SlideShare a Scribd company logo
International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015
DOI:10.5121/ijcax.2015.2303 29
On Fuzzy Soft Multi Set and Its Application in
Information Systems
Anjan Mukherjee1
and Ajoy Kanti Das2
1
Department of Mathematics,Tripura University, Agartala-799022,Tripura, India
2
Department of Mathematics, ICV-College, Belonia -799155, Tripura, India
ABSTRACT
Research on information and communication technologies have been developed rapidly since it can be
applied easily to several areas like computer science, medical science, economics, environments,
engineering, among other. Applications of soft set theory, especially in information systems have been
found paramount importance. Recently, Mukherjee and Das defined some new operations in fuzzy soft
multi set theory and show that the De-Morgan’s type of results hold in fuzzy soft multi set theory with
respect to these newly defined operations. In this paper, we extend their work and study some more basic
properties of their defined operations. Also, we define some basic supporting tools in information system
also application of fuzzy soft multi sets in information system are presented and discussed. Here we define
the notion of fuzzy multi-valued information system in fuzzy soft multi set theory and show that every fuzzy
soft multi set is a fuzzy multi valued information system.
KEYWORDS
Soft set, fuzzy set, soft multi set, fuzzy soft multi set, information system.
1. INTRODUCTION
In recent years vague concepts have been used in different areas such as information and
communication technologies, medical applications, pharmacology, economics and engineering
since; these kinds of problems have their own uncertainties. There are many mathematical tools
for dealing with uncertainties; some of them are fuzzy set theory [18] and soft set theory [12]. In
soft set theory there is no limited condition to the description of objects; so researchers can
choose the form of parameters they need, which greatly simplifies the decision making process
and make the process more efficient in the absence of partial information. Although many
mathematical tools are available for modelling uncertainties such as probability theory, fuzzy set
theory, rough set theory, interval valued mathematics etc, but there are inherent difficulties
associated with each of these techniques. Soft set theory is standing in a unique way in the sense
that it is free from the above difficulties. Soft set theory has a rich potential for application in
many directions, some of which are reported by Molodtsov [12] in his work. Later on Maji et
al.[10, 11] presented some new definitions on soft sets and discussed in details the application of
soft set in decision making problem. Based on the analysis of several operations on soft sets
introduced in [12], Ali et al. [2] presented some new algebraic operations for soft sets and proved
that certain De Morgan’s law holds in soft set theory with respect to these new definitions.
Combining soft sets [12] with fuzzy sets [18], Maji et al. [9] defined fuzzy soft sets, which are
rich potential for solving decision making problems. Alkhazaleh and others [[1], [4], [5], [7],
[16], [17]] as a generalization of Molodtsov’s soft set, presented the definition of a soft multi set
International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015
30
and its basic operations such as complement, union, and intersection etc. In 2012 Alkhazaleh and
Salleh [3] introduced the concept of fuzzy soft multi set theory and studied the application of
these sets and recently, Mukherjee and Das[14] defined some new algebraic operations for fuzzy
soft multi sets and proved that certain De Morgan's law holds in fuzzy soft multi set theory with
respect to these new definitions. They also presented an application of fuzzy soft multi set based
decision making problems in [13].
Molodtsov [12] presented some applications of soft set theory in several directions, which
includes: the study of smoothness of functions, game theory, operations research, Riemann-
integration, probability, theory of measurement, etc. It has been shown that there is compact
connection between soft sets and information system. From the concept and the example of fuzzy
soft multisets given in the section 4.3, it can be seen that a fuzzy soft multi set is a multi-valued
information system. In this paper we define the notion of fuzzy multi-valued information system
in fuzzy soft multi set theory and application of fuzzy soft multi sets in information system were
presented and discussed.
2. PRELIMINARY NOTES
In this section, we recall some basic notions in soft set theory and fuzzy soft multi set theory. Let
U be an initial universe and E be a set of parameters. Let P(U) denotes the power set of U and
A⊆E.
A pair (F, A) is called a soft set over U, where F is a mapping given by F: A→ P(U). In other
words, soft set over U is a parameterized family of subsets of the universe U.
2.1. Definition [12]
Let { }:iU i I∈ be a collection of universes such that i I iU φ∈ =I and let { }:iUE i I∈ be a
collection of sets of parameters. Let ( )i I iU FS U∈= ∏ where ( )iFS U denotes the set of all fuzzy
subsets of iU , ii I UE E∈= ∏ and A E⊆ . A pair (F, A) is called a fuzzy soft multi set over U,
where :F A U→ is a mapping given by ,e A∀ ∈
( )
( ) : :
( )
i
F e
u
F e u U i I
uµ
   
