculture food technology
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Digital-Transformation-Roadmap-for-Companies.pptx
Per capita expenditure prediction using model stacking based on satellite ima...
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
sap open course for s4hana steps from ECC to s4
Dropbox Q2 2025 Financial Results & Investor Presentation
MYSQL Presentation for SQL database connectivity
The AUB Centre for AI in Media Proposal.docx
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Assigned Numbers - 2025 - Bluetooth® Document

More Powerful Solr Search with Semaphore - Jeremy Bentley

  • 1. Smartlogic TM Apache Lucene Eurocon     Jeremy  Bentley,  CEO  
  • 2. 1st degree of order Filing management • 80% of enterprise information is unstructured • Doubling every 19 months and accelerating [Gartner] • Increasing burden of compliance • Enterprise 2.0 additions
  • 3. 2nd degree of order Index management • File plans and metadata schema • Mono- hierarchical standardised taxonomies • Manually applied classification • Low level of consistency and quality
  • 4. 3rd degree of order Computerised 1st and 2nd degrees
  • 5. 5   A 10 year Flatline Expectation Gap • 2001,  IDC,  “Quan5fying  Enterprise  Search”    Searchers  are  successful  in  finding  what  they  seek  50%  of  the  9me  or  less       • 2011,  MindMetre/SmartLogic   More  than  half    (52%)  cannot  find  the  informa9on  they  need  using  their   Enterprise  search  system    
  • 6. The explosion of information 80Tb   ?   20  5mes   Terabytes  of  data   increase  in   Informa5on   volume   4Tb   1993-­‐2001   2001-­‐2009   Source:  the  Na5onal  Archives  
  • 7. 7   Search Gets Harder as Data sets Grow   Circa  1996      
  • 8. Different vocabulary and ambiguity You  Say   I  Say   Moon  Buggy   Lunar  Roving  Vehicle   Manned  Lunar  Surface  Vehicle   Missing results Swine  Flu   Swine  Influenza  Virus   H1N1   Touchscreen   Touch  screen   Mul5-­‐touch   You  Say   What  do  you  mean?   Apple   A  fruit?   Fiona  -­‐  A  singer  /  songwriter?   An  electronics  company?   Rights   Employment  rights?   Too many results Equal  rights?   Right  of  way?   Ford   Ford  Motor   Forward  Industrials  (5cker=FORD)   A  shallow  river  crossing  
  • 9. Conventional Search - Ineffective, Frustrating, and Inadequate Drawbacks Apparent 1 Needle in the Haystack 2   2 Multiple search terms 1   3 Irrelevant results 4 Out of date results 5 Multiple media forms 6 Unrestricted geography 7 Inappropriate ads Not So Apparent 7   8 Can’t filter, select subset 9 No related topics 4   10 Missing results 11 No context or guidance 12 Best resource not clear 5   3   ü  Time consuming 6   ü  Inefficient ü  Ineffective
  • 11. Paradox of Effort Metadata  is  to  search,  what  pistons  are  to  a  petrol  engine.   Web Enterprise Metadata effort High Low Result Quality Low High requirement
  • 12. How do I structure it? Information Subject   Crea5on  Date   Loca5on   Modified  Date   Project   Author   Func5on   Format   (PDF,DOC,XLS)   (IT,HR,Finance)   Protec5ve   Marker   Expiry   Publisher   Expert   Reten5on   Site   Process Structural
  • 13. 3rd degree content universe Enterprise   Content   Search   Management   Portal   Infrastructure   Document    Management   Social  collaboraFon   Records   Management   Publishing   Process     Systems   Management  &   Digital   Workflow   Asset   Management   eDiscovery  
  • 14. 4th degree of order Enterprise   Content   Search   Management   Portal   Infrastructure   Document    Management   Social  collaboraFon   Content Records   Intelligence Management   Publishing   Process     Systems   Management  &   Digital   Workflow   Asset   Management   eDiscovery  
  • 15. 4th degree of order Content Intelligence Content  Intelligence  Plahorm        Solr  
  • 16. Semaphore Business     Vocabulary   Expose   Apply   Classifica5on   User   Decision   Ac5on   Inform   Copyright  @  2011  Smartlogic  Semaphore  Limited   16  
