SlideShare a Scribd company logo
NoSQL in Practice
Real World Use Cases for In-Memory Data Grids
Kai Wähner
kwaehner@tibco.com
www.kai-waehner.de
@KaiWaehner
LinkedIn / Xing à Please connect!
Key Messages
In-Memory Computing is used for Acting in Real-Time!
In-Memory is NOT just for Caching and Storing – A Data Grid offers much more!
Eventing and Fault-Tolerance move In-Memory Computing to another Level!
© Copyright 2000-2014 TIBCO Software Inc. 3	
  
Agenda
•  Introduction to In-Memory Computing
•  Market Overview
•  Use Cases / Customer Success Stories
© Copyright 2000-2014 TIBCO Software Inc. 4	
  
Agenda
•  Introduction to In-Memory Computing
•  Market Overview
•  Use Cases / Customer Success Stories
Time	
  
Business
Value
Business Event
Data Ready for Analysis
Analysis Completed
Decision Made
$$$$	
  
$$$	
  
$$	
  
$	
   Action Taken
In-Memory Computing
and Event Processing
speed action and
increase business value
by seizing
opportunities while
they matter
Business Value of Events over Time
© Copyright 2000-2014 TIBCO Software Inc. 6	
  
•  Hardware costs declining
•  Data Processing Requirements
exploding
•  Traditional Approaches not
scaling
–  Relational Databases
–  Clustered Databases
–  In-Memory Caches
–  Messaging Systems
Drivers for In-Memory Computing
© Copyright 2000-2014 TIBCO Software Inc. 7	
  
•  Two parallel responses to the 21st century data
processing needs
•  NoSQL Databases
–  Disk based with some in-memory caching
–  Horizontal Scalability on Commodity
Hardware
–  Alternatives to Relational Databases and SQL
–  Basically Available Soft-state Eventually
(BASE)
–  No ACID (transactions / concurrency control)
•  In-Memory Data Grid Technology
–  Memory for data storage
–  Pooling Memory from multiple machines
–  Use database for persistence
–  ACID Properties
–  Eventing – Notifications, Continuous Queries
New Categories of Technology
© Copyright 2000-2014 TIBCO Software Inc. 8	
  
Agenda
•  Introduction to In-Memory Computing
•  Market Overview
•  Use Cases / Customer Success Stories
© Copyright 2000-2014 TIBCO Software Inc. 9	
  
Database Landscape in 2014
h*p://blogs.the451group.com/	
  
informa@on_management/2014/03/18/	
  
updated-­‐data-­‐plaForms-­‐landscape-­‐	
  
map-­‐february-­‐2014/	
  
In-­‐Memory	
  Data	
  Grids	
  
© Copyright 2000-2014 TIBCO Software Inc. 10	
  
Database Landscape in 2014
h*p://blogs.the451group.com/	
  
informa@on_management/2014/03/18/	
  
updated-­‐data-­‐plaForms-­‐landscape-­‐	
  
map-­‐february-­‐2014/	
  
SAP	
  HANA	
  is	
  not	
  an	
  
In-­‐Memory	
  Data	
  Grid!	
  
Product Example: TIBCO ActiveSpaces
Distributed In-memory System of Record
Stores platform / language independent key-value data structures in memory with the option to persist
data in parallel on local disks on a cluster of elastic horizontally scalable commodity hardware
High Performance ACID compliant NoSQL Data Grid
Offers all benefits of NoSQL databases and immediate consistency with full ACID compliance for
transactions and concurrency control
Minimal configuration and easy-to-use APIs (Java, C, .NET, “TIBCO Products”)
Uses proprietary consistent hashing algorithm that that ensures a single network hop for fetching
data. No need for partitioning, no complex XML configuration files
Querying
Data can be queried using an SQL-like language and queries can be accelerated through full
indexing capabilities such as composite indexes and tree or hash index types.
Best of both Worlds: NoSQL and In-Memory!	
  
© Copyright 2000-2014 TIBCO Software Inc. 12	
  
Agenda
•  Introduction to In-Memory Computing
•  Market Overview
•  Use Cases / Customer Success Stories
LOADER	
  
	
  	
  
Caching for Fast Data Access
•  Cache	
  to	
  slower	
  systems	
  
•  Read-­‐only	
  
•  Not	
  the	
  system	
  of	
  record	
  	
  
•  No	
  persistence	
  required	
  
•  Side	
  benefit:	
  Backend	
  load	
  
is	
  reduced	
  
 	
  
