SlideShare a Scribd company logo
2
Most read
11
Most read
16
Most read
Neural Radiance Fields
Neural Fields in Computer Vision
Field
스칼라장 : 온도, 압력, 오디오 등 벡터장 : 유체속도장, 자기장 등 텐서장 : 영상 등
Neural Field
3D Synthesize : COLMAP - Structure-from-Motion and Multi-View Stereo
https://colmap.github.io/
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
(ECCV 2020)
https://neuralfields.cs.brown.edu/cvpr22
https://keras.io/examples/vision/nerf/
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
(ECCV 2020)
https://github.com/bmild/nerf
https://github.com/NakuraMino/Minimal-NeRF
1. MLP 기반의 NeRF
* input의 Spherical Vector(2D)를 Cartesian(3D)
으로 변경
* input의 viewing direction : sigma, pi
(Cartesian)가 3*2*L_embed로 확장 ( positional
encoding )
* output은 RGBa
(a는 volume density)
=> !!중요한점, 1 view는 1 pixel에 대응
8 Depth FC (with 256 dim - Relu)
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
(ECCV 2020)
https://github.com/bmild/nerf/blob/20a91e764a28816ee2234fcadb73bd59a613a44c/load_blender.py
MLP 기반의 NeRF (Dataset from Blender)
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
(ECCV 2020)
https://github.com/bmild/nerf/blob/20a91e764a28816ee2234fcadb73bd59a613a44c/load_blender.py
https://docs.blender.org/api/blender_python_api_2_71_release/
https://github.com/bmild/nerf/issues/78
https://www.3dgep.com/understanding-the-view-matrix/#:~:text=The%20world%20transformation%20matrix%20is,%2Dspace%20to%20view%2Dspace.
MLP 기반의 NeRF (Dataset from Blender)
camera_angle_x : Camera lens horizontal field of view <- 카메라의 Focal 값
(모두 동일값)
rotation : radians (degree) <- 카메라 제자리 회전 값… (모두 동일값)
transform_matrix (Worldspace transformation matrix, matrix_world (blender))
<- Camera 월 좌표계 및 상대 Rotation 정보
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
(ECCV 2020)
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/lookat-function
MLP 기반의 NeRF (Dataset from Blender)
transform_matrix (Look-At 행렬) - Camera 2 World
focal = .5 * W / np.tan(.5 * camera_angle_x)
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
(ECCV 2020)
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/lookat-function
MLP 기반의 NeRF (Dataset from Blender) -
rays_o는 rays_original (position) : 각 HxWx3 pixel의 original ray point를 의미 == 모든 점이
camera x,y,z로 똑같음 (각 픽셀마다의 camera position)
rays_d는 direction: dirs는 HxW내에서의 상대 좌표. c2w를 곱해줌으로서 camera viewing
direction(+depth)을 계산 (각 픽셀마다의 camera view direction)
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
(ECCV 2020)
http://sgvr.kaist.ac.kr/~sungeui/GCG_S22/Student_Presentations/CS580_PaperPresentation_dgkim.pdf
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
(ECCV 2020)
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/lookat-function
MLP 기반의 NeRF (Dataset from Blender) -
z_vals <- Random Accumulate Point 지정
pts <- z_vals위치의 point들을 생성
pts input에 대한 network output 값의 합산이 rgb가
될 수 있도록 함
(weights 값 합산은 near 1)
=> raw[:3]는 rgb_map과 mse, raw[4]는 직접 mse가
없고 raw[:3]와 곱해져 간접 업데이트
(본 코드에는 raw[4] - a는 업데이트 없음 fix z_vals)
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
(ECCV 2020)
https://m.blog.naver.com/jetarrow82/221252045857
1. MLP 기반의 NeRF - Viewing Direction의 중요성
실제 물체는 non-Lambertian effects 특성을 가짐
Lambertian Surface는 ViewPoint에 상관없이
똑같은 빛의 양을 반사함
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
(ECCV 2020)
https://www.matthewtancik.com/nerf
1. MLP 기반의 NeRF - Positional Encoding
NeRF Result
https://phog.github.io/snerg/viewer/index.html?dir=https://storage.googleapis.com/snerg/750/lego
<= 같이 보자!
NeRF: Synthesizer로서의 가치
Small Size Model Rendering 도메인이 한정되어 있지 않음
Texture
https://learnopengl.com/Advanced-OpenGL/Cubemaps
https://lifeisforu.tistory.com/375
CubeMap - 보통 ray
영향을 크게 받지 않는
원경에 사용
Spherical Harmonics( SH, 구면
조화 ) - irradiance map(난반사
정도)을 저장하는 효율적 방식
Plenoxels : ReRF without Neural Networks
NeRF key point is differentiable Volume Renderer
MLP Volume Rendering을 Voxel Grid와 Interpolation의 조합으로 치환
Beyond Synthesize
- iNeRF: Inverting Neural Radiance Fields for Pose Estimation (2020)
Neural Fields in Visual Computing and Beyond (2022 EUROGRPAHICS)
https://yenchenlin.me/inerf/
Trained Nerf를 통해
Generation하고 Pose Estimation을
Iterative하게 Gradient Based
Optimization을 하여 Estimated
Pose를 취득
Beyond Synthesize
- iNeRF: Inverting Neural Radiance Fields for Pose Estimation (2020)
Neural Fields in Visual Computing and Beyond (2022 EUROGRPAHICS)
https://yenchenlin.me/inerf/
Beyond Synthesize
- Learning Dense Object Descriptors from Neural Radiance Fields (2022 ICRA)
https://yenchenlin.me/nerf-supervision/
Keypoint detection과 유사.
Keypoint는 sparse하게 pose
정보를 추출한다면, Dense
Descriptor는 Dense하게 Pose
정보를 추출
Beyond Synthesize
- Learning Dense Object Descriptors from Neural Radiance Fields (2022 ICRA)
https://yenchenlin.me/nerf-supervision/
Beyond Synthesize
- NERF-SOS: ANY-VIEW SELF-SUPERVISED OBJECT SEGMENTATION ON COMPLEX SCENES (2022 Pre)
- 셀링포인트는 다양한
각도에서 영상을 촬영하면
NeRF 샘플에서
Unsupervised로
Segmentation을 만들어줌
=> 한계점
- K-Means/Pre-trained
Network에 의존적 (BG가
명확하게 분리되고, Object의
Semantic 정보가 명확해야 할
것으로 보임)
NeRFs…
https://kakaobrain.github.io/NeRF-Factory/ <= Nerf 성능 비교
Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual Fly-Throughs <= 넓은 공간 모델링
Instant Neural Graphics Primitive
<= NeRF, SDF(signed distance functions), Gigapixel image등 (Computer graphics primitives)을 처리할 수
있는 네트워크
https://nvlabs.github.io/instant-ngp/assets/mueller2022instant.mp4
Dex-NeRF : Using a Neural Radiance Field to Grasp Transparent Objects
- Transparent, Light-sensitive한 물체를 잘 다룰 수 있지 않을까?
https://sites.google.com/view/dex-nerf
vision-only robot navigation in a neural radiance world - Vision Based Planning
https://mikh3x4.github.io/nerf-navigation/
Relighting the Real World With Neural Rendering -
https://www.unite.ai/adobe-neural-rendering-relighting-2021/
NeRF-Studio
https://docs.nerf.studio/en/latest/index.html