= ∈ ∈      
For illustration, we consider the following example.
2.2. Example
Let us consider three universes { }1 1 2 3 4 5, , , ,U h h h h h= , { }2 1 2 3 4, , ,U c c c c= and { }3 1 2 3, ,U v v v= be the
sets of “houses,” “cars,” and “hotels”, respectively. Suppose Mr. X has a budget to buy a house, a
car and rent a venue to hold a wedding celebration. Let us consider a intuitionistic fuzzy soft
multi set (F, A) which describes “houses,” “cars,” and “hotels” that Mr. X is considering for
accommodation purchase, transportation purchase, and a venue to hold a wedding celebration,
respectively. Let { }1 2 3
, ,U U UE E E be a collection of sets of decision parameters related to the above
universes, where
{ }1 1 1 1,1 ,2 ,3expensive, cheap, woodenU U U UE e e e= = = =
International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015
31
{ }2 2 2 2,1 ,2 ,3beautiful, cheap, sporty ,U U U UE e e e= = = =
{ }3 3 3 3,1 ,2 ,3expensive, model, beautiful .U U U UE e e e= = = =
Let ( )3
1i iU FS U== ∏ , 3
1 ii UE E== ∏ and A E⊆ , such that
{ }1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 31 ,1 ,1 ,1 2 ,1 ,2 ,1 3 ,2 ,3 ,1 4 ,3 ,3 ,1 5 ,1 ,1 ,2 6 ,1 ,2 ,2( , , ), ( , , ), ( , , ), ( , , ), ( , , ), ( , , ) .U U U U U U U U U U U U U U U U U UA a e e e a e e e a e e e a e e e a e e e a e e e= = = = = = =
Suppose Mr. X wants to choose objects from the sets of given objects with respect to the sets of
choice parameters. Then fuzzy soft multi set (F, A) can be represent as in Table 1.
Table 1. The tabular representation of the fuzzy soft multi-set (F, A)
Ui a1 a2 a3 a4 a5 a6
U1
h1
h2
h3
h4
h5
0.8
0.4
0.9
0.4
0.1
0.6
0.5
0
0.4
1
0.5
0.7
1
0.4
0.8
0.4
0.5
0.1
0
0.8
0.7
0.5
1
0.4
1
0.6
0.4
0.8
1
0.1
U2
c1
c2
c3
c4
0.8
1
0.8
1
0.9
0.6
1
0
0.6
0.1
0
1
0.8
0
0.8
1
0
0.1
0.7
1
0.7
0.1
0.9
0.1
U3
v1
v2
v3
0.8
0.7
0.6
0.6
0.6
0
0
0.7
0.7
1
0.7
0
1
0.8
0
0.1
0.9
0.1
2.4. Definition [14]
The restricted union of two fuzzy soft multi sets (F, A) and (G, B) over U is a fuzzy soft multi set
(H,C)whereC A B= ∩ and ,e C∀ ∈
( )( ) ( ), ( )H e F e G e= U
{ }( ) ( )
: :
max ( ), ( )
i
F e G e
u
u U i I
u uµ µ
    = ∈ ∈ 
    
and is written as ( , ) ( , ) ( , ).RF A G B H C=∪%
2.5 Definition [14]
The extended union of two fuzzy soft multi sets (F, A) and (G, B) over U is a fuzzy soft multi set
(H, D), where D A B= ∪ and ,e D∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
F e if e A B
H e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩U
where ( )( ), ( )F e G eU
{ }( ) ( )
: :
max ( ), ( )
i
F e G e
u
u U i I
u uµ µ
    = ∈ ∈ 
    
