CVEN 5768 - Lecture Notes 3 Page 1
© B. Amadei
STRESSES AND STRAINS - A REVIEW
1. INTRODUCTION
2. STRESS ANALYSIS
2.1 Cauchy Stress Principle
2.2 State of Stress at a Point
2.3 State of Stress on an Inclined Plane
2.4 Force and Moment Equilibrium
2.5 Stress Transformation Law
2.6 Normal and Shear Stresses on an Inclined Plane
2.7 Principal Stresses
2.8 Stress Decomposition
2.9 Octahedral Stresses
2.10 References
3. STRAIN ANALYSIS
3.1 Deformation and Finite Strain Tensors
3.2 Small Deformation Theory
3.3 Interpretation of Strain Components
3.4 Strain Transformation Law
3.5 Principal Strains
3.6 Strain Decomposition
3.7 Compatibility Equations
3.8 Strain Measurements
3.9 References
4. PLANE STRESS AND PLANE STRAIN
4.1 Plane Stress
4.2 Plane Strain
Recommended readings
1) Appendices 1 and 2 in Introduction to Rock Mechanics by R.E. Goodman, Wiley, 1989.
CVEN 5768 - Lecture Notes 3 Page 2
© B. Amadei
1. INTRODUCTION
Rock mechanics, being an interdisciplinary field, borrows many concepts from the field of
continuummechanics and mechanics of materials, andinparticular,theconceptsofstressandstrain.
Stress is of importance to geologists and geophysicists in order to understand the formation of
geological structures such as folds, faults, intrusions, etc...It is also of importance to civil, mining
and petroleum engineers who are interested in the stability and performance of man-made structures
(tunnels, caverns, mines, surface excavations, etc..), or the stability of boreholes. A list of activities
requiring knowledge of stresses is given in Table 1. Stress terminology is shown in Figure 1.
Unlike man-made materials such as concrete or steel, natural materials such as rocks (and soils) are
initially stressed in their natural state. Stresses in rock can be divided into in situ stresses and
induced stresses. In situ stresses, also called natural, primitive or virgin stresses, are the stresses that
exist in the rock prior to any disturbance. On the other hand, induced stresses are associated with
man-made disturbance (excavation, drilling, pumping, loading, etc..) or are induced by changes in
natural conditions (drying, swelling, consolidation, etc..). Induced stresses depend on many
parameters such as the in situ stresses, the type of disturbance (excavation shape, borehole diameter,
etc..), and the rock mass properties.
Stress is an enigmatic quantity which, according to classical mechanics, is defined at a point in a
continuumand is independent of the constitutive behavior of the medium. The concept of stress used
in rock mechanics is consistent with that formulated by Cauchy and generalized by St. Venant in
France during the 19th century (Timoshenko, 1983). Because of its definition, rock stress is a
fictitious quantity creating challenges in its characterization, measurement, and application in
practice. A summary of the continuum mechanics description of stress is presented below. More
details can be found in Mase (1970).
2. STRESS ANALYSIS
2.1 Cauchy Stress Principle
Consider for instance, the continuum shown in Figure 2 occupying a region R of space and subjected
to body forces b (per unit of mass) and surface forces fs (tractions). Let x,y,z be a Cartesian
coordinate system with unit vectors e1, e2, e3 parallel to the x, y, and z directions, respectively.
Consider a volume V in the continuum, an infinitesimal surface element )S located on the outer
surface S of V, a point P located on )S, and a unit vector n normal to )S at P. Under the effect of
the body and surface forces, the material within volume V interacts with the material outside of V.
Let )f and )m be respectively the resultant force and moment exerted across )S by the material
outside of V upon the material within V. The Cauchy stress principle asserts that the average force
per unit area )f/)S tends to a limit df/dS as )S tends to zero, whereas )m vanishes in the limiting
process. The limit is called the stress vector t(n), i.e.
CVEN 5768 - Lecture Notes 3 Page 3
© B. Amadei
(1)
(2)
The stress vector has three components in the x,y,z coordinate system which are expressed in units
of force per unit area (MPa, psi, psf,..). It is noteworthy that the components of the stress tensor
depend on the orientation of the surface element )S which is defined by the coordinates of its
normal unit vector n.
The stress vector t(n) at point P in Figure 2 is associated with the action of the material outside of V
upon the material within V. Let t(-n) be the stress vector at point P corresponding to the action across
)S of the material within V upon the material outside of V. By Newton's law of action and reaction
Equation (2) implies that the stress vectors acting on opposite sides of a same surface are equal in
magnitude but opposite in direction.
2.2 State of Stress at a Point
The state of stress at point P in Figure 2 can be defined by using equation (1) for all possible
infinitesimal surfaces )S having point P as an interior point. An alternative is to consider the stress
vectors t(e1), t(e2), and t(e3) acting on three orthogonal planes normal to the x-, y- and z-axes and with
normal unit vectors e1, e2, and e3, respectively. The three planes form an infinitesimal stress element
around point P (Figures 3a and 3b).
The nine components of vectors t(e1), t(e2), and t(e3) form the components of a second-order Cartesian
tensor also known as the stress tensor Fij (i,j=1-3). The components F11, F22 and F33 represent the
three normal stresses Fx, Fy and Fz acting in the x, y, and z directions, respectively. The components
Fij (i…j) represent six shear stresses Jxy, Jyx, Jxz, Jzx, Jyz and Jzy acting in the xy, xz and yz planes.
Two sign conventions are considered below:
Engineering mechanics sign convention
Tensile normal stresses are treated as positive and the direction of positive shear stresses is as shown
in Figure 3a. The stress vectors t(e1), t(e2), and t(e3) have the following expressions
CVEN 5768 - Lecture Notes 3 Page 4
© B. Amadei
(3)
(4)
(5)
(6)
Rock mechanics sign convention
Compressive normal stresses are treated as positive and the direction of positive shear stresses is as
shown in Figure 3b. The stress vectors t(e1), t(e2), and t(e3) have the following expressions
2.3 State of Stress on an Inclined Plane
Knowing the components of the stress tensor representing the state of stress at a point P, the
components of the stress vector on any plane passing by P, and of known orientation with respect
to the x-, y-, and z-axes, can be determined.
Consider again point P of Figure 2 and let Fij be the stress tensor representing the state of stress at
that point. The components of the stress vector t(n) acting on an inclined plane passing through P can
be expressed in terms of the Fij components and the orientation of the plane using a limiting process
similar to that used to introduce the stress vector concept. As shown in Figure 4, consider a plane
ABC of area dS parallel to the plane of interest passing through P. Let n be the normal to the plane
with components n1, n2, and n3. The force equilibrium of the PABC tetrahedron leads to the
following relation between the average stress vectors acting on its faces
where n1dS, n2dS and n3dS are respectively the areas of faces CPB, CPA and APB of the
tetrahedron. Using equation (2), t(n) can be expressed as follows
CVEN 5768 - Lecture Notes 3 Page 5
© B. Amadei
(7a)
(7b)
(8)
The stress acting on plane ABC will approach the stress on the parallel plane passing through P as
the tetrahedron in Figure 4 is made infinitesimal. In that limiting process, the contribution of any
body force acting in the PABC tetrahedron vanishes.
Equation (6) can also be expressed in terms of the normal and shear stress components at point P.
Let tx, ty and tz be the x, y, z components of the stress vector t(n). When using the engineering
mechanics sign convention, combining equations (3) and (6) yields
On the other hand, for the rock mechanics sign convention, combining equations (4) and (6) yields
The (3 x 3) matrix in equations (7a) and (7b) is a matrix representation of the stress tensor Fij.
2.4 Force and Moment Equilibrium
For all differential elements in the continuum of Figure 2, force and moment equilibrium leads
respectively to the equilibrium equations and the symmetry of the stress tensor Fij.
Equations of equilibrium
CVEN 5768 - Lecture Notes 3 Page 6
© B. Amadei
(9)
(10)
(11)
where D is the density and Db1, Db2 and Db3 are the components of the body force per unit volume
of the continuum in the x, y and z directions, respectively. The positive directions of those
components are in the positive x, y and z directions if the engineering mechanics convention for
stress is used, and in the negative x, y and z directions if the rock mechanics sign convention is used
instead.
Symmetry of stress tensor
which implies that only six stress components are needed to describe the state of stress at a point in
a continuum: three normal stresses and three shear stresses.
