SlideShare a Scribd company logo
Software-defined white-space
cognitive systems:

Implementation of the spectrum sensing unit


Castelldefels, October 6th 2011

Sergio Benco,
Floriana Crespi, Andrea Ghittino, Alberto Perotti
Integrated Networks Laboratory (INLAB),
CSP s.c.a r.l. - ICT innovation,
TURIN (ITALY)
Outline




   TV White-Spaces Spectrum Sensing
   IEEE 802.22 Spectrum Sensing model
   DVB-T CP autocorrelation Spectrum Sensing
   Threshold calculation
   Performance
   Conclusions and future work




    Software-defined white-space cognitive systems   2
Spectrum sensing for TV White-Spaces


TV White-Spaces represent the area (space domain) and
the portion of the spectrum (VHF and UHF bands) where
the broadcast signal strength falls below the sensitivity
level of Primary User (PU) receivers

Regulatory bodies are currently discussing about
Secondary User (SU) spectrum sensing requirements in
order to avoid interference to DVB-T receivers

Interference issues can be faced through:

 SU geo-location and PU database queries
 Cognitive Pilot Channel (CPC)
 SU autonomous sensing (cooperative or not)



        Software-defined white-space cognitive systems      3
IEEE 802.22 Spectrum Sensing model

                                   PU protection contour (Dkm)
                                   Sensitivity range of the PU Rx
           PU                      ITU-R: PRPU = -92dBm @ 132km
          (RX)                     ERP TX = +90dBm, height: 500m, 615MHz)
SU               PU
                 (TX)                    Keep-out region (Rkm)
                                         Range at wich the Desired/Undesired
     SU                                  (D/U) ratio falls below 23 dB


      SU spectrum sensing requirements:
     ●
          PU Rx characteristics: F/B = 14 dB; D/U = 23 dB
     ●    At PU Rx: PRSU ≤ PRPU – D/UdB + F/BdB
     ●    At PU Rx: PRSU ≤ -101 dBm          At SU Rx: Sens. ≤ -115 dBm

            A SU must detect a PU Tx at a range of: Rkm + Dkm
                 Software-defined white-space cognitive systems           4
DVB-T spectrum sensing: CP autocorrelation


Ns    Symbol samples
NCP   CP samples               N0CP             N0 d              N1CP                N1d
Nd    Data samples
K     Number of symbols
                                          Ns
                                       K −1    i+kN s +N cp −1
CP correlator:
See
                         R xx (i) =    ∑               ∑         x (n) x (n+ N d )
                                                                       ˙
                                       k=0       n=i+kN s
References (1)(2)


CP correlator test:
                                               DVB-T sensing module parameters
           max∣R xx (i)∣                       Modes                     8k (6817 subcarriers)
  T CP =     i           ⩾ γ                                             2k (1705 subcarriers)

           Avg∣R xx (i)∣ <                     CP lengths                1/4, 1/8, 1/16, 1/32
           i∈J                                 Channel bandwidth         8 MHz

                                               Sampling rate             12.5 MS/s (12.5 MHz)

                 Software-defined white-space cognitive systems                             5
DVB-T spectrum sensing: applied threshold

                                                         False Alarm
      max∣R xx (i)∣                                      Probability (PFA )
        i                ̂
                         θ ⩾ γ
T CP =               =                                   obtained through
       Avg∣R xx (i)∣   ∣R xx∣ <
                         ̄
       i∈J                                               Monte-Carlo
                                                         simulations over
                                                         1000 trials
γ = γ ⋅ Avg∣R xx (i)∣ ⇒
̂                                    P FA ⩽ 0.1
              i ∈J


J =N ∖Q
N ={n∈ℕ : 0 ⩽ n < N s }
          ̂             ̂
Q={q∈ℕ : θ− N CP ⩽ q < θ+N CP }

The threshold is adaptive w.r.t. the actual average
correlation level plus a fixed margin that depends on PFA
        Software-defined white-space cognitive systems               6
DVB-T spectrum sensing over K symbols