International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015
32
and is written as ( , ) ( , ) ( , ).EF A G B H D=∪%
2.6 Definition [14]
The restricted intersection of two intuitionistic fuzzy soft multi sets (F, A) and (G, B) over U is a
fuzzy soft multi set (H, D) where D A B= ∩ and ,e D∀ ∈
( )( ) ( ), ( )H e F e G e= I
{ }( ) ( )
: :
min ( ), ( )
i
F e G e
u
u U i I
u uµ µ
    = ∈ ∈ 
    
and is written as ( , ) ( , ) ( , ).RF A G B H D=∩%
2.7 Definition [14]
The extended intersection of two fuzzy soft multi sets (F, A) and (G, B) over U is a fuzzy soft
multi set (H, D), where D A B= ∪ and ,e D∀ ∈
( )
( ),
( ) ( ),
( ), ( ) ,
F e if e A B
H e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩I
Where
( )( ), ( )F e G eI
{ }( ) ( )
: :
min ( ), ( )
i
F e G e
u
u U i I
u uµ µ
    = ∈ ∈ 
    
and is written as ( , ) ( , ) ( , ).EF A G B H D=∩%
2.8. Definition [14]
If (F, A) and (G, B) be two fuzzy soft multi sets over U, then ( ) ( )" , AND , "F A G B is a fuzzy soft
multi set denoted by ( ) ( ), ,F A G B∧ and is defined by ( ) ( ) ( ), , , ,F A G B H A B∧ = × where H is
mapping given by H: A×B→U and
( )
{ }( ) ( )
, , ( , ) : : .
min ( ), ( )
i
F a G b
u
a b A B H a b u U i I
u uµ µ
    ∀ ∈ × = ∈ ∈ 
    
2.9. Definition [14]
If (F, A) and (G, B) be two fuzzy soft multi sets over U, then ( ) ( )" , OR , "F A G B is a fuzzy soft
multi set denoted by ( ) ( ), ,F A G B∨ and is defined by ( ) ( ) ( ), , , ,F A G B K A B∨ = × where K is
mapping given by K: A×B→U and
( )
{ }( ) ( )
, , ( , ) : :
max ( ), ( )
i
F a G b
u
a b A B K a b u U i I
u uµ µ
    ∀ ∈ × = ∈ ∈ 
    
2.10. Definition [8]
International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015
33
An information system is a 4-tuple S = (U, A, V, f ), where U = {u1, u2, u3, …., un} is a non-empty
finite set of objects, A = {a1, a2, a3,…., am} is a non-empty finite set of attributes, V =∪a∈A Va, Va
is the domain of attribute a, f : U × A→V is an information function, such that f (u, a) ∈ Va for
every (u, a) ∈ U × A, called information(knowledge) function.
3. MAIN RESULTS
Mukherjee and Das [14] defined some new operations in fuzzy soft multi set theory and show that
the De Morgan’s types of results hold in fuzzy soft multi set theory with respect to these newly
defined operations. In this section, we extend their work and study some more basic properties of
their defined operations.
3.1. Proposition (Associative Laws)
Let (F, A), (G, B) and (H, C) are three fuzzy soft multi sets over U, then we have the following
properties:
1. ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )R R R RF A G B H C F A G B H C=∩ ∩ ∩ ∩% % % %
2. ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )R R R RF A G B H C F A G B H C=∪ ∪ ∪ ∪% % % %
Proof. 1. Assume that ( , ) ( , ) ( , )RG B H C I D=∩% , where D B C= ∩ and ,e D∀ ∈
{ }( ) ( )min
( ) ( ) ( ) : :
( ), ( )
i
G e H e
u
I e G e H e u U i I
u uµ µ
    = ∩ = ∈ ∈ 
    