2.5 Stress Transformation Law
Consider now two rectangular coordinate systems x,y,z and xU,yU,zU at point P. The orientation of the
xU-, yU-, zU-axes is defined in terms of the direction cosines of unit vectors eU1, eU2 and eU3 in the x,y,z
coordinate system, i.e.
Let [A] be a coordinate transformation matrix such that
Matrix [A] is an orthogonal matrix with [A]t
= [A]-1
. Using the coordinate transformation law for
second order Cartesian tensors, the components of the stress tensor FUij in the xU,yU,zU coordinate
system are related to the components of the stress tensor Fij in the x,y,z coordinate system as follows
CVEN 5768 - Lecture Notes 3 Page 7
© B. Amadei
(12)
(13)
(14)
Using (6x1) matrix representation of FUij and Fij, and after algebraic manipulations, equation (12) can
be rewritten in matrix form as follows
where [F]t
xyz =[Fx Fy Fz Jyz Jxz Jxy], [F]t
x'y'z' =[FxU FyU FzU Jy'z' JxUzU JxUyU] and [TF] is a (6x6) matrix whose
components can be found in equation A1.23 in Goodman (1989). It can be written as follows
Expressions for the direction cosines lx', mx', nx'......are given below for two special cases shown in
Figures 5a and 5b, respectively. In Figure 5a, the orientation of the xU-axis is defined by two angles
$ and * and the zU-axis lies in the Pxz plane. In this case, the direction cosines are
If we take $=0, *=2, and the zU-axis to coincide with the z-axis, the xU-, yU- and zU-axes coincide, for
instance, with the radial, tangential and longitudinal axes of a cylindrical coordinate system r,2,z
(Figure 5b) with
CVEN 5768 - Lecture Notes 3 Page 8
© B. Amadei
(15)
(16)
(17)
Substituting these direction cosines into equation (12) gives a relationship between the stress
components in the r, 2, z coordinate system and those in the x,y,z coordinate system as follows
2.6 Normal and Shear Stresses on an Inclined Plane
Consider a plane passing through point P and inclined with respect to the x-, y- and z-axes. Let
xU,yU,zU be a Cartesian coordinate system attached to the plane such that the xU-axis is along its
outward normal and the yU- and zU-axes are contained in the plane. The xU-, yU- and zU-axes are oriented
as shown in Figure 5 with the direction cosines defined in equation (14).
The state of stress across the plane is defined by one normal component FxU= Fn and two shear
components JxUyU and JxUzU such that (see Figure 6)
Equation (17) is the matrix representation of the first, fifth and sixth lines of equation (13). The
resultant shear stress, J, across the plane is equal to
CVEN 5768 - Lecture Notes 3 Page 9
© B. Amadei
(18)
(19)
(20)
(21)
(22)
The stress vector t(n) acting on the plane is such that
2.7 Principal Stresses
Among all the planes passing by point P, there are three planes (at right angles to each other) for
which the shear stresses. These planes are called principal planes and the normal stresses acting on
those planes are called principal stresses and are denoted F1, F2 and F3 with F1>F2>F3. Finding the
principal stresses and the principal stress directions is equivalent to finding the eigenvalues and
eigenvectors of the stress tensor Fij. Since this tensor is symmetric, the eigenvalues are real.
The eigenvalues of Fij are the values of the normal stress F such that the determinant of Fij-F*ij
vanishes, i.e.
Upon expansion, the principal stresses are the roots of the following cubic polynomial
where I1, I2, and I3 are respectively the first, second and third stress invariants and are equal to
For each principal stress Fk (F1, F2, F3), there is a principal stress direction for which the direction
cosines n1k=cos (Fk,x), n2k=cos (Fk,y) and n3k=cos (Fk,z) are solutions of
CVEN 5768 - Lecture Notes 3 Page 10
© B. Amadei
(23)
(24)
(25)
(26)
(27)
with the normality condition
2.8 Stress Decomposition
The stress tensor Fij can be separated into a hydrostatic component Fm*ij and a deviatoric component
sij. Using (3x3) matrix representations, the decomposition can be expressed as follows
with Fm=(Fx+Fy+Fz)/3. As for the stress matrix, three principal deviatoric stresses sk (k=1,2,3) can
be calculated by setting the determinant of sij-s*ij to zero. Equation (21) is then replaced by the
following cubic polynomial
where J1, J2, and J3 are respectively the first, second and third invariants of the deviatoric stress
tensor and are equal to
CVEN 5768 - Lecture Notes 3 Page 11
© B. Amadei
(28)
(29)
with sx=Fx-Fm, sy=Fy-Fm, and sz=Fz-Fm. Note that J2 can also be written as follows
2.9 Octahedral Stresses
Let assume that the x, y, and z directions of the x,y,z coordinate system coincide with the principal
stress directions, i.e. Fx=F1, Fy=F2, and Fz=F3. Consider a plane that makes equal angles with the
three coordinate axes and whose normal has components n1=n2=n3=1/%3.Thisplane is an octahedral
plane. The normal stress across the plane is called the octahedral normal stress, Foct, and the shear
stress is called the octahedral shear stress, Joct. The stresses are equal to
2.10 References
Goodman, R.E. (1989) Introduction to Rock Mechanics, Wiley, 2nd Edition.
Mase, G.E. (1970) Continuum Mechanics, Schaum's Outline Series, McGraw-Hill.
Timoshenko, S.P. (1983) History of Strength of Materials, Dover Publications.
CVEN 5768 - Lecture Notes 3 Page 12
© B. Amadei
(31)
(32)
(33)
3. STRAIN ANALYSIS
3.1 Deformation and Finite Strain Tensors
Consider a material continuum which at time t=0 can be seen in its initial or undeformed
configuration and occupies a region Ro of Euclidian 3D-space (Figure 7). Any point Po in Ro can be
described by its coordinates X1, X2, X3 with reference to a suitable set of coordinate axes (material
coordinates). Upon deformation and at time t=t, the continuum will now be seen in its deformed
configuration, R being the region it now occupies. Point Po will move to a position P with
coordinates x1, x2, x3 (spatial coordinates). The X1,X2,X3 and x1,x2,x3 coordinate systems are
assumed to be superimposed. The deformation of the continuum can be defined with respect to the
initialconfiguration(Lagrangian formulation) or with respect to the current configuration (Eulerian
formulation). The vector u joining points Po and P is known as the displacement vector and is equal
to
where x=OP and X=OPo. It has the same three components u1, u2 and u3 in the x1,x2,x3 and X1,X2,X3
coordinate systems (since both coordinate systems are assumed to coincide).
Partial differentiation of the spatial coordinates with respect to the material coordinates Mxi/MXj
defines the material deformation gradient. Likewise, partial differentiation of the material
coordinates with respect to the spatial coordinates MXi/Mxj defines the spatial deformation gradient.
Both gradients can be expressed using (3x3) matrices and are related as follows
Partial differentiation of the displacement vector ui with respect to the coordinates gives either the
material displacement gradient Mui/MXj or the spatial displacement gradient Mui/Mxj. Both gradients
can be written in terms of (3x3) matrices and are related as follows
In general, two strain tensors can be introduced depending on which configuration is used as
reference. Consider, for instance, Figure 7 where two neighboring particles Po and Qo before
deformation move to points P and Q after deformation. The square of the linear element of length
CVEN 5768 - Lecture Notes 3 Page 13
© B. Amadei
(34)
(35)
(36)
(37)
(38)
between Po and Qo is equal to
where Cij is called the Cauchy's deformation tensor. Likewise, in the deformed configuration, the
square of the linear element of length between P and Qis equal to
where Gij is the Green's deformation tensor. The two deformation tensors represent the spatial and
material description of deformation measures. The relative measure of deformation that occurs in
the neighborhood of two particles in a continuum is equal to (dx)2
- (dX)2
. Using the material
description, the relative measure of deformation is equal to
where Lij is the Lagrangian (or Green's) finite strain tensor. Using the spatial description, the
relative measure of deformation is equal to
where Eij is the Eulerian (or Almansi's) finite strain tensor.
Both Lij and Eij are second-order symmetric strain tensors that can be expressed in terms of (3x3)
matrices. They can also be expressed in terms of the displacement components by combining
equation (36) or (37) with equation (31). This gives,
CVEN 5768 - Lecture Notes 3 Page 14
© B. Amadei
(39)
(40)
(41)
(42)
and
3.2 Small Deformation Theory
Infinitesimal Strain Tensors
In the small deformation theory, the displacement gradients are assumed to be small compared to
unity, which means that the product terms in equations (38) and (39) are small compared to the other
terms and can be neglected. Both equations reduce to
which is called the Lagrangian infinitesimal strain tensor, and
which is called the Eulerian infinitesimal strain tensor.