Symbol synchronization permits to obtain a coherent
combining and average over K subsequent DVB-T
symbols thus achieving a processing gain of about 5 dB
for each 10 dB increase in K




  1 symbol              10 symbols                   100 symbols
 SNR = -15dB           SNR = -15dB                   SNR = -15dB
AWGN channel          AWGN channel                  AWGN channel
       Software-defined white-space cognitive systems              7
DVB-T OFDM sensing: performance

The detection time Tdet of this real-time module is calculated at the
target sensing performance (PFA=0.1, PD=0.9) for a given SNR:


                                             SNR (PD=0.9) = -17 dB
                                             Symbols = 100
                                             Tdet = 112.00 ms + Tproc

                                             SNR (PD=0.9) = -12 dB
                                             Symbols = 10
                                             Tdet = 11.20 ms + Tproc


                                             Tch move time = 2000 ms
                                             Tsensing = Tch move time – 2Tdet

           Software-defined white-space cognitive systems                 8
Conclusions and future work


● The DVB-T spectrum sensing based on CP autocorrelation
  offers a good trade-off between complexity and effectiveness
● The first attempts to exploit TV white space have raised the
  problem of high sensitivity requirements for the SU spectrum
  sensing unit
● We have developed a real-time module for OFDM spectrum
  sensing that approaches the requirements for the IEEE
  802.22 WRAN spectrum sensing unit
● Future work will provide a SU network able to continuously
  monitor the TV White-Spaces through a CP-based spectrum
  sensing module using the GNURadio/USRP2 platform



         Software-defined white-space cognitive systems    9
References


(1) D. Danev, E. Axell, and E. G. Larsson, “Spectrum Sensing Methods for
    Detection of DVB-T Signals in AWGN and Fading Channels”, In Proc.
    IEEE PIMRC, pp. 2721-2726, Dec. 2010

(2) V. Gaddam, M. Ghosh, “Robust Sensing of DVB-T Signals”, New
    Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on , vol., no.,
    pp.1-8, 6-9 April 2010

(3) S. Shellhammer, V. Tawil, G. Chouinard, M. Muterspaugh, M. Ghosh,
    “Spectrum sensing simulation model”, IEEE 802.22-06/0028r10, Sept.
    2006

(4) C.R. Stevenson, C. Cordeiro, E. Sofer, G. Chouinard, “Functional
    Requirements for the 802.22 WRAN Standard”, IEEE 802.22-
    05/0007r46, September 2005




            Software-defined white-space cognitive systems                 10
Contacts


Sergio Benco

Consulting Engineer,
Integrated Networks Laboratory (INLAB)
R&D dept.

mail: sergio.benco@csp.it
cell: +39 329 0118356
tel. +39 011-4815164



CSP innovation in ICT

Registered and Central Offices
Environment Park - Laboratori A1
via Livorno 60 - 10144 Torino

Operational Offices
Villa Gualino - Viale Settimio Severo 63
10133 Torino

Tel +39 011 4815111
Fax +39 011 4815001
E-mail: marketing@csp.it


www.csp.it
Software-defined white-space cognitive systems   11

More Related Content

PPTX
Nyquist criterion for distortion less baseband binary channel
PDF
Suppression of Chirp Interferers in GPS Using the Fractional Fourier Transform
PDF
ofdma doppler
PPT
Correlative level coding
PDF
Nyquist criterion for zero ISI
PPT
Lecture13
PPT
Isi and nyquist criterion
DOC
Chap 4
Nyquist criterion for distortion less baseband binary channel
Suppression of Chirp Interferers in GPS Using the Fractional Fourier Transform
ofdma doppler
Correlative level coding
Nyquist criterion for zero ISI
Lecture13
Isi and nyquist criterion
Chap 4

What's hot (20)