Since ( )( , ) ( , ) ( , ) ( , ) ( , )R R RF A G B H C F A I D=∩ ∩ ∩% % % , we suppose that ( )( , ) ( , ) ,RF A I D K M=∩% where
M A D A B C= ∩ = ∩ ∩ and ,e M∀ ∈
( )
( ) ( ) ( ) : :
( )
i
K e
u
K e F e I e u U i I
uµ
   
= ∩ = ∈ ∈      
{ } { }{ } { }( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )min min min min( ) ( ), ( ) ( ), ( ), ( ) ( ), ( ), ( )K e F e I e F e G e H e F e G e H e
where
u u u u u u u u uµ µ µ µ µ µ µ µ µ= = =
Suppose that ( , ) ( , ) ( , ),RF A G B J N=∩% where N A B= ∩ and ,e N∀ ∈
{ }( ) ( )min
( ) ( ) ( ) : :
( ), ( )
i
F e G e
u
J e F e G e u U i I
u uµ µ
    = ∩ = ∈ ∈ 
    
Since ( )( , ) ( , ) ( , ) ( , ) ( , )R R RF A G B H C J N H C=∩ ∩ ∩% % % , we suppose that ( , ) ( , ) ( , )RJ N H C O N C= ∩∩% where
International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015
34
( )
, ( ) ( ) ( ) : :
( )
i
O e
u
e N C A B C O e J e H e u U i I
uµ
   
∀ ∈ ∩ = ∩ ∩ = ∩ = ∈ ∈      
{ } { }{ }
{ }
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
min min min
min
( ) ( ), ( ) ( ), ( ) , ( )
( ), ( ), ( ) ( )
O e J e H e F e G e H e
F e G e H e K e
u u u u u u
u u u u
µ µ µ µ µ µ
µ µ µ µ
= =
= =
Consequently, K and O are the same operators. Thus
( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ).R R R RF A G B H C F A G B H C=∩ ∩ ∩ ∩% % % %
2. Assume that ( , ) ( , ) ( , )RG B H C I D=∪% , where D B C= ∩ and ,e D∀ ∈
{ }( ) ( )max
( ) ( ) ( ) : :
( ), ( )
i
G e H e
u
I e G e H e u U i I
u uµ µ
    = ∪ = ∈ ∈ 
    
Since ( )( , ) ( , ) ( , ) ( , ) ( , )R R RF A G B H C F A I D=∪ ∪ ∪% % % , we suppose that ( )( , ) ( , ) ,RF A I D K M=∪% where
M A D A B C= ∩ = ∩ ∩ and ,e M∀ ∈
( )
( ) ( ) ( ) : :
( )
i
K e
u
K e F e I e u U i I
uµ
   
= ∪ = ∈ ∈      
{ } { }{ } { }( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )max max max max( ) ( ), ( ) ( ), ( ), ( ) ( ), ( ), ( )K e F e I e F e G e H e F e G e H e
where
u u u u u u u u uµ µ µ µ µ µ µ µ µ= = =
Suppose that ( , ) ( , ) ( , ),RF A G B J N=∪% where N A B= ∩ and ,e N∀ ∈
{ }( ) ( )max
( ) ( ) ( ) : :
( ), ( )
i
F e G e
u
J e F e G e u U i I
u uµ µ
    = ∪ = ∈ ∈ 
    
Since ( )( , ) ( , ) ( , ) ( , ) ( , )R R RF A G B H C J N H C=∪ ∪ ∪% % % , we suppose that ( , ) ( , ) ( , )RJ N H C O N C= ∩∪%
where
( )
, ( ) ( ) ( ) : :
( )
i
O e
u
e N C A B C O e J e H e u U i I
uµ
   