If the deformation gradients and the displacements themselves are small, both infinitesimal strain
tensors may be taken as equal.
Examples
Consider first, the example of a prismatic block of initial length lo, width wo, and height ho. The
block is stretched only along its length by an amount l-lo. The corresponding engineering strain ,
is then equal to (l-lo)/lo. The deformation of the block can be expressed as x1=X1+,X1; x2=X2 and
x3=X3. Thus, the displacement components are u1=,X1, u2=u3=0. For this deformation, the matrix
representation of the Lagrangian finite strain tensor Lij is equal to
For any vector dX of length dX and components dX1, dX2, and dX3, equation (36) can be written as
CVEN 5768 - Lecture Notes 3 Page 15
© B. Amadei
(43)
(44)
(45)
(46)
follows
If dX is parallel to the X1-axis with dX1=dX=lo, dX2=dX3=0, then equation (43) yields
The block does not experience any deformation along the X2 and X3 -axes. Equation (44) shows that
the longitudinal Lagrangian strain, ,lag, differs from the engineering strain, ,, by the amount 0.5,2
.
For small deformations, the square term is very small and can be neglected.
As a second example, consider again the same prismatic block deforming such that x1=X1;
x2=X2+AX3 and x3=X3+BX2. The corresponding displacement components are u1=0; u2=AX3 and
u3=BX2. For this deformation, the matrix representation of the Lagrangian finite strain tensor Lij is
equal to
For any vector dX of length dX and components dX1, dX2, and dX3, equation (36) can be written as
follows
If dX is parallel to the X1-axis with dX1=dX=lo, dX2=dX3=0, then dx=dX, i.e the prismatic block
does not deform in the X1 direction.
CVEN 5768 - Lecture Notes 3 Page 16
© B. Amadei
(47)
(48)
If dX is parallel to the X2-axis with dX2=dX=ho, dX1=dX3=0, then equation (46) yields dx2
=
(1+B2
)dX2
, i.e the dip of vector dX is displaced in the X3 direction by an amount Bho.
If dX is parallel to the X3-axis with dX3=dX=wo, dX2=dX3=0, then equation (46) yields dx2
=
(1+A2
)dX2
, i.e the dip of vector dX is displaced in the X2 direction by an amount Awo.
Overall, the prismatic block is deformed in the X2-X3 plane with the rectangular cross-section
becoming a parallelogram. This deformation can also be predicted by examining the components
of Lij in equation (45); there is a finite shear strain of magnitude 0.5(A+B) in the X2-X3 plane and
finite normal strains of magnitude 0.5B2
and 0.5A2
in the X2 and X3 directions, respectively. Note
that if A and B are small (small deformation theory), those normal strains can be neglected.
3.3 Interpretation of Strain Components
Relative Displacement Vector
Throughout the rest of these notes we will assume that the small deformation theory is valid and
that, for all practical purposes, the Lagrangian and Eulerian infinitesimal strain tensors are equal.
Consider the geometry of Figure 8 and the displacement vectors u(Po)
and u(Qo)
of two neighboring
particles Po and Qo. The relative displacement vector du between the two particles is taken as u(Qo)
-
u(Po)
. Using a Taylor series expansion for the displacement components in the neighborhood of Po
and neglecting higher order terms in the expansion gives
The displacement gradients (material or spatial) appearing in the (3x3) matrix in equation (47) can
be decomposed into a symmetric and an anti-symmetric part, i.e.
CVEN 5768 - Lecture Notes 3 Page 17
© B. Amadei
(49)
(50)
The first term in (48) is the infinitesimal strain tensor, ,ij, defined in section 3.2. The second term
is called the infinitesimal rotation tensor wij and is denoted as
This tensor is anti-(or skew) symmetric with wji=-wij and corresponds to rigid body rotation around
the coordinate system axes.
Strain Components
In three dimensions, the state of strain at a point P in an arbitrary x1,x2,x3 Cartesian coordinate
system is defined by the components of the strain tensor. Since that tensor is symmetric, only six
components defined the state of strain at a point: three normal strains ,11, ,22, and ,33 and three
shear strains ,12=0.5(12, ,13=0.5(13, and ,23=0.5(23 with
In equation (50), (12, (13, and (23 are called the engineering shear strains and are equal to twice the
tensorial shear strain components.
From a physical point of view, the normal strains ,11, ,22, and ,33 represent the change in length of
unit lines parallel to the x1, x2, and x3 directions, respectively. The shear strain components ,12, ,13,
and ,23 represent one-half the angle change ((12, (13, and (23) between two line elements originally
at right angles to one another and located in the (x1,x2), (x1,x3), and (x2,x3) planes.
Note that two sign conventions are used when dealing with strains. In both cases, the displacements
u1, u2, and u3 are assumed to be positive in the the +x1, +x2, and +x3 directions, respectively. In
engineering mechanics, positive normal strains correspond to extension, and positive shear strains
correspond to a decrease in the angle between two line elements originally at right angles to one
CVEN 5768 - Lecture Notes 3 Page 18
© B. Amadei
(51)
(52)
another. In rock mechanics, however, positive normal strains correspond to contraction (since
compressive stresses are positive), and positive shear strains correspond to an increase in the angle
between two line elements originally at right angles to one another. When using the rock mechanics
sign convention, the displacement components u1, u2, and u3 in equation (50) must be replaced by
-u1, -u2, and -u3, respectively.
3.4 Strain Transformation Law
The components of the strain tensor ,Uij in an xU,yU,zU (x1U,x2U,x3U) Cartesian coordinate system can be
determined from the components of the strain tensor ,ij in an x,y,z (x1,x2,x3) Cartesian coordinate
system using the same coordinate transformation law for second order Cartesian tensors used in the
stress analysis. The direction cosines of the unit vectors parallel to the xU-,yU- and zU-axes are assumed
to be known and to be defined by equation (10). Equation (12) is replaced by
Using (6x1) matrix representation of ,Uij and ,ij, and after algebraic manipulations, equation (51) can
be rewritten in matrix form as follows
where [,]t
xyz =[,xx ,yy ,zz (yz (xz (xy], [,]t
x'y'z' =[,xUxU ,yUyU ,zUzU (y'z' (xUzU (xUyU] and [T,] is a (6x6) matrix with
components similar to those of matrix [TF] in equation (13). It can written as follows:
CVEN 5768 - Lecture Notes 3 Page 19
© B. Amadei
(53)
(54)
(55)
(56)
[TF] and [T,] are related as follows
Note that equation (53) is valid as long as engineering shear strains (and not tensorial shear strains)
are used in [,]xyz and [,]x'y'z'
The direction cosines defined in equation (15) can be used to determine the strain components in the
r, 2, z cylindrical coordinate system of Figure 5b. After algebraic manipulation, the strain
components in the r, 2, z and x,y,z coordinate systems are related as follows
3.5 Principal Strains
The principal strain values and their orientation can be found by determining the eigenvalues and
eigenvectors of the strain tensor ,ij. Equation (20) is replaced by
Upon expansion, the principal strains are the roots of the following cubic polynomial
where I,1, I,2, and I,3 are respectively the first, second and third strain invariants and are equal to
CVEN 5768 - Lecture Notes 3 Page 20
© B. Amadei
(57)
CVEN 5768 - Lecture Notes 3 Page 21
© B. Amadei
(61)
(62)
with em=(,xx+,yy+,zz)/3.
3.7 Compatibility Equations
The six components of strain are related to the three components of displacement through equation
(50). These relations can be seen as a system of six partial differential equations with three
unknowns. The system is therefore over-determined and will not, in general, possess a unique
solution for the displacements for an arbitrary choice of the six strain components.
Continuity of the continuum as it deforms requires that the three displacement components be
continuous functions of the three coordinates and be single valued. It can be shown that this requires
the strain components to be related by six equations called equations of compatibility. In an arbitrary
x,y,z Cartesian coordinate system, these equations can be written as follows
CVEN 5768 - Lecture Notes 3 Page 22
© B. Amadei
(63)
(64)
(65)
(66)
3.8 Strain Measurements
Consider an (x,y) plane and a point P in that plane. The state of strain at point P is defined by three
components ,xx, ,yy, and ,xy. The longitudinal strain ,l in any direction making an angle 2 with the
x-axis is, according to equation (54), equal to
The state of strain at (or in the near vicinity of) point P can be determined by measuring three
longitudinal strains, ,l1, ,l2, and ,l3 in three different directions with angles 21, 22, and 23. This gives
the following system of three equations and three unknowns
which can be solved for ,xx, ,yy, and ,xy.