More Related Content

PDF
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
PPTX
3D Gaussian Splatting
PDF
Photo-realistic Single Image Super-resolution using a Generative Adversarial ...
PDF
PR-302: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
PDF
Neural Radiance Fields & Neural Rendering.pdf
PDF
Image-to-Image Translation
PDF
Introduction to 3D Computer Vision and Differentiable Rendering
PDF
diffusion 모델부터 DALLE2까지.pdf
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
3D Gaussian Splatting
Photo-realistic Single Image Super-resolution using a Generative Adversarial ...
PR-302: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Neural Radiance Fields & Neural Rendering.pdf
Image-to-Image Translation
Introduction to 3D Computer Vision and Differentiable Rendering
diffusion 모델부터 DALLE2까지.pdf

What's hot (20)

PDF
Object Detection Using R-CNN Deep Learning Framework
PPTX
A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs)
PDF
Deep Learning for Computer Vision: Data Augmentation (UPC 2016)
PPTX
CNN and its applications by ketaki
PPTX
AlexNet
PPTX
A friendly introduction to GANs
PPTX
Deep neural networks
PPTX
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
PPTX
ViT.pptx
PDF
Semantic Segmentation - Fully Convolutional Networks for Semantic Segmentation
PPTX
Object Detection using Deep Neural Networks
PDF
PR-132: SSD: Single Shot MultiBox Detector
PPTX
Darknet yolo
PDF
Deep learning for medical imaging
PDF
Convolutional neural network
PPT
Secrets of CryENGINE 3 Graphics Technology
PDF
Moving Object Detection And Tracking Using CNN
PPTX
Object detection
PDF
SSD: Single Shot MultiBox Detector (UPC Reading Group)
PDF
Faster R-CNN: Towards real-time object detection with region proposal network...
Object Detection Using R-CNN Deep Learning Framework
A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs)
Deep Learning for Computer Vision: Data Augmentation (UPC 2016)
CNN and its applications by ketaki
AlexNet
A friendly introduction to GANs
Deep neural networks
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
ViT.pptx
Semantic Segmentation - Fully Convolutional Networks for Semantic Segmentation
Object Detection using Deep Neural Networks
PR-132: SSD: Single Shot MultiBox Detector
Darknet yolo
Deep learning for medical imaging
Convolutional neural network
Secrets of CryENGINE 3 Graphics Technology
Moving Object Detection And Tracking Using CNN
Object detection
SSD: Single Shot MultiBox Detector (UPC Reading Group)
Faster R-CNN: Towards real-time object detection with region proposal network...
Ad