∀ ∈ ∩ = ∩ ∩ = ∪ = ∈ ∈      
{ } { }{ }
{ }
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
max max max
max
( ) ( ), ( ) ( ), ( ) , ( )
( ), ( ), ( ) ( )
O e J e H e F e G e H e
F e G e H e K e
u u u u u u
u u u u
µ µ µ µ µ µ
µ µ µ µ
= =
= =
Consequently, K and O are the same operators. Thus
( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ).R R R RF A G B H C F A G B H C=∪ ∪ ∪ ∪% % % %
International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015
35
3.2. Proposition (Distributive Laws)
Let (F, A), (G, B) and (H, C) are three fuzzy soft multi sets over U, then we have the following
properties:
( ) ( ) ( )(1). ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )R R R R RF A G B H C F A G B F A H C=∪ ∩ ∪ ∩ ∪% % % % %
( ) ( ) ( )(2). ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )R R R R RF A G B H C F A G B F A H C=∩ ∪ ∩ ∪ ∩% % % % %
Proof. (1). Assume that ( , ) ( , ) ( , )RG B H C I D=∩% , where D B C= ∩ and ,e D∀ ∈
( ) ( ) ( )I e G e H e= ∩ =
{ }( ) ( )min
: :
( ), ( )
i
G e H e
u
u U i I
u uµ µ
    ∈ ∈ 
    
Since ( )( , ) ( , ) ( , ) ( , ) ( , )R R RF A G B H C F A I D=∪ ∩ ∪% % % , we suppose that ( )( , ) ( , ) ,RF A I D K M=∪% where
M A D A B C= ∩ = ∩ ∩ and ,e M∀ ∈
( )
( ) ( ) ( ) : :
( )
i
K e
u
K e F e I e u U i I
uµ
   
= ∪ = ∈ ∈      
{ }
{ }{ }
{ } { }{ }
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
max
max min
min
( ) ( ), ( )
( ), ( ), ( )
max ( ), ( ) ,max ( ), ( )
K e F e I e
F e G e H e
F e G e F e H e
where u u u
u u u
u u u u
µ µ µ
µ µ µ
µ µ µ µ
=
=
=
Suppose that ( , ) ( , ) ( , ),RF A G B J N=∪% where N A B= ∩ and ,e N∀ ∈
{ }( ) ( )max
( ) ( ) ( ) : :
( ), ( )
i
F e G e
u
J e F e G e u U i I
u uµ µ
    = ∪ = ∈ ∈ 
    
Again, let ( , ) ( , ) ( , ),RF A H C S T=∪% where T A C= ∩ and ,e T∀ ∈
{ }( ) ( )max
( ) ( ) ( ) : :
( ), ( )
i
F e H e
u
S e F e H e u U i I
u uµ µ
    = ∪ = ∈ ∈ 
    
Since ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )R R R RF A G B F A H C J N S T=∪ ∩ ∪ ∩% % % % , we suppose that
( , ) ( , ) ( , )RJ N S T O N T= ∩∩% where ,e N T A B C∀ ∈ ∩ = ∩ ∩
( )
( ) ( ) ( ) : :
( )
i
O e
u
O e J e S e u U i I
uµ
   
= ∩ = ∈ ∈      
International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015
36
{ }
{ } { }{ }
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
min
min max max
( ) ( ), ( )
( ), ( ) , ( ), ( ) ( )
O e J e S e
F e G e F e H e K e
u u u
u u u u u
µ µ µ
µ µ µ µ µ
=
= =
Consequently, K and O are the same operators. Thus
( ) ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )R R R R RF A G B H C F A G B F A H C=∪ ∩ ∪ ∩ ∪% % % % %
(2). Assume that ( , ) ( , ) ( , )RG B H C I D=∪% , where D B C= ∩ and ,e D∀ ∈ ( ) ( ) ( )I e G e H e= ∪
{ }( ) ( )max
: :
( ), ( )
i
G e H e
u
u U i I
u uµ µ
    = ∈ ∈ 
    