Longitudinal strains can be measured using strain gages (invented in the United States in 1939). A
strain gage consists of many loops of thin resistive wire glued to a flexible backing (Figure 9a). It
is used to measure the longitudinal strain of a structural member to which it is attached. As the
material deforms, the wire becomes somewhat longer and thinner (or shorter and thicker) thereby
changing its resistance by a small amount.
Recall that the electrical resistance, R, of a wire of length l, sectional area A, and resistivity D is
equal to
Let ,l=)l/l be the longitudinal strain of the wire. As the wire stretches, its diameter decreases due
to the Poisson's effect. The change in resistance, )R, of the wire is related to ,l as follows
where < is the Poisson's ratio of the wire and GF is the so-called gage factor whose value is given
by the gage manufacturer. For instance for Cr-Ni gages, GF=2.05. Thus,
CVEN 5768 - Lecture Notes 3 Page 23
© B. Amadei
(67)
Equation (67) shows that the strain can be determined once the change in resistance, )R, is
measured. This can be done by mounting the strain gage on a Wheastone bridge. Figure 9b shows
a Wheastone bridge where the active strain gage has a resistance R1. The bridge is equilibrium when
R1R3=R2R4. If R1 changes by )R1, the bridge will be in equilibrium only if
where )R2 is changed by means of a potentiometer. Equation (68) indicates that in order to obtain
a high precision, i.e. a large variation of R2 for a given change of R1 (corresponding to a certain
strain), the ratio R4/R3 needs to be as small as possible.
In general, the variable potentiometer used for the experiment is calibrated so that the readings are
immediately in microstrains (:-strains).
Note that a single strain gage can only be used to measure the longitudinal deformation in one
direction. Thus, in order to solve equation (64) for ,xx, ,yy, and ,xy, three independent gages need to
be used. Another option is to use strain gage rosettes which consist of three strain gages attached
to the same flexible backing. Different strain gage arrangements are available as shown in Figure
10. Strain rosettes commonly used in rock mechanics include: 45° rosettes (Fig. 10a) where 21=0,
22=45 and 23=90; 60° rosettes (Fig. 10b) where 21=0, 22=60 and 23=120; and 120° rosettes (Fig.
10c) where 21=0, 22=120 and 23=240.
It is noteworthy that in the usual strain rosettes, the three separate electrical resistances are not
exactly mounted at the same point. Consequently, a small error is introduced when determining the
state of strain at a point.
The advantages of strain gages are as follows:
C high sensitivity (about 10-6
),
C large domain of variation (about 15x10-3
),
C negligible weight and inertia,
C neither mechanical nor electrical response delay,
C minimum space requirements,
C direct reading of strain instead of displacement.
CVEN 5768 - Lecture Notes 3 Page 24
© B. Amadei
The main disadvantages include:
C lengthy and delicate mounting procedure,
C costly since they serve only once,
C sensitive to humidity unless encapsulated,
C important temperature effects since R2=R(1+"2) where " is the thermal expansion
coefficient of the strain gage.
Note that the effect of temperature can be compensated by using special temperature compensated
strain gages, Another compensation method consists of substituting the resistance R4 in Figure 9b
by a strain gage identical to the one corresponding to R1. The R4 gage is glued onto the same
material as R1 and is exposed to the same environment but is not strained. Thus, the Wheastone
bridge will always be thermally equilibrated.
3.9 References
Goodman, R.E. (1989) Introduction to Rock Mechanics, Wiley, 2nd Edition.
Mase, G.E. (1970) Continuum Mechanics, Schaum's Outline Series, McGraw-Hill.
Civil & Mining Engineering
• Stability of Underground Excavations
(Tunnels, Mines, Caverns, Shafts, Stopes, Haulages)
• Drilling & Blasting
• Pillar Design
• Design of Support Systems
• Prediction of Rock Bursts
• Fluid Flow & Contaminant Transport
• Dams
• Slope Stability
Energy Development
• Borehole stability & deviation
• Borehole deformation & failure
• Fracturing & fracture propagation
• Fluid flow & geothermal problems
• Reservoir production management
• Energy extraction and storage
Geology/Geophysics
• Orogeny
• Earthquake Prediction
• Plate Tectonics
• Neotectonics
• Structural Geology
• Volcanology
• Glaciation
Table 1. Activities requiring knowledge of in-situ stresses.
ROCK STRESSES
IN-SITU (VIRGIN) STRESSES INDUCED STRESSES
(mining, excavation, drilling, pumping,
injection, energy extraction, applied
loads, swelling, etc...)
GRAVITATIONAL TECTONIC RESIDUAL TERRESTRIAL
STRESSES STRESSES STRESSES STRESSES
(flat ground surface & - diagenesis - seasonal tp° variations
topography effect) - metasomatism - moon pull (tidal stresses)
- metamorphism - Coriolis force
- magma cooling - diurnal stresses
- changes in pore
pressure
ACTIVE TECTONIC REMNANT TECTONIC
STRESSES STRESSES
Broad Scale Local Same as residual but tectonic
activity is involved such as
- Shear traction - Bending folding, faulting, jointing and
- Slab pull - Isostatic compensation boudinage
- Ridge push - Downbending of
- Trench suction lithosphere
- Membrane stress - Volcanism & heat flow
Figure 1 Stress terminology.
Figure 2. Material Continuum subjected to body and surface forces.
Figure 3. Direction of positive normal and shear stresses. (a) Engineering mechanics convention;
(b) Rock Mechanics convention.
Figure 4. State of stress on an inclined plane passing through point P.
Figure 5. Two special orientations of xU-, yU- and zU-axes with respect to the
x, y, z coordinate system.
Figure 6. Normal and shear components of the stress vector acting
on a plane passing through point P.
Notes3
Notes3
Notes3
Figure 10. (a) 45° rosette; (b) 60° rosette; and (c) 120° rosette.

More Related Content

PPT
Unit 2 theory_of_plasticity
PDF
PDF
Finite Element for Trusses in 2-D
PPTX
Simple stresses and strains
PPTX
A study on _ buckling
PDF
Lecture 2 principal stress and strain
PDF
Introduction to Strength of Materials
PPTX
Concentrated Stress & Stress Tensor
Unit 2 theory_of_plasticity
Finite Element for Trusses in 2-D
Simple stresses and strains
A study on _ buckling
Lecture 2 principal stress and strain
Introduction to Strength of Materials
Concentrated Stress & Stress Tensor

What's hot (20)

PPTX
types of stress and strain
PPT
Strength of Materials
PPT
Complex stresses
PDF
Design of riveted joint failures may 2020
PDF
Mechanics of materials
PDF
Mohr circle
PDF
Lecture 1 stresses and strains
PPTX
Bending stresses in beams
PDF
Lecture 11 shear stresses in beams
PPTX
Simple stresses and Stain
PPT
PDF
Simple Stress and Strain
PPTX
Theories of failure
PPTX
Shear stress strain curve & modulus of rigidity (10.01.03.039)
PPT
Shear and Bending Moment in Beams
PPTX
Som ppt
PPT
Photoelasticity
PPT
Shear stresses in beams
PPTX
Basic Elasticity
PDF
experimental stress analysis-Chapter 2
types of stress and strain
Strength of Materials
Complex stresses
Design of riveted joint failures may 2020
Mechanics of materials
Mohr circle
Lecture 1 stresses and strains
Bending stresses in beams
Lecture 11 shear stresses in beams
Simple stresses and Stain
Simple Stress and Strain
Theories of failure
Shear stress strain curve & modulus of rigidity (10.01.03.039)
Shear and Bending Moment in Beams
Som ppt
Photoelasticity
Shear stresses in beams
Basic Elasticity
experimental stress analysis-Chapter 2
Ad

Similar to Notes3 (20)

PDF
Fundamentals of Engineering Stress Analysis .pdf
PDF
Theory of Elasticity
PPTX
Rock_Mechanics_Stress.pptx
PDF
Handbook basic engineering theory
PPT
Prof.N.B.HUI Lecture of solid mechanics
PPTX
Rock_Mechanics_Stress generaly play a important role in the rocks.