  • 17. Semaphore Business   Vocabulary   Seman6c  models   Expose   Apply   Metadata   Seman6c  So7ware   Classifica5on   User   Decision   Ac5on   Inform   Contextual  User  Experience   Copyright  @  2011  Smartlogic  Semaphore  Limited   17  
  • 18. Components • Metadata   • Seman5c  Models   • Contextual  User  Experience   • Seman5c  Sokware   Copyright  @  2011  Smartlogic  Semaphore  Limited   18  
  • 19. Metadata Today   With  Content  Intelligence   Manual   Automa5c   Process   Process   Mul5ple    approaches     Single  Unified  ‘one  size  fits  all’  approach     for  various  domains/audiences   Long  5me  to  crak   Short  5me  to  build    &  build  ,  manually  applied   &  deploy,  automa5cally     Low  Quality  tags   High  Quality  tags   High  cost  to  apply   Low  cost  to  apply   Copyright  @  2011  Smartlogic  Semaphore  Limited   19  
  • 20. Semantic Models Organising Contextualising Harnessing Parent topics Content-types available Automate Covered by – Automotive sector – Flashnotes compliance and – Bob Smith – Bond issuers – Research reports distribution tasks – Trade ideas – ‘Watch list’ lookup Analytics available – Distribution according to preset – Current bond price rules Preferred term (Agreed Label) – Relative bond spreads – Automated mapping Ford Motor Company Influenced by to create aggregator metadata – Credit ratings on Ford Motor Credit Company User Experience – European and US economies – Conceptual relevance Also known as Location of – Changes in consumer demand – Related topics – Ford fundamental data – Links to analytics – Ford Motor – Earnings estimates Search engine enhancement – F (Bloomberg) – Historic sales Key competitors – Search results – FoMoCo and profits – BMW – Email alerts – blue oval – Daimler Chrysler – General Motors Unstructured Subsidiaries – Toyota content integration – Ford Motor Credit Company – Volkswagen – Published reports – Mazda Products – Related topics – Focus – Links to analytics – Ka – Search results – MX5 – Email alerts
  • 21. Contextual User Experience 9   Key Features 1 Taxonomy enables discovery, related searches 1   2 Related topics and content 2   3   3 Facets enable filtering results by: 4   4 -  Source 5 -  Numerous topics 6 - Date 5   7   7 Best Bets 8   8 Automated doc. Tagging 9 A-Z ü  More relevant results ü  Fewer “bad hits” ü  Powerful navigation 6  
  • 22. Content  ExploraFon Highligh5ng  rela5onships  in  a  result  set  greatly  improves  the  user  experience.  
  • 23. Semantic Software Semaphore   Ontology    &  Metadata  Management   Text  Analysis  &  Extrac5on   Automa5c    and  assisted    Content  classifica5on   Contextual  Naviga5on  Services   Seman5c  Reasoning  &  Processing  
  • 24. Semaphore Search Integration Classifica5on   Search   Local   Term   Rules   Enhancement   Index   Ontology  Manager   Classifica5on  Server   Server   Web  Services  API   Text  Miner   XML  API   Ontology  Informa5on   Document  “Tags”   Extracted  Text   Sample  Interface  Code   User  Requests   Query   Index   Collector/Normalizer   Search   Applica5on   Framework   Portal   Search  Engine   Corpus   Semaphore  core  module   Semaphore  op5onal  module  
  • 25. 4th degree of order Enterprise   Content   Search   Management   Portal   Infrastructure   Document    Management   Social  collaboraFon   Content Records   Intelligence Management   Publishing   Process     Systems   Management  &   Digital   Workflow   Asset   Management   eDiscovery  
  • 26. Content Intelligence Informa5on   Manufacturing   Mone5sa5on   Knowledge   Metadata   Recovery   Data  Loss  Preven5on   Risk  &  Compliance   Content     Analy5cs  
  • 27. Content Intelligent Solutions Micro-­‐Targe5ng  &   Distribu5on     Web     Knowledge     Self  Service   Acquisi5on   &  Recovery   Governance   Cross  Plahorm   Risk     Content  Integra5on   Compliance  
  • 29. Smartlogic TM Jeremy.Bentley@Smartlogic.com www.smartlogic.com   29