Similar to Neural Radiance Field (19)

PPTX
20230213_ComputerVision_연구.pptx
PPTX
Scene Representation Networks(NIPS 2019)_OJung
PDF
Single shot multiboxdetectors
PPTX
Single shot multiboxdetectors
PDF
(Paper Review) Reconstruction of Monte Carlo Image Sequences using a Recurren...
PDF
Pr045 deep lab_semantic_segmentation
PDF
실용주의 머신러닝 CNN MNIST TENSORBOARD
PPTX
Tutorial on Generalization in Neural Fields, CVPR 2022 Tutorial on Neural Fie...
PPTX
Caffe framework tutorial2
PDF
PyTorch 튜토리얼 (Touch to PyTorch)
PPTX
Deep Learning for AI (3)
PPTX
White box in Computer Vision
PDF
1-bit semantic segmentation
PDF
PR-240: Modulating Image Restoration with Continual Levels via Adaptive Featu...
PDF
Deep learning image recognition for autonomous driving(classification, objec...
PDF
그림 그리는 AI
PPTX
AI - Media Art. 인공지능과 미디어아트
PDF
딥러닝 논문읽기 모임 - 송헌 Deep sets 슬라이드
PDF
[NDC2017] 딥러닝으로 게임 콘텐츠 제작하기 - VAE를 이용한 콘텐츠 생성 기법 연구 사례
20230213_ComputerVision_연구.pptx
Scene Representation Networks(NIPS 2019)_OJung
Single shot multiboxdetectors
Single shot multiboxdetectors
(Paper Review) Reconstruction of Monte Carlo Image Sequences using a Recurren...
Pr045 deep lab_semantic_segmentation
실용주의 머신러닝 CNN MNIST TENSORBOARD
Tutorial on Generalization in Neural Fields, CVPR 2022 Tutorial on Neural Fie...
Caffe framework tutorial2
PyTorch 튜토리얼 (Touch to PyTorch)
Deep Learning for AI (3)
White box in Computer Vision
1-bit semantic segmentation
PR-240: Modulating Image Restoration with Continual Levels via Adaptive Featu...
Deep learning image recognition for autonomous driving(classification, objec...
그림 그리는 AI
AI - Media Art. 인공지능과 미디어아트
딥러닝 논문읽기 모임 - 송헌 Deep sets 슬라이드
[NDC2017] 딥러닝으로 게임 콘텐츠 제작하기 - VAE를 이용한 콘텐츠 생성 기법 연구 사례
Ad

More from Dong Heon Cho (20)

PDF
Forward-Forward Algorithm
PDF
What is Texture.pdf
PDF
PPTX
2020 > Self supervised learning
PDF
All about that pooling
PPTX
Background elimination review
PDF
Transparent Latent GAN
PPTX
Image matting atoc
PPTX
Multi object Deep reinforcement learning
PPTX
Multi agent reinforcement learning for sequential social dilemmas
PPTX
Multi agent System
PPTX
Hybrid reward architecture
PDF
Use Jupyter notebook guide in 5 minutes
PPTX
AlexNet and so on...
PDF
Deep Learning AtoC with Image Perspective
PDF
LOL win prediction
PDF
How can we train with few data
PDF
Domain adaptation gan
PPTX
Dense sparse-dense training for dnn and Other Models
PDF
Squeeeze models
Forward-Forward Algorithm
What is Texture.pdf
2020 > Self supervised learning
All about that pooling
Background elimination review
Transparent Latent GAN
Image matting atoc
Multi object Deep reinforcement learning
Multi agent reinforcement learning for sequential social dilemmas
Multi agent System
Hybrid reward architecture
Use Jupyter notebook guide in 5 minutes
AlexNet and so on...
Deep Learning AtoC with Image Perspective
LOL win prediction
How can we train with few data
Domain adaptation gan
Dense sparse-dense training for dnn and Other Models
Squeeeze models