PDF
Mechanics Of Solids- Stress Transformation in 3D
PPTX
Pradeep gairola
PDF
Lecture2
PDF
Geomechanics for Petroleum Engineers
PPTX
Finite elements method for ship structure
PDF
Strength of materials
PDF
Principal stress
PDF
LNm3.pdf
PDF
07 3 d_elasticity_02_3d_stressstrain
PPT
Tema2 esfuerzos
PPTX
Basic Fundamental concepts of Solid Mechanics
PDF
Principal stress
PPTX
Basic concepts of stress
Fundamentals of Engineering Stress Analysis .pdf
Theory of Elasticity
Rock_Mechanics_Stress.pptx
Handbook basic engineering theory
Prof.N.B.HUI Lecture of solid mechanics
Rock_Mechanics_Stress generaly play a important role in the rocks.
Mechanics Of Solids- Stress Transformation in 3D
Pradeep gairola
Lecture2
Geomechanics for Petroleum Engineers
Finite elements method for ship structure
Strength of materials
Principal stress
LNm3.pdf
07 3 d_elasticity_02_3d_stressstrain
Tema2 esfuerzos
Basic Fundamental concepts of Solid Mechanics
Principal stress
Basic concepts of stress
Ad

Recently uploaded (20)

PPTX
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
PPTX
ai_satellite_crop_management_20250815030350.pptx
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PDF
20250617 - IR - Global Guide for HR - 51 pages.pdf
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PPTX
Petroleum Refining & Petrochemicals.pptx
PDF
Soil Improvement Techniques Note - Rabbi
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PDF
MLpara ingenieira CIVIL, meca Y AMBIENTAL
PPTX
Information Storage and Retrieval Techniques Unit III
PPTX
CyberSecurity Mobile and Wireless Devices
PPTX
CN_Unite_1 AI&DS ENGGERING SPPU PUNE UNIVERSITY
PPTX
Principal presentation for NAAC (1).pptx
PPTX
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
PDF
Computer System Architecture 3rd Edition-M Morris Mano.pdf
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PDF
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PPTX
Measurement Uncertainty and Measurement System analysis
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
ai_satellite_crop_management_20250815030350.pptx
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
20250617 - IR - Global Guide for HR - 51 pages.pdf
August 2025 - Top 10 Read Articles in Network Security & Its Applications
Petroleum Refining & Petrochemicals.pptx
Soil Improvement Techniques Note - Rabbi
distributed database system" (DDBS) is often used to refer to both the distri...
"Array and Linked List in Data Structures with Types, Operations, Implementat...
MLpara ingenieira CIVIL, meca Y AMBIENTAL
Information Storage and Retrieval Techniques Unit III
CyberSecurity Mobile and Wireless Devices
CN_Unite_1 AI&DS ENGGERING SPPU PUNE UNIVERSITY
Principal presentation for NAAC (1).pptx
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
Computer System Architecture 3rd Edition-M Morris Mano.pdf
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
Measurement Uncertainty and Measurement System analysis

Notes3

  • 1. CVEN 5768 - Lecture Notes 3 Page 1 © B. Amadei STRESSES AND STRAINS - A REVIEW 1. INTRODUCTION 2. STRESS ANALYSIS 2.1 Cauchy Stress Principle 2.2 State of Stress at a Point 2.3 State of Stress on an Inclined Plane 2.4 Force and Moment Equilibrium 2.5 Stress Transformation Law 2.6 Normal and Shear Stresses on an Inclined Plane 2.7 Principal Stresses 2.8 Stress Decomposition 2.9 Octahedral Stresses 2.10 References 3. STRAIN ANALYSIS 3.1 Deformation and Finite Strain Tensors 3.2 Small Deformation Theory 3.3 Interpretation of Strain Components 3.4 Strain Transformation Law 3.5 Principal Strains 3.6 Strain Decomposition 3.7 Compatibility Equations 3.8 Strain Measurements 3.9 References 4. PLANE STRESS AND PLANE STRAIN 4.1 Plane Stress 4.2 Plane Strain Recommended readings 1) Appendices 1 and 2 in Introduction to Rock Mechanics by R.E. Goodman, Wiley, 1989.
  • 2. CVEN 5768 - Lecture Notes 3 Page 2 © B. Amadei 1. INTRODUCTION Rock mechanics, being an interdisciplinary field, borrows many concepts from the field of continuummechanics and mechanics of materials, andinparticular,theconceptsofstressandstrain. Stress is of importance to geologists and geophysicists in order to understand the formation of geological structures such as folds, faults, intrusions, etc...It is also of importance to civil, mining and petroleum engineers who are interested in the stability and performance of man-made structures (tunnels, caverns, mines, surface excavations, etc..), or the stability of boreholes. A list of activities requiring knowledge of stresses is given in Table 1. Stress terminology is shown in Figure 1. Unlike man-made materials such as concrete or steel, natural materials such as rocks (and soils) are initially stressed in their natural state. Stresses in rock can be divided into in situ stresses and induced stresses. In situ stresses, also called natural, primitive or virgin stresses, are the stresses that exist in the rock prior to any disturbance. On the other hand, induced stresses are associated with man-made disturbance (excavation, drilling, pumping, loading, etc..) or are induced by changes in natural conditions (drying, swelling, consolidation, etc..). Induced stresses depend on many parameters such as the in situ stresses, the type of disturbance (excavation shape, borehole diameter, etc..), and the rock mass properties. Stress is an enigmatic quantity which, according to classical mechanics, is defined at a point in a continuumand is independent of the constitutive behavior of the medium. The concept of stress used in rock mechanics is consistent with that formulated by Cauchy and generalized by St. Venant in France during the 19th century (Timoshenko, 1983). Because of its definition, rock stress is a fictitious quantity creating challenges in its characterization, measurement, and application in practice. A summary of the continuum mechanics description of stress is presented below. More details can be found in Mase (1970). 2. STRESS ANALYSIS 2.1 Cauchy Stress Principle Consider for instance, the continuum shown in Figure 2 occupying a region R of space and subjected to body forces b (per unit of mass) and surface forces fs (tractions). Let x,y,z be a Cartesian coordinate system with unit vectors e1, e2, e3 parallel to the x, y, and z directions, respectively. Consider a volume V in the continuum, an infinitesimal surface element )S located on the outer surface S of V, a point P located on )S, and a unit vector n normal to )S at P. Under the effect of the body and surface forces, the material within volume V interacts with the material outside of V. Let )f and )m be respectively the resultant force and moment exerted across )S by the material outside of V upon the material within V. The Cauchy stress principle asserts that the average force per unit area )f/)S tends to a limit df/dS as )S tends to zero, whereas )m vanishes in the limiting process. The limit is called the stress vector t(n), i.e.