Since ( )( , ) ( , ) ( , ) ( , ) ( , )R R RF A G B H C F A I D=∩ ∪ ∩% % % , we suppose that ( )( , ) ( , ) ,RF A I D K M=∩% where
M A D A B C= ∩ = ∩ ∩ and ,e M∀ ∈
( )
( ) ( ) ( ) : :
( )
i
K e
u
K e F e I e u U i I
uµ
   
= ∩ = ∈ ∈      
{ }
{ }{ }
{ } { }{ }
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
min
min max
max
( ) ( ), ( )
( ), ( ), ( )
min ( ), ( ) ,min ( ), ( )
K e F e I e
F e G e H e
F e G e F e H e
where u u u
u u u
u u u u
µ µ µ
µ µ µ
µ µ µ µ
=
=
=
Suppose that ( , ) ( , ) ( , ),RF A G B J N=∩% where N A B= ∩ and ,e N∀ ∈
{ }( ) ( )min
( ) ( ) ( ) : :
( ), ( )
i
F e G e
u
J e F e G e u U i I
u uµ µ
    = ∩ = ∈ ∈ 
    
Again, let ( , ) ( , ) ( , ),RF A H C S T=∩% where T A C= ∩ and ,e T∀ ∈
{ }( ) ( )min
( ) ( ) ( ) : :
( ), ( )
i
F e H e
u
S e F e H e u U i I
u uµ µ
    = ∩ = ∈ ∈ 
    
Since ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )R R R RF A G B F A H C J N S T=∩ ∪ ∩ ∪% % % % , we suppose that
( , ) ( , ) ( , )RJ N S T O N T= ∩∪% where ,e N T A B C∀ ∈ ∩ = ∩ ∩
( )
( ) ( ) ( ) : :
( )
i
O e
u
O e J e S e u U i I
uµ
   
= ∪ = ∈ ∈      
International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015
37
{ }
{ } { }{ }
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
max
max min min
( ) ( ), ( )
( ), ( ) , ( ), ( ) ( )
O e J e S e
F e G e F e H e K e
u u u
u u u u u
µ µ µ
µ µ µ µ µ
=
= =
Consequently, K and O are the same operators. Thus
( ) ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )R R R R RF A G B H C F A G B F A H C=∩ ∪ ∩ ∪ ∩% % % % %
3.3. Proposition (Associative Laws)
Let (F, A), (G, B) and (H, C) are three fuzzy soft multi sets over U, then we have the following
properties:
1. ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E EF A G B H C F A G B H C=∪ ∪ ∪ ∪% % % %
2. ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E EF A G B H C F A G B H C=∩ ∩ ∩ ∩% % % %
Proof. 1. Suppose that ( , ) ( , ) ( , )EG B H C I D=∪% , where D B C= ∪ and ,e D∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
G e if e B C
I e H e if e C B
G e H e if e B C
 ∈ −

= ∈ −

∈ ∩U
Since ( )( , ) ( , ) ( , ) ( , ) ( , )E E EF A G B H C F A I D=∪ ∪ ∪% % % , we suppose that ( )( , ) ( , ) ,EF A I D J M=∪% where
M A D A B C= ∪ = ∪ ∪ and ,e M∀ ∈
( )
( )
( )
( )
( ),
( ),
( ),
( ) ( ), ( ) , ,
( ), ( ) , ,
( ), ( ) , ,
( ), ( ), ( ) ,
G e if e B C A
H e if e C B A
F e if e A B C
J e G e H e if e B C A
F e H e if e A C B
G e F e if e A B C
F e G e H e if e A B
∈ − −
∈ − −
∈ − −
= ∈ ∩ −
∈ ∩ −
∈ ∩ −
∈ ∩ ∩
U
U
U
U ,C