Caching + Dynamic Load
•  Dynamically	
  loaded	
  into	
  
Memory	
  when	
  the	
  data	
  is	
  
first	
  accessed	
  by	
  a	
  client	
  
applica@on	
  
•  Service	
  can	
  present	
  a	
  
standard	
  interface	
  	
  
•  Client	
  applica@ons	
  are	
  not	
  
required	
  to	
  implement	
  any	
  
In-­‐Memory	
  specific	
  code	
  
(1)	
  Check	
  Cache	
  
(2)	
  Load	
  from	
  DB	
  if	
  not	
  in	
  Cache	
  
Routing Messages to Back-Office Applications
•  Receive	
  a	
  common	
  data	
  feed	
  that	
  needs	
  to	
  be	
  parsed	
  
and	
  routed	
  to	
  several	
  back-­‐office	
  applica@ons	
  	
  
•  In-­‐Memory	
  holding	
  reference	
  informa@on	
  for	
  the	
  
rou@ng	
  applica@on.	
  The	
  router	
  can	
  quickly	
  determine	
  
where	
  to	
  send	
  the	
  data.	
  	
  
•  Examples:	
  Bank	
  payments,	
  insurance	
  claims	
  processing	
  
Off-loading expensive systems
Expensive	
  in	
  terms	
  of	
  response	
  @me	
  and	
  /	
  or	
  transac@on	
  costs!	
  
Success Story (CRM): Personalized Customer Experience
“With	
  38	
  million	
  fans,	
  MGM	
  knows	
  how	
  to	
  put	
  its	
  customers	
  
first,	
  it	
  takes	
  more	
  than	
  a	
  smile	
  too.	
  Customers	
  want	
  a	
  
personalized,	
  tailored	
  experience,	
  one	
  that	
  knows	
  their	
  
name	
  and	
  can	
  an@cipate	
  their	
  needs.	
  With	
  the	
  help	
  of	
  TIBCO	
  
technologies	
  that	
  leverage	
  big	
  data	
  and	
  give	
  customers	
  a	
  
digital	
  iden@ty,	
  MGM	
  can	
  send	
  personalized	
  offers	
  directly	
  
to	
  customers,	
  save	
  them	
  a	
  seat,	
  and	
  have	
  their	
  favorite	
  drink	
  
on	
  the	
  way.	
  With	
  mul@ple	
  customer	
  touch	
  points	
  and	
  
channels,	
  MGM	
  can	
  reach	
  customers	
  in	
  more	
  ways,	
  and	
  in	
  
more	
  places,	
  than	
  ever	
  before.”	
  	
  
h*ps://www.youtube.com/watch?v=X-­‐7S3kCOx9k	
  
Latency	
  Problems:	
  
•  Several	
  Legacy	
  Systems	
  
•  Processing	
  via	
  ERP,	
  CRM,	
  Host,	
  etc.	
  
	
  
In-­‐Memory:	
  
•  Events	
  and	
  Correla@ons	
  
•  Enable	
  Real	
  Time	
  
•  Only	
  customers	
  that	
  have	
  checked	
  in	
  
Fault Tolerance and Disaster Recovery
Enabling Active-Active Fault Tolerance in Applications:
In-­‐Memory	
  Compu@ng	
  is	
  
reliable,	
  scalable	
  and	
  
fault-­‐tolerant!	
  
Fault Tolerance and Disaster Recovery
Multisite Data Replication:
In-­‐Memory	
  Compu@ng	
  is	
  
reliable,	
  scalable	
  and	
  
fault-­‐tolerant!	
  
Handling temporary spikes on a slow ‘system of record’
•  An	
  In-­‐Memory	
  event	
  listener	
  gets	
  no@fied	
  whenever	
  a	
  data	
  value	
  is	
  changed	
  and	
  sends	
  updates	
  through	
  a	
  
message	
  queue	
  for	
  upda@ng	
  the	
  master	
  system	
  of	
  record.	
  
•  The	
  back	
  office	
  system	
  can	
  also	
  be	
  updated	
  through	
  other	
  channels.	
  
•  Examples:	
  Christmas	
  Shopping	
  in	
  E-­‐Commerce,	
  Ticket	
  Sales,	
  Online	
  Bekng	
  
à	
  In-­‐Memory	
  as	
  “system	
  of	
  record”	
  
Operational Data Store (Local File System)
•  Low-­‐latency,	
  high-­‐throughput	
  opera@onal	
  data	
  
–  Customer	
  data:	
  e.g.	
  account	
  status	
  and	
  balance,	
  
purchase	
  history:	
  real-­‐@me	
  loyalty	
  (promo@ons,	
  	
  
cross-­‐selling),	
  fraud	
  detec@on,	
  ...	
  
–  Market	
  data:	
  e.g.	
  risk	
  assessment,	
  porFolio	
  mgmt,	
  
produc@on	
  output	
  op@miza@on,	
  buyer-­‐seller	
  matching	
  
–  Sensor	
  data:	
  e.g.	
  smart	
  metering	
  /	
  grid,	
  public	
  transport	
  safety	
  
–  Track	
  and	
  trace:	
  e.g.	
  barcode	
  scans,	
  RFID:	
  logis@cs,	
  airlines	
  
•  Why	
  In-­‐Memory?	
  