  • 3. CVEN 5768 - Lecture Notes 3 Page 3 © B. Amadei (1) (2) The stress vector has three components in the x,y,z coordinate system which are expressed in units of force per unit area (MPa, psi, psf,..). It is noteworthy that the components of the stress tensor depend on the orientation of the surface element )S which is defined by the coordinates of its normal unit vector n. The stress vector t(n) at point P in Figure 2 is associated with the action of the material outside of V upon the material within V. Let t(-n) be the stress vector at point P corresponding to the action across )S of the material within V upon the material outside of V. By Newton's law of action and reaction Equation (2) implies that the stress vectors acting on opposite sides of a same surface are equal in magnitude but opposite in direction. 2.2 State of Stress at a Point The state of stress at point P in Figure 2 can be defined by using equation (1) for all possible infinitesimal surfaces )S having point P as an interior point. An alternative is to consider the stress vectors t(e1), t(e2), and t(e3) acting on three orthogonal planes normal to the x-, y- and z-axes and with normal unit vectors e1, e2, and e3, respectively. The three planes form an infinitesimal stress element around point P (Figures 3a and 3b). The nine components of vectors t(e1), t(e2), and t(e3) form the components of a second-order Cartesian tensor also known as the stress tensor Fij (i,j=1-3). The components F11, F22 and F33 represent the three normal stresses Fx, Fy and Fz acting in the x, y, and z directions, respectively. The components Fij (i…j) represent six shear stresses Jxy, Jyx, Jxz, Jzx, Jyz and Jzy acting in the xy, xz and yz planes. Two sign conventions are considered below: Engineering mechanics sign convention Tensile normal stresses are treated as positive and the direction of positive shear stresses is as shown in Figure 3a. The stress vectors t(e1), t(e2), and t(e3) have the following expressions
  • 4. CVEN 5768 - Lecture Notes 3 Page 4 © B. Amadei (3) (4) (5) (6) Rock mechanics sign convention Compressive normal stresses are treated as positive and the direction of positive shear stresses is as shown in Figure 3b. The stress vectors t(e1), t(e2), and t(e3) have the following expressions 2.3 State of Stress on an Inclined Plane Knowing the components of the stress tensor representing the state of stress at a point P, the components of the stress vector on any plane passing by P, and of known orientation with respect to the x-, y-, and z-axes, can be determined. Consider again point P of Figure 2 and let Fij be the stress tensor representing the state of stress at that point. The components of the stress vector t(n) acting on an inclined plane passing through P can be expressed in terms of the Fij components and the orientation of the plane using a limiting process similar to that used to introduce the stress vector concept. As shown in Figure 4, consider a plane ABC of area dS parallel to the plane of interest passing through P. Let n be the normal to the plane with components n1, n2, and n3. The force equilibrium of the PABC tetrahedron leads to the following relation between the average stress vectors acting on its faces where n1dS, n2dS and n3dS are respectively the areas of faces CPB, CPA and APB of the tetrahedron. Using equation (2), t(n) can be expressed as follows
  • 5. CVEN 5768 - Lecture Notes 3 Page 5 © B. Amadei (7a) (7b) (8) The stress acting on plane ABC will approach the stress on the parallel plane passing through P as the tetrahedron in Figure 4 is made infinitesimal. In that limiting process, the contribution of any body force acting in the PABC tetrahedron vanishes. Equation (6) can also be expressed in terms of the normal and shear stress components at point P. Let tx, ty and tz be the x, y, z components of the stress vector t(n). When using the engineering mechanics sign convention, combining equations (3) and (6) yields On the other hand, for the rock mechanics sign convention, combining equations (4) and (6) yields The (3 x 3) matrix in equations (7a) and (7b) is a matrix representation of the stress tensor Fij. 2.4 Force and Moment Equilibrium For all differential elements in the continuum of Figure 2, force and moment equilibrium leads respectively to the equilibrium equations and the symmetry of the stress tensor Fij. Equations of equilibrium
  • 6. CVEN 5768 - Lecture Notes 3 Page 6 © B. Amadei (9) (10) (11) where D is the density and Db1, Db2 and Db3 are the components of the body force per unit volume of the continuum in the x, y and z directions, respectively. The positive directions of those components are in the positive x, y and z directions if the engineering mechanics convention for stress is used, and in the negative x, y and z directions if the rock mechanics sign convention is used instead. Symmetry of stress tensor which implies that only six stress components are needed to describe the state of stress at a point in a continuum: three normal stresses and three shear stresses. 2.5 Stress Transformation Law Consider now two rectangular coordinate systems x,y,z and xU,yU,zU at point P. The orientation of the xU-, yU-, zU-axes is defined in terms of the direction cosines of unit vectors eU1, eU2 and eU3 in the x,y,z coordinate system, i.e. Let [A] be a coordinate transformation matrix such that Matrix [A] is an orthogonal matrix with [A]t = [A]-1 . Using the coordinate transformation law for second order Cartesian tensors, the components of the stress tensor FUij in the xU,yU,zU coordinate system are related to the components of the stress tensor Fij in the x,y,z coordinate system as follows
  • 7. CVEN 5768 - Lecture Notes 3 Page 7 © B. Amadei (12) (13) (14) Using (6x1) matrix representation of FUij and Fij, and after algebraic manipulations, equation (12) can be rewritten in matrix form as follows where [F]t xyz =[Fx Fy Fz Jyz Jxz Jxy], [F]t x'y'z' =[FxU FyU FzU Jy'z' JxUzU JxUyU] and [TF] is a (6x6) matrix whose components can be found in equation A1.23 in Goodman (1989). It can be written as follows Expressions for the direction cosines lx', mx', nx'......are given below for two special cases shown in Figures 5a and 5b, respectively. In Figure 5a, the orientation of the xU-axis is defined by two angles $ and * and the zU-axis lies in the Pxz plane. In this case, the direction cosines are If we take $=0, *=2, and the zU-axis to coincide with the z-axis, the xU-, yU- and zU-axes coincide, for instance, with the radial, tangential and longitudinal axes of a cylindrical coordinate system r,2,z (Figure 5b) with
  • 8. CVEN 5768 - Lecture Notes 3 Page 8 © B. Amadei (15) (16) (17) Substituting these direction cosines into equation (12) gives a relationship between the stress components in the r, 2, z coordinate system and those in the x,y,z coordinate system as follows 2.6 Normal and Shear Stresses on an Inclined Plane Consider a plane passing through point P and inclined with respect to the x-, y- and z-axes. Let xU,yU,zU be a Cartesian coordinate system attached to the plane such that the xU-axis is along its outward normal and the yU- and zU-axes are contained in the plane. The xU-, yU- and zU-axes are oriented as shown in Figure 5 with the direction cosines defined in equation (14). The state of stress across the plane is defined by one normal component FxU= Fn and two shear components JxUyU and JxUzU such that (see Figure 6) Equation (17) is the matrix representation of the first, fifth and sixth lines of equation (13). The resultant shear stress, J, across the plane is equal to
  • 9. CVEN 5768 - Lecture Notes 3 Page 9 © B. Amadei (18) (19) (20) (21) (22) The stress vector t(n) acting on the plane is such that 2.7 Principal Stresses Among all the planes passing by point P, there are three planes (at right angles to each other) for which the shear stresses. These planes are called principal planes and the normal stresses acting on those planes are called principal stresses and are denoted F1, F2 and F3 with F1>F2>F3. Finding the principal stresses and the principal stress directions is equivalent to finding the eigenvalues and eigenvectors of the stress tensor Fij. Since this tensor is symmetric, the eigenvalues are real. The eigenvalues of Fij are the values of the normal stress F such that the determinant of Fij-F*ij vanishes, i.e. Upon expansion, the principal stresses are the roots of the following cubic polynomial where I1, I2, and I3 are respectively the first, second and third stress invariants and are equal to For each principal stress Fk (F1, F2, F3), there is a principal stress direction for which the direction cosines n1k=cos (Fk,x), n2k=cos (Fk,y) and n3k=cos (Fk,z) are solutions of
  • 10. CVEN 5768 - Lecture Notes 3 Page 10 © B. Amadei (23) (24) (25) (26) (27) with the normality condition 2.8 Stress Decomposition The stress tensor Fij can be separated into a hydrostatic component Fm*ij and a deviatoric component sij. Using (3x3) matrix representations, the decomposition can be expressed as follows with Fm=(Fx+Fy+Fz)/3. As for the stress matrix, three principal deviatoric stresses sk (k=1,2,3) can be calculated by setting the determinant of sij-s*ij to zero. Equation (21) is then replaced by the following cubic polynomial where J1, J2, and J3 are respectively the first, second and third invariants of the deviatoric stress tensor and are equal to
  • 11. CVEN 5768 - Lecture Notes 3 Page 11 © B. Amadei (28) (29) with sx=Fx-Fm, sy=Fy-Fm, and sz=Fz-Fm. Note that J2 can also be written as follows 2.9 Octahedral Stresses Let assume that the x, y, and z directions of the x,y,z coordinate system coincide with the principal stress directions, i.e. Fx=F1, Fy=F2, and Fz=F3. Consider a plane that makes equal angles with the three coordinate axes and whose normal has components n1=n2=n3=1/%3.Thisplane is an octahedral plane. The normal stress across the plane is called the octahedral normal stress, Foct, and the shear stress is called the octahedral shear stress, Joct. The stresses are equal to 2.10 References Goodman, R.E. (1989) Introduction to Rock Mechanics, Wiley, 2nd Edition. Mase, G.E. (1970) Continuum Mechanics, Schaum's Outline Series, McGraw-Hill. Timoshenko, S.P. (1983) History of Strength of Materials, Dover Publications.