Assume that ( , ) ( , ) ( , )EF A G B K S=∪% , where S A B= ∪ and ,e S∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
F e if e A B
K e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩U
Since ( )( , ) ( , ) ( , ) ( , ) ( , )E E EF A G B H C K S H C=∪ ∪ ∪% % % , we suppose that ( )( , ) ( , ) ,EK S H C L T=∪% where
T S C A B C= ∪ = ∪ ∪ and ,e T∀ ∈
International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015
38
( )
( )
( )
( )
( ),
( ),
( ),
( ) ( ), ( ) , ,
( ), ( ) , ,
( ), ( ) , ,
( ), ( ), ( ) ,
G e if e B C A
H e if e C B A
F e if e A B C
L e G e H e if e B C A
F e H e if e A C B
G e F e if e A B C
F e G e H e if e A B
∈ − −
∈ − −
∈ − −
= ∈ ∩ −
∈ ∩ −
∈ ∩ −
∈ ∩ ∩
U
U
U
U ,C













Therefore it is clear that M T= and , ( ) ( )e M J e L e∀ ∈ = , that is J and L are the same operators.
Thus ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E EF A G B H C F A G B H C=∪ ∪ ∪ ∪% % % % .
2. Suppose that ( , ) ( , ) ( , )EG B H C I D=∩% , where D B C= ∪ and ,e D∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
G e if e B C
I e H e if e C B
G e H e if e B C
 ∈ −

= ∈ −

∈ ∩I
Since ( )( , ) ( , ) ( , ) ( , ) ( , )E E EF A G B H C F A I D=∩ ∩ ∩% % % , we suppose that ( )( , ) ( , ) ,EF A I D J M=∩% where
M A D A B C= ∪ = ∪ ∪ and ,e M∀ ∈
( )
( )
( )
( )
( ),
( ),
( ),
( ) ( ), ( ) , ,
( ), ( ) , ,
( ), ( ) , ,
( ), ( ), ( ) ,
G e if e B C A
H e if e C B A
F e if e A B C
J e G e H e if e B C A
F e H e if e A C B
G e F e if e A B C
F e G e H e if e A B
∈ − −
∈ − −
∈ − −
= ∈ ∩ −
∈ ∩ −
∈ ∩ −
∈ ∩ ∩
I
I
I
I ,C













Assume that ( , ) ( , ) ( , )EF A G B K S=∩% , where S A B= ∪ and ,e S∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
F e if e A B
K e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩I
Since ( )( , ) ( , ) ( , ) ( , ) ( , )E E EF A G B H C K S H C=∩ ∩ ∩% % % , we suppose that ( )( , ) ( , ) ,EK S H C L T=∩% where
T S C A B C= ∪ = ∪ ∪ and ,e T∀ ∈
International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015
39
( )
( )
( )
( )
( ),
( ),
( ),
( ) ( ), ( ) , ,
( ), ( ) , ,
( ), ( ) , ,
( ), ( ), ( ) ,
G e if e B C A
H e if e C B A
F e if e A B C
L e G e H e if e B C A
F e H e if e A C B
G e F e if e A B C
F e G e H e if e A B
∈ − −
∈ − −
∈ − −
= ∈ ∩ −
∈ ∩ −
∈ ∩ −
∈ ∩ ∩
I
I
I
I ,C













Therefore it is clear that M T= and , ( ) ( )e M J e L e∀ ∈ = , that is J and L are the same operators.
Thus ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E EF A G B H C F A G B H C=∩ ∩ ∩ ∩% % % % .
3.4. Proposition (Distributive Laws)
Let (F, A), (G, B) and (H, C) are three fuzzy soft multi sets over U, then we have the following
properties:
( ) ( ) ( )(1). ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E E EF A G B H C F A G B F A H C=∩ ∪ ∩ ∪ ∩% % % % %
( ) ( ) ( )(2). ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E E EF A G B H C F A G B F A H C=∪ ∩ ∪ ∩ ∪% % % % %
Proof. (1). Suppose that ( , ) ( , ) ( , )EG B H C I D=∪% , where D B C= ∪ and ,e D∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
G e if e B C
I e H e if e C B
G e H e if e B C
 ∈ −