–  Much	
  faster	
  than	
  tradi@onal	
  DB,	
  especially	
  many	
  small	
  transac@ons	
  (XTP)	
  
–  State	
  /	
  data	
  management	
  not	
  addressed	
  by	
  messaging	
  solu@ons	
  
–  Even@ng	
  is	
  a	
  first	
  class	
  feature,	
  changes	
  can	
  be	
  ‘pushed’	
  in	
  real-­‐@me	
  to	
  interested	
  par@es	
  
(subscribe	
  to	
  changes,	
  con@nuous	
  queries)	
  
–  Provides	
  for	
  distributed	
  process	
  synchroniza@on	
  
–  Integrated	
  with	
  CEP	
  engines	
  (e.g.	
  TIBCO	
  BusinessEvents,	
  TIBCO	
  StreamBase)	
  
Operational Data Store (Local File System)
Situation
•  Master data management system stores over 800 million customer records across more than 30 enterprise apps.
•  Stores real-time inventory data to enable ‘Buy online and pick-up at store’ and ‘Smart fulfillment’ features
Problem
•  Due to lack of correlation between Point of Sale data and inventory, the website contained outdated inventory data.
Products were listed as out of stock when there was actually inventory.
•  Need to leverage store inventory as well as inventory located fulfillment centers
Solution
•  In-Memory stores real-time inventory data for the website, the fulfillment application, and other applications that need
access to inventory data
Business Impact
•  Reduction in customer churn
•  Intelligent fulfillments leading to greater customer satisfaction
•  Improved overall efficiency of fulfillment centers and store inventory
Success Story (Retailer): Inventory Management
Distribution of Rapidly Changing Data
à 	
  Examples	
  are	
  monitoring	
  data	
  for	
  a	
  power	
  plant,	
  stock	
  market	
  data,	
  telemetry	
  data	
  for	
  a	
  
complex	
  system	
  (example,	
  a	
  satellite),	
  or	
  the	
  status	
  and	
  loca@on	
  of	
  packages	
  for	
  a	
  major	
  
logis@cs	
  or	
  shipping	
  company.	
  	
  
Success Story (Telco): Real-Time Offer Generation and Fulfillment by Different Subcontractors
Reload
Give 100 free SMS to subscriber who tops-up
Total: 12 mio top-up / day
Peak: 300 top-up per sec
Purchase 3G Package
Cross-sell Voice/SMS package to subscriber
who purchases 3G Mobile Package
Total: 3 mio / day
Peak: 50 events per sec
Voice Call
Give discount VOIP package to subscriber who
makes a IDD call
Total: 200 mio / day
Peak: 12,000 events per sec
SMS Usage
Give discounted SMS package to subscriber
who sends SMS more than 10 times a day
Total: 750 mio / day
Peak: 27,000 events per sec
Event Cloud
Purchase BB Package
Reload
Voice Call
IDD Call
OnNet Call
SMS Usage
Event Handling and
Processing
Touchpoint Integration
Billing, Offer
Fulfilled
Fulfill SMS
Package
Fulfill 3G Package
Fulfill Voice
Package
Fulfill SMS
Package
46.7 million subscribers
2,000 SMS
notifications per
seconds
500 offer
fulfillments per
second
Offer
Message
Reminder
Message
Fulfillment
Message
Success Story (Telco): Real-Time Offer Generation and Fulfillment by Different Subcontractors
	
  
The	
  numbers	
  
•  1	
  billion	
  events	
  per	
  day	
  
•  Peaks	
  of	
  40,000	
  to	
  50,000	
  events	
  per	
  second	
  (for	
  hours,	
  during	
  peak	
  usage	
  
period	
  of	
  the	
  day)	
  from	
  Network	
  
•  2	
  TIBCO	
  BusinessWorks	
  servers,	
  2	
  TIBCO	
  Ac@veSpaces	
  servers	
  (ac@ve-­‐ac@ve)	
  
•  Technical	
  issues	
  in	
  distributed	
  grid	
  compu@ng	
  with	
  large	
  scale	
  data	
  
–  Work	
  load	
  distribu@on	
  
–  Process	
  synchroniza@on	
  
–  Data	
  transfer	
  
•  Examples	
  
–  Risk	
  assessment	
  and	
  management	
  
–  Op@miza@on	
  problems:	
  scheduling,	
  cargo	
  assignment,	
  load	
  distribu@on	
  in	
  
power	
  network	
  /	
  grid	
  
•  Why	
  In-­‐Memory?	
  