  • 12. CVEN 5768 - Lecture Notes 3 Page 12 © B. Amadei (31) (32) (33) 3. STRAIN ANALYSIS 3.1 Deformation and Finite Strain Tensors Consider a material continuum which at time t=0 can be seen in its initial or undeformed configuration and occupies a region Ro of Euclidian 3D-space (Figure 7). Any point Po in Ro can be described by its coordinates X1, X2, X3 with reference to a suitable set of coordinate axes (material coordinates). Upon deformation and at time t=t, the continuum will now be seen in its deformed configuration, R being the region it now occupies. Point Po will move to a position P with coordinates x1, x2, x3 (spatial coordinates). The X1,X2,X3 and x1,x2,x3 coordinate systems are assumed to be superimposed. The deformation of the continuum can be defined with respect to the initialconfiguration(Lagrangian formulation) or with respect to the current configuration (Eulerian formulation). The vector u joining points Po and P is known as the displacement vector and is equal to where x=OP and X=OPo. It has the same three components u1, u2 and u3 in the x1,x2,x3 and X1,X2,X3 coordinate systems (since both coordinate systems are assumed to coincide). Partial differentiation of the spatial coordinates with respect to the material coordinates Mxi/MXj defines the material deformation gradient. Likewise, partial differentiation of the material coordinates with respect to the spatial coordinates MXi/Mxj defines the spatial deformation gradient. Both gradients can be expressed using (3x3) matrices and are related as follows Partial differentiation of the displacement vector ui with respect to the coordinates gives either the material displacement gradient Mui/MXj or the spatial displacement gradient Mui/Mxj. Both gradients can be written in terms of (3x3) matrices and are related as follows In general, two strain tensors can be introduced depending on which configuration is used as reference. Consider, for instance, Figure 7 where two neighboring particles Po and Qo before deformation move to points P and Q after deformation. The square of the linear element of length
  • 13. CVEN 5768 - Lecture Notes 3 Page 13 © B. Amadei (34) (35) (36) (37) (38) between Po and Qo is equal to where Cij is called the Cauchy's deformation tensor. Likewise, in the deformed configuration, the square of the linear element of length between P and Qis equal to where Gij is the Green's deformation tensor. The two deformation tensors represent the spatial and material description of deformation measures. The relative measure of deformation that occurs in the neighborhood of two particles in a continuum is equal to (dx)2 - (dX)2 . Using the material description, the relative measure of deformation is equal to where Lij is the Lagrangian (or Green's) finite strain tensor. Using the spatial description, the relative measure of deformation is equal to where Eij is the Eulerian (or Almansi's) finite strain tensor. Both Lij and Eij are second-order symmetric strain tensors that can be expressed in terms of (3x3) matrices. They can also be expressed in terms of the displacement components by combining equation (36) or (37) with equation (31). This gives,
  • 14. CVEN 5768 - Lecture Notes 3 Page 14 © B. Amadei (39) (40) (41) (42) and 3.2 Small Deformation Theory Infinitesimal Strain Tensors In the small deformation theory, the displacement gradients are assumed to be small compared to unity, which means that the product terms in equations (38) and (39) are small compared to the other terms and can be neglected. Both equations reduce to which is called the Lagrangian infinitesimal strain tensor, and which is called the Eulerian infinitesimal strain tensor. If the deformation gradients and the displacements themselves are small, both infinitesimal strain tensors may be taken as equal. Examples Consider first, the example of a prismatic block of initial length lo, width wo, and height ho. The block is stretched only along its length by an amount l-lo. The corresponding engineering strain , is then equal to (l-lo)/lo. The deformation of the block can be expressed as x1=X1+,X1; x2=X2 and x3=X3. Thus, the displacement components are u1=,X1, u2=u3=0. For this deformation, the matrix representation of the Lagrangian finite strain tensor Lij is equal to For any vector dX of length dX and components dX1, dX2, and dX3, equation (36) can be written as
  • 15. CVEN 5768 - Lecture Notes 3 Page 15 © B. Amadei (43) (44) (45) (46) follows If dX is parallel to the X1-axis with dX1=dX=lo, dX2=dX3=0, then equation (43) yields The block does not experience any deformation along the X2 and X3 -axes. Equation (44) shows that the longitudinal Lagrangian strain, ,lag, differs from the engineering strain, ,, by the amount 0.5,2 . For small deformations, the square term is very small and can be neglected. As a second example, consider again the same prismatic block deforming such that x1=X1; x2=X2+AX3 and x3=X3+BX2. The corresponding displacement components are u1=0; u2=AX3 and u3=BX2. For this deformation, the matrix representation of the Lagrangian finite strain tensor Lij is equal to For any vector dX of length dX and components dX1, dX2, and dX3, equation (36) can be written as follows If dX is parallel to the X1-axis with dX1=dX=lo, dX2=dX3=0, then dx=dX, i.e the prismatic block does not deform in the X1 direction.
  • 16. CVEN 5768 - Lecture Notes 3 Page 16 © B. Amadei (47) (48) If dX is parallel to the X2-axis with dX2=dX=ho, dX1=dX3=0, then equation (46) yields dx2 = (1+B2 )dX2 , i.e the dip of vector dX is displaced in the X3 direction by an amount Bho. If dX is parallel to the X3-axis with dX3=dX=wo, dX2=dX3=0, then equation (46) yields dx2 = (1+A2 )dX2 , i.e the dip of vector dX is displaced in the X2 direction by an amount Awo. Overall, the prismatic block is deformed in the X2-X3 plane with the rectangular cross-section becoming a parallelogram. This deformation can also be predicted by examining the components of Lij in equation (45); there is a finite shear strain of magnitude 0.5(A+B) in the X2-X3 plane and finite normal strains of magnitude 0.5B2 and 0.5A2 in the X2 and X3 directions, respectively. Note that if A and B are small (small deformation theory), those normal strains can be neglected. 3.3 Interpretation of Strain Components Relative Displacement Vector Throughout the rest of these notes we will assume that the small deformation theory is valid and that, for all practical purposes, the Lagrangian and Eulerian infinitesimal strain tensors are equal. Consider the geometry of Figure 8 and the displacement vectors u(Po) and u(Qo) of two neighboring particles Po and Qo. The relative displacement vector du between the two particles is taken as u(Qo) - u(Po) . Using a Taylor series expansion for the displacement components in the neighborhood of Po and neglecting higher order terms in the expansion gives The displacement gradients (material or spatial) appearing in the (3x3) matrix in equation (47) can be decomposed into a symmetric and an anti-symmetric part, i.e.