Recently uploaded (20)

PPTX
IB Computer Science - Internal Assessment.pptx
PPTX
Business Ppt On Nestle.pptx huunnnhhgfvu
PPTX
Computer network topology notes for revision
PPTX
Global journeys: estimating international migration
PDF
Clinical guidelines as a resource for EBP(1).pdf
PPTX
Introduction-to-Cloud-ComputingFinal.pptx
PPT
Reliability_Chapter_ presentation 1221.5784
PPTX
05. PRACTICAL GUIDE TO MICROSOFT EXCEL.pptx
PPTX
Major-Components-ofNKJNNKNKNKNKronment.pptx
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PPT
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
PDF
.pdf is not working space design for the following data for the following dat...
PPTX
Acceptance and paychological effects of mandatory extra coach I classes.pptx
PDF
Foundation of Data Science unit number two notes
PPTX
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
PDF
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
IB Computer Science - Internal Assessment.pptx
Business Ppt On Nestle.pptx huunnnhhgfvu
Computer network topology notes for revision
Global journeys: estimating international migration
Clinical guidelines as a resource for EBP(1).pdf
Introduction-to-Cloud-ComputingFinal.pptx
Reliability_Chapter_ presentation 1221.5784
05. PRACTICAL GUIDE TO MICROSOFT EXCEL.pptx
Major-Components-ofNKJNNKNKNKNKronment.pptx
oil_refinery_comprehensive_20250804084928 (1).pptx
IBA_Chapter_11_Slides_Final_Accessible.pptx
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
.pdf is not working space design for the following data for the following dat...
Acceptance and paychological effects of mandatory extra coach I classes.pptx
Foundation of Data Science unit number two notes
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb

Neural Radiance Field

  • 1. Neural Radiance Fields Neural Fields in Computer Vision
  • 2. Field 스칼라장 : 온도, 압력, 오디오 등 벡터장 : 유체속도장, 자기장 등 텐서장 : 영상 등
  • 4. 3D Synthesize : COLMAP - Structure-from-Motion and Multi-View Stereo https://colmap.github.io/
  • 5. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV 2020) https://neuralfields.cs.brown.edu/cvpr22 https://keras.io/examples/vision/nerf/
  • 6. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV 2020) https://github.com/bmild/nerf https://github.com/NakuraMino/Minimal-NeRF 1. MLP 기반의 NeRF * input의 Spherical Vector(2D)를 Cartesian(3D) 으로 변경 * input의 viewing direction : sigma, pi (Cartesian)가 3*2*L_embed로 확장 ( positional encoding ) * output은 RGBa (a는 volume density) => !!중요한점, 1 view는 1 pixel에 대응 8 Depth FC (with 256 dim - Relu)
  • 7. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV 2020) https://github.com/bmild/nerf/blob/20a91e764a28816ee2234fcadb73bd59a613a44c/load_blender.py MLP 기반의 NeRF (Dataset from Blender)
  • 8. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV 2020) https://github.com/bmild/nerf/blob/20a91e764a28816ee2234fcadb73bd59a613a44c/load_blender.py https://docs.blender.org/api/blender_python_api_2_71_release/ https://github.com/bmild/nerf/issues/78 https://www.3dgep.com/understanding-the-view-matrix/#:~:text=The%20world%20transformation%20matrix%20is,%2Dspace%20to%20view%2Dspace. MLP 기반의 NeRF (Dataset from Blender) camera_angle_x : Camera lens horizontal field of view <- 카메라의 Focal 값 (모두 동일값) rotation : radians (degree) <- 카메라 제자리 회전 값… (모두 동일값) transform_matrix (Worldspace transformation matrix, matrix_world (blender)) <- Camera 월 좌표계 및 상대 Rotation 정보
  • 9. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV 2020) https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/lookat-function MLP 기반의 NeRF (Dataset from Blender) transform_matrix (Look-At 행렬) - Camera 2 World focal = .5 * W / np.tan(.5 * camera_angle_x)
  • 10. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV 2020) https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/lookat-function MLP 기반의 NeRF (Dataset from Blender) - rays_o는 rays_original (position) : 각 HxWx3 pixel의 original ray point를 의미 == 모든 점이 camera x,y,z로 똑같음 (각 픽셀마다의 camera position) rays_d는 direction: dirs는 HxW내에서의 상대 좌표. c2w를 곱해줌으로서 camera viewing direction(+depth)을 계산 (각 픽셀마다의 camera view direction)
  • 11. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV 2020) http://sgvr.kaist.ac.kr/~sungeui/GCG_S22/Student_Presentations/CS580_PaperPresentation_dgkim.pdf
  • 12. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV 2020) https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/lookat-function MLP 기반의 NeRF (Dataset from Blender) - z_vals <- Random Accumulate Point 지정 pts <- z_vals위치의 point들을 생성 pts input에 대한 network output 값의 합산이 rgb가 될 수 있도록 함 (weights 값 합산은 near 1) => raw[:3]는 rgb_map과 mse, raw[4]는 직접 mse가 없고 raw[:3]와 곱해져 간접 업데이트 (본 코드에는 raw[4] - a는 업데이트 없음 fix z_vals)
  • 13. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV 2020) https://m.blog.naver.com/jetarrow82/221252045857 1. MLP 기반의 NeRF - Viewing Direction의 중요성 실제 물체는 non-Lambertian effects 특성을 가짐 Lambertian Surface는 ViewPoint에 상관없이 똑같은 빛의 양을 반사함
  • 14. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV 2020) https://www.matthewtancik.com/nerf 1. MLP 기반의 NeRF - Positional Encoding
  • 16. NeRF: Synthesizer로서의 가치 Small Size Model Rendering 도메인이 한정되어 있지 않음
  • 17. Texture https://learnopengl.com/Advanced-OpenGL/Cubemaps https://lifeisforu.tistory.com/375 CubeMap - 보통 ray 영향을 크게 받지 않는 원경에 사용 Spherical Harmonics( SH, 구면 조화 ) - irradiance map(난반사 정도)을 저장하는 효율적 방식
  • 18. Plenoxels : ReRF without Neural Networks NeRF key point is differentiable Volume Renderer MLP Volume Rendering을 Voxel Grid와 Interpolation의 조합으로 치환
  • 19. Beyond Synthesize - iNeRF: Inverting Neural Radiance Fields for Pose Estimation (2020) Neural Fields in Visual Computing and Beyond (2022 EUROGRPAHICS) https://yenchenlin.me/inerf/ Trained Nerf를 통해 Generation하고 Pose Estimation을 Iterative하게 Gradient Based Optimization을 하여 Estimated Pose를 취득
  • 20. Beyond Synthesize - iNeRF: Inverting Neural Radiance Fields for Pose Estimation (2020) Neural Fields in Visual Computing and Beyond (2022 EUROGRPAHICS) https://yenchenlin.me/inerf/
  • 21. Beyond Synthesize - Learning Dense Object Descriptors from Neural Radiance Fields (2022 ICRA) https://yenchenlin.me/nerf-supervision/ Keypoint detection과 유사. Keypoint는 sparse하게 pose 정보를 추출한다면, Dense Descriptor는 Dense하게 Pose 정보를 추출
  • 22. Beyond Synthesize - Learning Dense Object Descriptors from Neural Radiance Fields (2022 ICRA) https://yenchenlin.me/nerf-supervision/
  • 23. Beyond Synthesize - NERF-SOS: ANY-VIEW SELF-SUPERVISED OBJECT SEGMENTATION ON COMPLEX SCENES (2022 Pre) - 셀링포인트는 다양한 각도에서 영상을 촬영하면 NeRF 샘플에서 Unsupervised로 Segmentation을 만들어줌 => 한계점 - K-Means/Pre-trained Network에 의존적 (BG가 명확하게 분리되고, Object의 Semantic 정보가 명확해야 할 것으로 보임)
  • 24. NeRFs… https://kakaobrain.github.io/NeRF-Factory/ <= Nerf 성능 비교 Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual Fly-Throughs <= 넓은 공간 모델링 Instant Neural Graphics Primitive <= NeRF, SDF(signed distance functions), Gigapixel image등 (Computer graphics primitives)을 처리할 수 있는 네트워크 https://nvlabs.github.io/instant-ngp/assets/mueller2022instant.mp4 Dex-NeRF : Using a Neural Radiance Field to Grasp Transparent Objects - Transparent, Light-sensitive한 물체를 잘 다룰 수 있지 않을까? https://sites.google.com/view/dex-nerf vision-only robot navigation in a neural radiance world - Vision Based Planning https://mikh3x4.github.io/nerf-navigation/ Relighting the Real World With Neural Rendering - https://www.unite.ai/adobe-neural-rendering-relighting-2021/ NeRF-Studio https://docs.nerf.studio/en/latest/index.html