This document discusses methods for evaluating language models, including intrinsic and extrinsic evaluation. Intrinsic evaluation involves measuring a model's performance on a test set using metrics like perplexity, which is based on how well the model predicts the test set. Extrinsic evaluation embeds the model in an application and measures the application's performance. The document also covers techniques for dealing with unknown words like replacing low-frequency words with <UNK> and estimating its probability from training data.