  • 17. CVEN 5768 - Lecture Notes 3 Page 17 © B. Amadei (49) (50) The first term in (48) is the infinitesimal strain tensor, ,ij, defined in section 3.2. The second term is called the infinitesimal rotation tensor wij and is denoted as This tensor is anti-(or skew) symmetric with wji=-wij and corresponds to rigid body rotation around the coordinate system axes. Strain Components In three dimensions, the state of strain at a point P in an arbitrary x1,x2,x3 Cartesian coordinate system is defined by the components of the strain tensor. Since that tensor is symmetric, only six components defined the state of strain at a point: three normal strains ,11, ,22, and ,33 and three shear strains ,12=0.5(12, ,13=0.5(13, and ,23=0.5(23 with In equation (50), (12, (13, and (23 are called the engineering shear strains and are equal to twice the tensorial shear strain components. From a physical point of view, the normal strains ,11, ,22, and ,33 represent the change in length of unit lines parallel to the x1, x2, and x3 directions, respectively. The shear strain components ,12, ,13, and ,23 represent one-half the angle change ((12, (13, and (23) between two line elements originally at right angles to one another and located in the (x1,x2), (x1,x3), and (x2,x3) planes. Note that two sign conventions are used when dealing with strains. In both cases, the displacements u1, u2, and u3 are assumed to be positive in the the +x1, +x2, and +x3 directions, respectively. In engineering mechanics, positive normal strains correspond to extension, and positive shear strains correspond to a decrease in the angle between two line elements originally at right angles to one
  • 18. CVEN 5768 - Lecture Notes 3 Page 18 © B. Amadei (51) (52) another. In rock mechanics, however, positive normal strains correspond to contraction (since compressive stresses are positive), and positive shear strains correspond to an increase in the angle between two line elements originally at right angles to one another. When using the rock mechanics sign convention, the displacement components u1, u2, and u3 in equation (50) must be replaced by -u1, -u2, and -u3, respectively. 3.4 Strain Transformation Law The components of the strain tensor ,Uij in an xU,yU,zU (x1U,x2U,x3U) Cartesian coordinate system can be determined from the components of the strain tensor ,ij in an x,y,z (x1,x2,x3) Cartesian coordinate system using the same coordinate transformation law for second order Cartesian tensors used in the stress analysis. The direction cosines of the unit vectors parallel to the xU-,yU- and zU-axes are assumed to be known and to be defined by equation (10). Equation (12) is replaced by Using (6x1) matrix representation of ,Uij and ,ij, and after algebraic manipulations, equation (51) can be rewritten in matrix form as follows where [,]t xyz =[,xx ,yy ,zz (yz (xz (xy], [,]t x'y'z' =[,xUxU ,yUyU ,zUzU (y'z' (xUzU (xUyU] and [T,] is a (6x6) matrix with components similar to those of matrix [TF] in equation (13). It can written as follows:
  • 19. CVEN 5768 - Lecture Notes 3 Page 19 © B. Amadei (53) (54) (55) (56) [TF] and [T,] are related as follows Note that equation (53) is valid as long as engineering shear strains (and not tensorial shear strains) are used in [,]xyz and [,]x'y'z' The direction cosines defined in equation (15) can be used to determine the strain components in the r, 2, z cylindrical coordinate system of Figure 5b. After algebraic manipulation, the strain components in the r, 2, z and x,y,z coordinate systems are related as follows 3.5 Principal Strains The principal strain values and their orientation can be found by determining the eigenvalues and eigenvectors of the strain tensor ,ij. Equation (20) is replaced by Upon expansion, the principal strains are the roots of the following cubic polynomial where I,1, I,2, and I,3 are respectively the first, second and third strain invariants and are equal to
  • 20. CVEN 5768 - Lecture Notes 3 Page 20 © B. Amadei (57)
  • 21. CVEN 5768 - Lecture Notes 3 Page 21 © B. Amadei (61) (62) with em=(,xx+,yy+,zz)/3. 3.7 Compatibility Equations The six components of strain are related to the three components of displacement through equation (50). These relations can be seen as a system of six partial differential equations with three unknowns. The system is therefore over-determined and will not, in general, possess a unique solution for the displacements for an arbitrary choice of the six strain components. Continuity of the continuum as it deforms requires that the three displacement components be continuous functions of the three coordinates and be single valued. It can be shown that this requires the strain components to be related by six equations called equations of compatibility. In an arbitrary x,y,z Cartesian coordinate system, these equations can be written as follows
  • 22. CVEN 5768 - Lecture Notes 3 Page 22 © B. Amadei (63) (64) (65) (66) 3.8 Strain Measurements Consider an (x,y) plane and a point P in that plane. The state of strain at point P is defined by three components ,xx, ,yy, and ,xy. The longitudinal strain ,l in any direction making an angle 2 with the x-axis is, according to equation (54), equal to The state of strain at (or in the near vicinity of) point P can be determined by measuring three longitudinal strains, ,l1, ,l2, and ,l3 in three different directions with angles 21, 22, and 23. This gives the following system of three equations and three unknowns which can be solved for ,xx, ,yy, and ,xy. Longitudinal strains can be measured using strain gages (invented in the United States in 1939). A strain gage consists of many loops of thin resistive wire glued to a flexible backing (Figure 9a). It is used to measure the longitudinal strain of a structural member to which it is attached. As the material deforms, the wire becomes somewhat longer and thinner (or shorter and thicker) thereby changing its resistance by a small amount. Recall that the electrical resistance, R, of a wire of length l, sectional area A, and resistivity D is equal to Let ,l=)l/l be the longitudinal strain of the wire. As the wire stretches, its diameter decreases due to the Poisson's effect. The change in resistance, )R, of the wire is related to ,l as follows where < is the Poisson's ratio of the wire and GF is the so-called gage factor whose value is given by the gage manufacturer. For instance for Cr-Ni gages, GF=2.05. Thus,
  • 23. CVEN 5768 - Lecture Notes 3 Page 23 © B. Amadei (67) Equation (67) shows that the strain can be determined once the change in resistance, )R, is measured. This can be done by mounting the strain gage on a Wheastone bridge. Figure 9b shows a Wheastone bridge where the active strain gage has a resistance R1. The bridge is equilibrium when R1R3=R2R4. If R1 changes by )R1, the bridge will be in equilibrium only if where )R2 is changed by means of a potentiometer. Equation (68) indicates that in order to obtain a high precision, i.e. a large variation of R2 for a given change of R1 (corresponding to a certain strain), the ratio R4/R3 needs to be as small as possible. In general, the variable potentiometer used for the experiment is calibrated so that the readings are immediately in microstrains (:-strains). Note that a single strain gage can only be used to measure the longitudinal deformation in one direction. Thus, in order to solve equation (64) for ,xx, ,yy, and ,xy, three independent gages need to be used. Another option is to use strain gage rosettes which consist of three strain gages attached to the same flexible backing. Different strain gage arrangements are available as shown in Figure 10. Strain rosettes commonly used in rock mechanics include: 45° rosettes (Fig. 10a) where 21=0, 22=45 and 23=90; 60° rosettes (Fig. 10b) where 21=0, 22=60 and 23=120; and 120° rosettes (Fig. 10c) where 21=0, 22=120 and 23=240. It is noteworthy that in the usual strain rosettes, the three separate electrical resistances are not exactly mounted at the same point. Consequently, a small error is introduced when determining the state of strain at a point. The advantages of strain gages are as follows: C high sensitivity (about 10-6 ), C large domain of variation (about 15x10-3 ), C negligible weight and inertia, C neither mechanical nor electrical response delay, C minimum space requirements, C direct reading of strain instead of displacement.
  • 24. CVEN 5768 - Lecture Notes 3 Page 24 © B. Amadei The main disadvantages include: C lengthy and delicate mounting procedure, C costly since they serve only once, C sensitive to humidity unless encapsulated, C important temperature effects since R2=R(1+"2) where " is the thermal expansion coefficient of the strain gage. Note that the effect of temperature can be compensated by using special temperature compensated strain gages, Another compensation method consists of substituting the resistance R4 in Figure 9b by a strain gage identical to the one corresponding to R1. The R4 gage is glued onto the same material as R1 and is exposed to the same environment but is not strained. Thus, the Wheastone bridge will always be thermally equilibrated. 3.9 References Goodman, R.E. (1989) Introduction to Rock Mechanics, Wiley, 2nd Edition. Mase, G.E. (1970) Continuum Mechanics, Schaum's Outline Series, McGraw-Hill.
  • 25. Civil & Mining Engineering • Stability of Underground Excavations (Tunnels, Mines, Caverns, Shafts, Stopes, Haulages) • Drilling & Blasting • Pillar Design • Design of Support Systems • Prediction of Rock Bursts • Fluid Flow & Contaminant Transport • Dams • Slope Stability Energy Development • Borehole stability & deviation • Borehole deformation & failure • Fracturing & fracture propagation • Fluid flow & geothermal problems • Reservoir production management • Energy extraction and storage Geology/Geophysics • Orogeny • Earthquake Prediction • Plate Tectonics • Neotectonics • Structural Geology • Volcanology • Glaciation Table 1. Activities requiring knowledge of in-situ stresses.
  • 26. ROCK STRESSES IN-SITU (VIRGIN) STRESSES INDUCED STRESSES (mining, excavation, drilling, pumping, injection, energy extraction, applied loads, swelling, etc...) GRAVITATIONAL TECTONIC RESIDUAL TERRESTRIAL STRESSES STRESSES STRESSES STRESSES (flat ground surface & - diagenesis - seasonal tp° variations topography effect) - metasomatism - moon pull (tidal stresses) - metamorphism - Coriolis force - magma cooling - diurnal stresses - changes in pore pressure ACTIVE TECTONIC REMNANT TECTONIC STRESSES STRESSES Broad Scale Local Same as residual but tectonic activity is involved such as - Shear traction - Bending folding, faulting, jointing and - Slab pull - Isostatic compensation boudinage - Ridge push - Downbending of - Trench suction lithosphere - Membrane stress - Volcanism & heat flow Figure 1 Stress terminology.
  • 27. Figure 2. Material Continuum subjected to body and surface forces.
  • 28. Figure 3. Direction of positive normal and shear stresses. (a) Engineering mechanics convention; (b) Rock Mechanics convention.
  • 29. Figure 4. State of stress on an inclined plane passing through point P.
  • 30. Figure 5. Two special orientations of xU-, yU- and zU-axes with respect to the x, y, z coordinate system.
  • 31. Figure 6. Normal and shear components of the stress vector acting on a plane passing through point P.
  • 35. Figure 10. (a) 45° rosette; (b) 60° rosette; and (c) 120° rosette.