–  Many	
  useful	
  synchroniza@on	
  features	
  (e.g.	
  atomic	
  “take”)	
  
–  Loca@on	
  transparency	
  and	
  fault-­‐tolerance	
  
–  Real-­‐@me	
  instead	
  of	
  nightly	
  /	
  weekly	
  /	
  ...	
  Data-­‐Warehousing	
  approach	
  
Super Fast Compute Grid for Intermediary Calculations for Analytics
Super Fast Compute Grid for Intermediary Calculations for Analytics
State-­‐full	
  
Data	
  
Storing State-full Data for Enterprise Tools
à 	
  In-­‐Memory	
  Data	
  Grid	
  as	
  part	
  of	
  Enterprise	
  Tools	
  (ESB,	
  CEP,	
  BPM,	
  etc.)	
  
Eventing and Fault-Tolerance move In-Memory Computing to another Level!
In-Memory is NOT just for Caching and Storing – A Data Grid offers much more!
In-Memory Computing is used for Acting in Real-Time!
Key Messages
Questions?
Kai Wähner
kwaehner@tibco.com
@KaiWaehner
www.kai-waehner.de
LinkedIn / Xing à Please connect!

More Related Content

PDF
Data Warehouse vs. Live Datamart - Comparison and Differences
PDF
Kai Wähner – Real World Use Cases for Realtime In-Memory Computing - NoSQL ma...
PDF
Unifying the Silos: Optimize your Data Pipeline for Analytics and AI
PPTX
Event-driven Business: How Leading Companies Are Adopting Streaming Strategies
PPT
Build & Deploy Scalable Cloud Applications in Record Time
PDF
Azure Microservices in Practice - Radu Vunvulea
PDF
Outthink: machines coping with humans. A journey into the cognitive world - E...
PDF
Event-Driven iPaaS: Enterprise Integration Meets Event-Driven Architecture
Data Warehouse vs. Live Datamart - Comparison and Differences
Kai Wähner – Real World Use Cases for Realtime In-Memory Computing - NoSQL ma...
Unifying the Silos: Optimize your Data Pipeline for Analytics and AI
Event-driven Business: How Leading Companies Are Adopting Streaming Strategies
Build & Deploy Scalable Cloud Applications in Record Time
Azure Microservices in Practice - Radu Vunvulea
Outthink: machines coping with humans. A journey into the cognitive world - E...
Event-Driven iPaaS: Enterprise Integration Meets Event-Driven Architecture

What's hot (20)

PPTX
Learn how to make your IoT pilot projects and POCs successful
PPTX
Navigating the Digital Transformation Landscape
PDF
Real-time Big Data Analytics in the IBM SoftLayer Cloud with VoltDB
PPTX
Financial Event Sourcing at Enterprise Scale
PDF
Solutions Using WSO2 Analytics
PDF
Confluent & MongoDB APAC Lunch & Learn
PPTX
Product Management Essentials
PDF
MindSphere: The cloud-based, open IoT operating system. Damiano Manocchia
PDF
The State of Streaming Analytics: The Need for Speed and Scale
PPTX
The Streaming Assessment – An Introduction
PDF
Event Mesh Presentation at Gartner AADI Mumbai
PDF
Seamless Integration of Data in E Government
PDF
Kafka Summit SF 2017 - Real time Streaming Platform
PDF
Adopting the Right Architecture for IoT Implementation
PDF
Kappa vs Lambda Architectures and Technology Comparison
PDF
WSO2Con USA 2017: Geospatial Big Data – Location Intelligence in Digital Tran...
PDF
Driving Business Transformation with Real-Time Analytics Using Apache Kafka a...
PDF
Open Banking - Moving Banks Beyond the Norm
PDF
Using Kafka in Your Organization with Real-Time User Insights for a Customer ...
PDF
Microservices = Death of the Enterprise Service Bus (ESB)?
Learn how to make your IoT pilot projects and POCs successful
Navigating the Digital Transformation Landscape
Real-time Big Data Analytics in the IBM SoftLayer Cloud with VoltDB
Financial Event Sourcing at Enterprise Scale
Solutions Using WSO2 Analytics
Confluent & MongoDB APAC Lunch & Learn
Product Management Essentials
MindSphere: The cloud-based, open IoT operating system. Damiano Manocchia
The State of Streaming Analytics: The Need for Speed and Scale
The Streaming Assessment – An Introduction
Event Mesh Presentation at Gartner AADI Mumbai
Seamless Integration of Data in E Government
Kafka Summit SF 2017 - Real time Streaming Platform
Adopting the Right Architecture for IoT Implementation
Kappa vs Lambda Architectures and Technology Comparison
WSO2Con USA 2017: Geospatial Big Data – Location Intelligence in Digital Tran...
Driving Business Transformation with Real-Time Analytics Using Apache Kafka a...
Open Banking - Moving Banks Beyond the Norm
Using Kafka in Your Organization with Real-Time User Insights for a Customer ...
Microservices = Death of the Enterprise Service Bus (ESB)?
Ad