PDF
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
PPT
Matched filter
PDF
On The Fundamental Aspects of Demodulation
PDF
Mimo radar detection in compound gaussian clutter using orthogonal discrete f...
PDF
Introduction to OFDM
PDF
Dsp U Lec09 Iir Filter Design
PDF
TVWS_NGMAST2015
PPT
D1150740001
PDF
Slide11 icc2015
PDF
Foss4g2009tokyo Realini Go Gps
PDF
Basics of Analogue Filters
PDF
Design of IIR filters
PDF
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
PDF
Warping Concept (iir filters-bilinear transformation method)
PDF
Design and Fabrication of a Two Axis Parabolic Solar Dish Collector
PDF
Fast Fourier Transform
PDF
Tele4653 l6
PPT
IIR filter design, Digital signal processing
PPT
Sampling
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Matched filter
On The Fundamental Aspects of Demodulation
Mimo radar detection in compound gaussian clutter using orthogonal discrete f...
Introduction to OFDM
Dsp U Lec09 Iir Filter Design
TVWS_NGMAST2015
D1150740001
Slide11 icc2015
Foss4g2009tokyo Realini Go Gps
Basics of Analogue Filters
Design of IIR filters
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
Warping Concept (iir filters-bilinear transformation method)
Design and Fabrication of a Two Axis Parabolic Solar Dish Collector
Fast Fourier Transform
Tele4653 l6
IIR filter design, Digital signal processing
Sampling
Ad

Viewers also liked (20)

PPT
19 Luglio 2013 - Il Futuro della Televisione - Andrea Casalegno - Top-IX
PDF
Efectividad de las_pruebas_dx tvp
PDF
Final Presentation
PPT
Cardiovascular
PPT
I4 school qrpark_promoey_piazza
PDF
JACOB ZUMA - FINANCES • Hidden Empires | Investigating Money In Politics • Ta...
PPT
Scientific method
PPTX
Midmarket CIO Forum 2013 Presentation
PPT
Kennedy Creek Poll Dorset Stud - Ram Sales October 2014
PPT
PPTX
how VietnamWorks works
PPTX
Seminarie_del 1 Thomas
PPT
Henry matisse
PDF
JSR life science product of Magnetic beads
PPT
OBSERVO - Piattaforma Open Source per la videosorveglianza territoriale
PDF
Sonidos de idioma inglés
PDF
"Iot on the field: making smart environments in everyday experience"
PDF
CCNA wireless 640 722 Survival Note
PDF
Believe in America Plan for Jobs and Economic Growth
19 Luglio 2013 - Il Futuro della Televisione - Andrea Casalegno - Top-IX
Efectividad de las_pruebas_dx tvp
Final Presentation
Cardiovascular
I4 school qrpark_promoey_piazza
JACOB ZUMA - FINANCES • Hidden Empires | Investigating Money In Politics • Ta...
Scientific method
Midmarket CIO Forum 2013 Presentation
Kennedy Creek Poll Dorset Stud - Ram Sales October 2014
how VietnamWorks works
Seminarie_del 1 Thomas
Henry matisse
JSR life science product of Magnetic beads
OBSERVO - Piattaforma Open Source per la videosorveglianza territoriale
Sonidos de idioma inglés
"Iot on the field: making smart environments in everyday experience"
CCNA wireless 640 722 Survival Note
Believe in America Plan for Jobs and Economic Growth
Ad

Similar to Software-defined white-space cognitive systems: implementation of the spectrum sensing unit (20)

