This document summarizes research on using deformable models for object recognition. It discusses using deformable part models to detect objects by optimizing part locations. Efficient algorithms like dynamic programming and min-convolutions are used for matching. Non-rigid objects are modeled using triangulated polygons that can deform individual triangles. Hierarchical shape models capture shape variations. The document applies these techniques to the PASCAL visual object recognition challenge, achieving state-of-the-art results on 10 of 20 object categories through discriminatively trained, multiscale deformable part models.