Similar to NoSQL in Practice with TIBCO: Real World Use Cases and Customer Success Stories for In-Memory Data Grids (20)

PDF
Real World Use Cases and Success Stories for In-Memory Data Grids (TIBCO Acti...
PPTX
In memory cloud computing
PPTX
In memory computing
PDF
Capitalizing on the New Era of In-memory Computing
PPTX
IMC Summit 2016 Breakout - Pandurang Naik - Demystifying In-Memory Data Grid,...
PDF
In memory computing principles by Mac Moore of GridGain
PDF
In-Memory Data Management Goes Mainstream - OpenSlava 2015
PDF
JavaOne BOF 5957 Lightning Fast Access to Big Data
PPTX
The BigMemory Revolution in Financial Services
PPTX
The Most Trusted In-Memory database in the world- Altibase
PPTX
In-Memory Computing Webcast. Market Predictions 2017
PDF
Good Data: Collaborative Analytics On Demand
PDF
In-Memory Computing - The Big Picture
PPTX
Are your ready for in memory applications?
PDF
IMCSummit 2015 - Day 2 Developer Track - The Internet of Analytics – Discover...
PPT
Elastic Caching for a Smarter Planet - Make Every Transaction Count
PDF
ManMachine&Mathematics_Arup_Ray_Ext
PDF
In memory big data management and processing a survey
PPTX
In-Memory Big Data Analytics
PDF
How In-memory Computing Drives IT Simplification
Real World Use Cases and Success Stories for In-Memory Data Grids (TIBCO Acti...
In memory cloud computing
In memory computing
Capitalizing on the New Era of In-memory Computing
IMC Summit 2016 Breakout - Pandurang Naik - Demystifying In-Memory Data Grid,...
In memory computing principles by Mac Moore of GridGain
In-Memory Data Management Goes Mainstream - OpenSlava 2015
JavaOne BOF 5957 Lightning Fast Access to Big Data
The BigMemory Revolution in Financial Services
The Most Trusted In-Memory database in the world- Altibase
In-Memory Computing Webcast. Market Predictions 2017
Good Data: Collaborative Analytics On Demand
In-Memory Computing - The Big Picture
Are your ready for in memory applications?
IMCSummit 2015 - Day 2 Developer Track - The Internet of Analytics – Discover...
Elastic Caching for a Smarter Planet - Make Every Transaction Count
ManMachine&Mathematics_Arup_Ray_Ext
In memory big data management and processing a survey
In-Memory Big Data Analytics
How In-memory Computing Drives IT Simplification
Ad

More from Kai Wähner (20)

PDF
Apache Kafka as Data Hub for Crypto, NFT, Metaverse (Beyond the Buzz!)
PDF
When NOT to use Apache Kafka?
PDF
Kafka for Live Commerce to Transform the Retail and Shopping Metaverse
PDF
The Heart of the Data Mesh Beats in Real-Time with Apache Kafka
PDF
Apache Kafka vs. Cloud-native iPaaS Integration Platform Middleware
PDF
Data Warehouse vs. Data Lake vs. Data Streaming – Friends, Enemies, Frenemies?
PDF
Serverless Kafka and Spark in a Multi-Cloud Lakehouse Architecture
PDF
Resilient Real-time Data Streaming across the Edge and Hybrid Cloud with Apac...
PDF
Data Streaming with Apache Kafka in the Defence and Cybersecurity Industry
PDF
Apache Kafka in the Healthcare Industry
PDF
Apache Kafka in the Healthcare Industry
PDF
Apache Kafka for Real-time Supply Chain in the Food and Retail Industry
PDF
Kafka for Real-Time Replication between Edge and Hybrid Cloud
PDF
Apache Kafka for Predictive Maintenance in Industrial IoT / Industry 4.0
PDF
Apache Kafka Landscape for Automotive and Manufacturing
PPTX
The Top 5 Apache Kafka Use Cases and Architectures in 2022
PDF
Event Streaming CTO Roundtable for Cloud-native Kafka Architectures
PDF
Apache Kafka in the Public Sector (Government, National Security, Citizen Ser...
PDF
Telco 4.0 - Payment and FinServ Integration for Data in Motion with 5G and Ap...
PDF
Apache Kafka in the Transportation and Logistics
Apache Kafka as Data Hub for Crypto, NFT, Metaverse (Beyond the Buzz!)
When NOT to use Apache Kafka?
Kafka for Live Commerce to Transform the Retail and Shopping Metaverse
The Heart of the Data Mesh Beats in Real-Time with Apache Kafka
Apache Kafka vs. Cloud-native iPaaS Integration Platform Middleware
Data Warehouse vs. Data Lake vs. Data Streaming – Friends, Enemies, Frenemies?
Serverless Kafka and Spark in a Multi-Cloud Lakehouse Architecture
Resilient Real-time Data Streaming across the Edge and Hybrid Cloud with Apac...
Data Streaming with Apache Kafka in the Defence and Cybersecurity Industry
Apache Kafka in the Healthcare Industry
Apache Kafka in the Healthcare Industry
Apache Kafka for Real-time Supply Chain in the Food and Retail Industry
Kafka for Real-Time Replication between Edge and Hybrid Cloud
Apache Kafka for Predictive Maintenance in Industrial IoT / Industry 4.0
Apache Kafka Landscape for Automotive and Manufacturing
The Top 5 Apache Kafka Use Cases and Architectures in 2022
Event Streaming CTO Roundtable for Cloud-native Kafka Architectures
Apache Kafka in the Public Sector (Government, National Security, Citizen Ser...
Telco 4.0 - Payment and FinServ Integration for Data in Motion with 5G and Ap...
Apache Kafka in the Transportation and Logistics