PPT
ADC Conveter Performance and Limitations.ppt
PPT
synthetic aperture radar
PDF
Mobile_Lec6
PPT
Positioning techniques in 3 g networks (1)
PPT
PPT
The introduction to Telecomunication engineering
DOC
Chap 5
PDF
Introduction to Channel Capacity | DCNIT-LDTalks-1
PDF
CAPACITIVE SENSORS ELECTRICAL WAFER SORT
PPT
SAR Radar Basics and Spatial Resolution.ppt
PPT
6Aesa7.ppt
PDF
2016 03-03 marchand
PPTX
Digital communication unit II
PDF
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
PPT
7 227 2005
PPT
RADAR MEASUREMENTS LECTURE EECS BERKELY!
PDF
Hr3114661470
PPT
Speech coding techniques
ADC Conveter Performance and Limitations.ppt
synthetic aperture radar
Mobile_Lec6
Positioning techniques in 3 g networks (1)
The introduction to Telecomunication engineering
Chap 5
Introduction to Channel Capacity | DCNIT-LDTalks-1
CAPACITIVE SENSORS ELECTRICAL WAFER SORT
SAR Radar Basics and Spatial Resolution.ppt
6Aesa7.ppt
2016 03-03 marchand
Digital communication unit II
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
7 227 2005
RADAR MEASUREMENTS LECTURE EECS BERKELY!
Hr3114661470
Speech coding techniques

More from CSP Scarl (20)

PDF
Reti Banda Ultra Larga e Internet delle cose
PDF
Internet delle cose e remote sensing per agricoltura di precisione Innovazion...
PPT
Sigevi - Tecnologie ICT applicate in agricoltura
PDF
Living Labs ovvero il possibile contributo delle ICT ai Presidi Territoriali ...
PPTX
Forum PA challenge: HALADIN's
PDF
Livinglabs per nexa_duretti
PDF
Scuola futuro prossimo
PDF
Storie dal futuro: persone e cose sempre connesse - per genitori
PDF
Storie dal futuro: persone e cose sempre connesse
PPTX
19 Luglio 2013 - Il Futuro della TV - Sergio Duretti - CSP
PPTX
19 Luglio 2013 - Il futuro della TV - Marco Bussone - UNCEM
PPTX
19 Luglio 2013 - Il futuro della TV - Marco Cantamessa - I3P
PPT
19 Luglio 2013 - Il futuro della TV - Andrea Piersanti, Virtual & Reality Mul...
PPTX
19 Luglio 2013 - Il Futuro della Televisione -
PPT
19 Luglio 2013 - Il Futuro della Televisione - Chiara Gallino - CSP
PPT
19 Luglio 2013 - Il Futuro della Televisione - Fabrizio Gramaglia, Finpiemonte
PDF
Seminario ict agricoltura
PDF
Datidalle cose digitalfestival2013
PPTX
Presentazione aprile 2012_con_nuovologo
PPTX
Presentazione inglese aprile_2012_con_nuovologo
Reti Banda Ultra Larga e Internet delle cose
Internet delle cose e remote sensing per agricoltura di precisione Innovazion...
Sigevi - Tecnologie ICT applicate in agricoltura
Living Labs ovvero il possibile contributo delle ICT ai Presidi Territoriali ...
Forum PA challenge: HALADIN's
Livinglabs per nexa_duretti
Scuola futuro prossimo
Storie dal futuro: persone e cose sempre connesse - per genitori
Storie dal futuro: persone e cose sempre connesse
19 Luglio 2013 - Il Futuro della TV - Sergio Duretti - CSP
19 Luglio 2013 - Il futuro della TV - Marco Bussone - UNCEM
19 Luglio 2013 - Il futuro della TV - Marco Cantamessa - I3P
19 Luglio 2013 - Il futuro della TV - Andrea Piersanti, Virtual & Reality Mul...
19 Luglio 2013 - Il Futuro della Televisione -
19 Luglio 2013 - Il Futuro della Televisione - Chiara Gallino - CSP
19 Luglio 2013 - Il Futuro della Televisione - Fabrizio Gramaglia, Finpiemonte
Seminario ict agricoltura
Datidalle cose digitalfestival2013
Presentazione aprile 2012_con_nuovologo
Presentazione inglese aprile_2012_con_nuovologo

Recently uploaded (20)

PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Review of recent advances in non-invasive hemoglobin estimation
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
A comparative analysis of optical character recognition models for extracting...
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Electronic commerce courselecture one. Pdf
PPTX
Big Data Technologies - Introduction.pptx
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Empathic Computing: Creating Shared Understanding
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PPTX
Machine Learning_overview_presentation.pptx
PPTX
Spectroscopy.pptx food analysis technology
Advanced methodologies resolving dimensionality complications for autism neur...
Review of recent advances in non-invasive hemoglobin estimation
The AUB Centre for AI in Media Proposal.docx
A comparative analysis of optical character recognition models for extracting...
20250228 LYD VKU AI Blended-Learning.pptx
Chapter 3 Spatial Domain Image Processing.pdf
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Assigned Numbers - 2025 - Bluetooth® Document
The Rise and Fall of 3GPP – Time for a Sabbatical?
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
MYSQL Presentation for SQL database connectivity
Mobile App Security Testing_ A Comprehensive Guide.pdf
Electronic commerce courselecture one. Pdf
Big Data Technologies - Introduction.pptx
Building Integrated photovoltaic BIPV_UPV.pdf
Encapsulation_ Review paper, used for researhc scholars
Empathic Computing: Creating Shared Understanding
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Machine Learning_overview_presentation.pptx
Spectroscopy.pptx food analysis technology

Software-defined white-space cognitive systems: implementation of the spectrum sensing unit