Recently uploaded (20)

PPTX
Big Data Technologies - Introduction.pptx
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Encapsulation theory and applications.pdf
PPTX
sap open course for s4hana steps from ECC to s4
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
Cloud computing and distributed systems.
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Approach and Philosophy of On baking technology
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PPTX
Spectroscopy.pptx food analysis technology
PDF
Network Security Unit 5.pdf for BCA BBA.
Big Data Technologies - Introduction.pptx
MYSQL Presentation for SQL database connectivity
Encapsulation theory and applications.pdf
sap open course for s4hana steps from ECC to s4
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Understanding_Digital_Forensics_Presentation.pptx
Per capita expenditure prediction using model stacking based on satellite ima...
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Cloud computing and distributed systems.
Programs and apps: productivity, graphics, security and other tools
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Building Integrated photovoltaic BIPV_UPV.pdf
Advanced methodologies resolving dimensionality complications for autism neur...
Approach and Philosophy of On baking technology
“AI and Expert System Decision Support & Business Intelligence Systems”
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
NewMind AI Weekly Chronicles - August'25 Week I
Diabetes mellitus diagnosis method based random forest with bat algorithm
Spectroscopy.pptx food analysis technology
Network Security Unit 5.pdf for BCA BBA.

NoSQL in Practice with TIBCO: Real World Use Cases and Customer Success Stories for In-Memory Data Grids

  • 1. NoSQL in Practice Real World Use Cases for In-Memory Data Grids Kai Wähner kwaehner@tibco.com www.kai-waehner.de @KaiWaehner LinkedIn / Xing à Please connect!
  • 2. Key Messages In-Memory Computing is used for Acting in Real-Time! In-Memory is NOT just for Caching and Storing – A Data Grid offers much more! Eventing and Fault-Tolerance move In-Memory Computing to another Level!
  • 3. © Copyright 2000-2014 TIBCO Software Inc. 3   Agenda •  Introduction to In-Memory Computing •  Market Overview •  Use Cases / Customer Success Stories
  • 4. © Copyright 2000-2014 TIBCO Software Inc. 4   Agenda •  Introduction to In-Memory Computing •  Market Overview •  Use Cases / Customer Success Stories
  • 5. Time   Business Value Business Event Data Ready for Analysis Analysis Completed Decision Made $$$$   $$$   $$   $   Action Taken In-Memory Computing and Event Processing speed action and increase business value by seizing opportunities while they matter Business Value of Events over Time
  • 6. © Copyright 2000-2014 TIBCO Software Inc. 6   •  Hardware costs declining •  Data Processing Requirements exploding •  Traditional Approaches not scaling –  Relational Databases –  Clustered Databases –  In-Memory Caches –  Messaging Systems Drivers for In-Memory Computing
  • 7. © Copyright 2000-2014 TIBCO Software Inc. 7   •  Two parallel responses to the 21st century data processing needs •  NoSQL Databases –  Disk based with some in-memory caching –  Horizontal Scalability on Commodity Hardware –  Alternatives to Relational Databases and SQL –  Basically Available Soft-state Eventually (BASE) –  No ACID (transactions / concurrency control) •  In-Memory Data Grid Technology –  Memory for data storage –  Pooling Memory from multiple machines –  Use database for persistence –  ACID Properties –  Eventing – Notifications, Continuous Queries New Categories of Technology
  • 8. © Copyright 2000-2014 TIBCO Software Inc. 8   Agenda •  Introduction to In-Memory Computing •  Market Overview •  Use Cases / Customer Success Stories
  • 9. © Copyright 2000-2014 TIBCO Software Inc. 9   Database Landscape in 2014 h*p://blogs.the451group.com/   informa@on_management/2014/03/18/   updated-­‐data-­‐plaForms-­‐landscape-­‐   map-­‐february-­‐2014/   In-­‐Memory  Data  Grids  
  • 10. © Copyright 2000-2014 TIBCO Software Inc. 10   Database Landscape in 2014 h*p://blogs.the451group.com/   informa@on_management/2014/03/18/   updated-­‐data-­‐plaForms-­‐landscape-­‐   map-­‐february-­‐2014/   SAP  HANA  is  not  an   In-­‐Memory  Data  Grid!  
  • 11. Product Example: TIBCO ActiveSpaces Distributed In-memory System of Record Stores platform / language independent key-value data structures in memory with the option to persist data in parallel on local disks on a cluster of elastic horizontally scalable commodity hardware High Performance ACID compliant NoSQL Data Grid Offers all benefits of NoSQL databases and immediate consistency with full ACID compliance for transactions and concurrency control Minimal configuration and easy-to-use APIs (Java, C, .NET, “TIBCO Products”) Uses proprietary consistent hashing algorithm that that ensures a single network hop for fetching data. No need for partitioning, no complex XML configuration files Querying Data can be queried using an SQL-like language and queries can be accelerated through full indexing capabilities such as composite indexes and tree or hash index types. Best of both Worlds: NoSQL and In-Memory!  
  • 12. © Copyright 2000-2014 TIBCO Software Inc. 12   Agenda •  Introduction to In-Memory Computing •  Market Overview •  Use Cases / Customer Success Stories
  • 13. LOADER       Caching for Fast Data Access •  Cache  to  slower  systems   •  Read-­‐only   •  Not  the  system  of  record     •  No  persistence  required   •  Side  benefit:  Backend  load   is  reduced  
  • 14.     Caching + Dynamic Load •  Dynamically  loaded  into   Memory  when  the  data  is   first  accessed  by  a  client   applica@on   •  Service  can  present  a   standard  interface     •  Client  applica@ons  are  not   required  to  implement  any   In-­‐Memory  specific  code   (1)  Check  Cache   (2)  Load  from  DB  if  not  in  Cache  
  • 15. Routing Messages to Back-Office Applications •  Receive  a  common  data  feed  that  needs  to  be  parsed   and  routed  to  several  back-­‐office  applica@ons     •  In-­‐Memory  holding  reference  informa@on  for  the   rou@ng  applica@on.  The  router  can  quickly  determine   where  to  send  the  data.     •  Examples:  Bank  payments,  insurance  claims  processing  
  • 16. Off-loading expensive systems Expensive  in  terms  of  response  @me  and  /  or  transac@on  costs!  
  • 17. Success Story (CRM): Personalized Customer Experience “With  38  million  fans,  MGM  knows  how  to  put  its  customers   first,  it  takes  more  than  a  smile  too.  Customers  want  a   personalized,  tailored  experience,  one  that  knows  their   name  and  can  an@cipate  their  needs.  With  the  help  of  TIBCO   technologies  that  leverage  big  data  and  give  customers  a   digital  iden@ty,  MGM  can  send  personalized  offers  directly   to  customers,  save  them  a  seat,  and  have  their  favorite  drink   on  the  way.  With  mul@ple  customer  touch  points  and   channels,  MGM  can  reach  customers  in  more  ways,  and  in   more  places,  than  ever  before.”     h*ps://www.youtube.com/watch?v=X-­‐7S3kCOx9k   Latency  Problems:   •  Several  Legacy  Systems   •  Processing  via  ERP,  CRM,  Host,  etc.     In-­‐Memory:   •  Events  and  Correla@ons   •  Enable  Real  Time   •  Only  customers  that  have  checked  in  