  • 1. Software-defined white-space cognitive systems: Implementation of the spectrum sensing unit Castelldefels, October 6th 2011 Sergio Benco, Floriana Crespi, Andrea Ghittino, Alberto Perotti Integrated Networks Laboratory (INLAB), CSP s.c.a r.l. - ICT innovation, TURIN (ITALY)
  • 2. Outline  TV White-Spaces Spectrum Sensing  IEEE 802.22 Spectrum Sensing model  DVB-T CP autocorrelation Spectrum Sensing  Threshold calculation  Performance  Conclusions and future work Software-defined white-space cognitive systems 2
  • 3. Spectrum sensing for TV White-Spaces TV White-Spaces represent the area (space domain) and the portion of the spectrum (VHF and UHF bands) where the broadcast signal strength falls below the sensitivity level of Primary User (PU) receivers Regulatory bodies are currently discussing about Secondary User (SU) spectrum sensing requirements in order to avoid interference to DVB-T receivers Interference issues can be faced through:  SU geo-location and PU database queries  Cognitive Pilot Channel (CPC)  SU autonomous sensing (cooperative or not) Software-defined white-space cognitive systems 3
  • 4. IEEE 802.22 Spectrum Sensing model PU protection contour (Dkm) Sensitivity range of the PU Rx PU ITU-R: PRPU = -92dBm @ 132km (RX) ERP TX = +90dBm, height: 500m, 615MHz) SU PU (TX) Keep-out region (Rkm) Range at wich the Desired/Undesired SU (D/U) ratio falls below 23 dB SU spectrum sensing requirements: ● PU Rx characteristics: F/B = 14 dB; D/U = 23 dB ● At PU Rx: PRSU ≤ PRPU – D/UdB + F/BdB ● At PU Rx: PRSU ≤ -101 dBm At SU Rx: Sens. ≤ -115 dBm A SU must detect a PU Tx at a range of: Rkm + Dkm Software-defined white-space cognitive systems 4
  • 5. DVB-T spectrum sensing: CP autocorrelation Ns Symbol samples NCP CP samples N0CP N0 d N1CP N1d Nd Data samples K Number of symbols Ns K −1 i+kN s +N cp −1 CP correlator: See R xx (i) = ∑ ∑ x (n) x (n+ N d ) ˙ k=0 n=i+kN s References (1)(2) CP correlator test: DVB-T sensing module parameters max∣R xx (i)∣ Modes 8k (6817 subcarriers) T CP = i ⩾ γ 2k (1705 subcarriers) Avg∣R xx (i)∣ < CP lengths 1/4, 1/8, 1/16, 1/32 i∈J Channel bandwidth 8 MHz Sampling rate 12.5 MS/s (12.5 MHz) Software-defined white-space cognitive systems 5
  • 6. DVB-T spectrum sensing: applied threshold False Alarm max∣R xx (i)∣ Probability (PFA ) i ̂ θ ⩾ γ T CP = = obtained through Avg∣R xx (i)∣ ∣R xx∣ < ̄ i∈J Monte-Carlo simulations over 1000 trials γ = γ ⋅ Avg∣R xx (i)∣ ⇒ ̂ P FA ⩽ 0.1 i ∈J J =N ∖Q N ={n∈ℕ : 0 ⩽ n < N s } ̂ ̂ Q={q∈ℕ : θ− N CP ⩽ q < θ+N CP } The threshold is adaptive w.r.t. the actual average correlation level plus a fixed margin that depends on PFA Software-defined white-space cognitive systems 6
  • 7. DVB-T spectrum sensing over K symbols Symbol synchronization permits to obtain a coherent combining and average over K subsequent DVB-T symbols thus achieving a processing gain of about 5 dB for each 10 dB increase in K 1 symbol 10 symbols 100 symbols SNR = -15dB SNR = -15dB SNR = -15dB AWGN channel AWGN channel AWGN channel Software-defined white-space cognitive systems 7
  • 8. DVB-T OFDM sensing: performance The detection time Tdet of this real-time module is calculated at the target sensing performance (PFA=0.1, PD=0.9) for a given SNR: SNR (PD=0.9) = -17 dB Symbols = 100 Tdet = 112.00 ms + Tproc SNR (PD=0.9) = -12 dB Symbols = 10 Tdet = 11.20 ms + Tproc Tch move time = 2000 ms Tsensing = Tch move time – 2Tdet Software-defined white-space cognitive systems 8
  • 9. Conclusions and future work ● The DVB-T spectrum sensing based on CP autocorrelation offers a good trade-off between complexity and effectiveness ● The first attempts to exploit TV white space have raised the problem of high sensitivity requirements for the SU spectrum sensing unit ● We have developed a real-time module for OFDM spectrum sensing that approaches the requirements for the IEEE 802.22 WRAN spectrum sensing unit ● Future work will provide a SU network able to continuously monitor the TV White-Spaces through a CP-based spectrum sensing module using the GNURadio/USRP2 platform Software-defined white-space cognitive systems 9
  • 10. References (1) D. Danev, E. Axell, and E. G. Larsson, “Spectrum Sensing Methods for Detection of DVB-T Signals in AWGN and Fading Channels”, In Proc. IEEE PIMRC, pp. 2721-2726, Dec. 2010 (2) V. Gaddam, M. Ghosh, “Robust Sensing of DVB-T Signals”, New Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on , vol., no., pp.1-8, 6-9 April 2010 (3) S. Shellhammer, V. Tawil, G. Chouinard, M. Muterspaugh, M. Ghosh, “Spectrum sensing simulation model”, IEEE 802.22-06/0028r10, Sept. 2006 (4) C.R. Stevenson, C. Cordeiro, E. Sofer, G. Chouinard, “Functional Requirements for the 802.22 WRAN Standard”, IEEE 802.22- 05/0007r46, September 2005 Software-defined white-space cognitive systems 10
  • 11. Contacts Sergio Benco Consulting Engineer, Integrated Networks Laboratory (INLAB) R&D dept. mail: sergio.benco@csp.it cell: +39 329 0118356 tel. +39 011-4815164 CSP innovation in ICT Registered and Central Offices Environment Park - Laboratori A1 via Livorno 60 - 10144 Torino Operational Offices Villa Gualino - Viale Settimio Severo 63 10133 Torino Tel +39 011 4815111 Fax +39 011 4815001 E-mail: marketing@csp.it www.csp.it Software-defined white-space cognitive systems 11