  • 18. Fault Tolerance and Disaster Recovery Enabling Active-Active Fault Tolerance in Applications: In-­‐Memory  Compu@ng  is   reliable,  scalable  and   fault-­‐tolerant!  
  • 19. Fault Tolerance and Disaster Recovery Multisite Data Replication: In-­‐Memory  Compu@ng  is   reliable,  scalable  and   fault-­‐tolerant!  
  • 20. Handling temporary spikes on a slow ‘system of record’ •  An  In-­‐Memory  event  listener  gets  no@fied  whenever  a  data  value  is  changed  and  sends  updates  through  a   message  queue  for  upda@ng  the  master  system  of  record.   •  The  back  office  system  can  also  be  updated  through  other  channels.   •  Examples:  Christmas  Shopping  in  E-­‐Commerce,  Ticket  Sales,  Online  Bekng  
  • 21. à  In-­‐Memory  as  “system  of  record”   Operational Data Store (Local File System)
  • 22. •  Low-­‐latency,  high-­‐throughput  opera@onal  data   –  Customer  data:  e.g.  account  status  and  balance,   purchase  history:  real-­‐@me  loyalty  (promo@ons,     cross-­‐selling),  fraud  detec@on,  ...   –  Market  data:  e.g.  risk  assessment,  porFolio  mgmt,   produc@on  output  op@miza@on,  buyer-­‐seller  matching   –  Sensor  data:  e.g.  smart  metering  /  grid,  public  transport  safety   –  Track  and  trace:  e.g.  barcode  scans,  RFID:  logis@cs,  airlines   •  Why  In-­‐Memory?   –  Much  faster  than  tradi@onal  DB,  especially  many  small  transac@ons  (XTP)   –  State  /  data  management  not  addressed  by  messaging  solu@ons   –  Even@ng  is  a  first  class  feature,  changes  can  be  ‘pushed’  in  real-­‐@me  to  interested  par@es   (subscribe  to  changes,  con@nuous  queries)   –  Provides  for  distributed  process  synchroniza@on   –  Integrated  with  CEP  engines  (e.g.  TIBCO  BusinessEvents,  TIBCO  StreamBase)   Operational Data Store (Local File System)
  • 23. Situation •  Master data management system stores over 800 million customer records across more than 30 enterprise apps. •  Stores real-time inventory data to enable ‘Buy online and pick-up at store’ and ‘Smart fulfillment’ features Problem •  Due to lack of correlation between Point of Sale data and inventory, the website contained outdated inventory data. Products were listed as out of stock when there was actually inventory. •  Need to leverage store inventory as well as inventory located fulfillment centers Solution •  In-Memory stores real-time inventory data for the website, the fulfillment application, and other applications that need access to inventory data Business Impact •  Reduction in customer churn •  Intelligent fulfillments leading to greater customer satisfaction •  Improved overall efficiency of fulfillment centers and store inventory Success Story (Retailer): Inventory Management
  • 24. Distribution of Rapidly Changing Data à   Examples  are  monitoring  data  for  a  power  plant,  stock  market  data,  telemetry  data  for  a   complex  system  (example,  a  satellite),  or  the  status  and  loca@on  of  packages  for  a  major   logis@cs  or  shipping  company.    
  • 25. Success Story (Telco): Real-Time Offer Generation and Fulfillment by Different Subcontractors Reload Give 100 free SMS to subscriber who tops-up Total: 12 mio top-up / day Peak: 300 top-up per sec Purchase 3G Package Cross-sell Voice/SMS package to subscriber who purchases 3G Mobile Package Total: 3 mio / day Peak: 50 events per sec Voice Call Give discount VOIP package to subscriber who makes a IDD call Total: 200 mio / day Peak: 12,000 events per sec SMS Usage Give discounted SMS package to subscriber who sends SMS more than 10 times a day Total: 750 mio / day Peak: 27,000 events per sec Event Cloud Purchase BB Package Reload Voice Call IDD Call OnNet Call SMS Usage Event Handling and Processing Touchpoint Integration Billing, Offer Fulfilled Fulfill SMS Package Fulfill 3G Package Fulfill Voice Package Fulfill SMS Package 46.7 million subscribers 2,000 SMS notifications per seconds 500 offer fulfillments per second Offer Message Reminder Message Fulfillment Message
  • 26. Success Story (Telco): Real-Time Offer Generation and Fulfillment by Different Subcontractors   The  numbers   •  1  billion  events  per  day   •  Peaks  of  40,000  to  50,000  events  per  second  (for  hours,  during  peak  usage   period  of  the  day)  from  Network   •  2  TIBCO  BusinessWorks  servers,  2  TIBCO  Ac@veSpaces  servers  (ac@ve-­‐ac@ve)  
  • 27. •  Technical  issues  in  distributed  grid  compu@ng  with  large  scale  data   –  Work  load  distribu@on   –  Process  synchroniza@on   –  Data  transfer   •  Examples   –  Risk  assessment  and  management   –  Op@miza@on  problems:  scheduling,  cargo  assignment,  load  distribu@on  in   power  network  /  grid   •  Why  In-­‐Memory?   –  Many  useful  synchroniza@on  features  (e.g.  atomic  “take”)   –  Loca@on  transparency  and  fault-­‐tolerance   –  Real-­‐@me  instead  of  nightly  /  weekly  /  ...  Data-­‐Warehousing  approach   Super Fast Compute Grid for Intermediary Calculations for Analytics
  • 28. Super Fast Compute Grid for Intermediary Calculations for Analytics
  • 29. State-­‐full   Data   Storing State-full Data for Enterprise Tools à   In-­‐Memory  Data  Grid  as  part  of  Enterprise  Tools  (ESB,  CEP,  BPM,  etc.)  
  • 30. Eventing and Fault-Tolerance move In-Memory Computing to another Level! In-Memory is NOT just for Caching and Storing – A Data Grid offers much more! In-Memory Computing is used for Acting in Real-Time! Key Messages