= ∈ −

∈ ∩U
Since ( )( , ) ( , ) ( , ) ( , ) ( , )E E EF A G B H C F A I D=∩ ∪ ∩% % % , we suppose that ( )( , ) ( , ) ,EF A I D J M=∩% where
M A D A B C= ∪ = ∪ ∪ and ,e M∀ ∈
( )
( )
( )
( )( )
( ),
( ),
( ),
( ) ( ), ( ) , ,
( ), ( ) , ,
( ), ( ) , ,
( ), ( ), ( ) ,
G e if e B C A
H e if e C B A
F e if e A B C
J e G e H e if e B C A
F e H e if e A C B
F e G e if e A B C
F e G e H e if e A B
∈ − −
∈ − −
∈ − −
= ∈ ∩ −
∈ ∩ −
∈ ∩ −
∈ ∩
U
I
I
I U ,C











 ∩
Assume that ( , ) ( , ) ( , )EF A G B K S=∩% , where S A B= ∪ and ,e S∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
F e if e A B
K e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩I
and ( , ) ( , ) ( , )EF A H C N T=∩% , where T A C= ∪ and ,e T∀ ∈
International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015
40
( )
( ),
( ) ( ),
( ), ( ) , ,
F e if e A C
N e H e if e C A
F e H e if e A C
 ∈ −

= ∈ −

∈ ∩I
Since ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E EF A G B F A H C K S N T=∩ ∪ ∩ ∪% % % % , we suppose that ( )( , ) ( , ) ,EK S N T O P=∪%
where ( ) ( )P S T A B A C A B C= ∪ = ∪ ∪ ∪ = ∪ ∪ and ,e P∀ ∈
( )
( )
( )
( )( )
( ),
( ),
( ),
( ) ( ), ( ) , ,
( ), ( ) , ,
( ), ( ) , ,
( ), ( ), ( ) ,
G e if e B C A
H e if e C B A
F e if e A B C
O e G e H e if e B C A
F e H e if e A C B
F e G e if e A B C
F e G e H e if e A B
∈ − −
∈ − −
∈ − −
= ∈ ∩ −
∈ ∩ −
∈ ∩ −
∈ ∩
U
I
I
I U ,C











 ∩
Therefore it is clear that M P= and , ( ) ( )e M J e O e∀ ∈ = , that is “J” and “O” are the same
operators. Thus ( ) ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E E EF A G B H C F A G B F A H C=∩ ∪ ∩ ∪ ∩% % % % % .
(2). Suppose that ( , ) ( , ) ( , )EG B H C I D=∩% , where D B C= ∪ and ,e D∀ ∈
Since ( )( , ) ( , ) ( , ) ( , ) ( , )E E EF A G B H C F A I D=∪ ∩ ∪% % % , we suppose that ( )( , ) ( , ) ,EF A I D J M=∪% where
M A D A B C= ∪ = ∪ ∪ and ,e M∀ ∈
( )
( )
( )
( )( )
( ),
( ),
( ),
( ) ( ), ( ) , ,
( ), ( ) , ,
( ), ( ) , ,
( ), ( ), ( ) ,
G e if e B C A
H e if e C B A
F e if e A B C
J e G e H e if e B C A
F e H e if e A C B
F e G e if e A B C
F e G e H e if e A B
∈ − −
∈ − −
∈ − −
= ∈ ∩ −
∈ ∩ −
∈ ∩ −
∈ ∩
I
U
U
U I ,C











 ∩
Assume that ( , ) ( , ) ( , )EF A G B K S=∪% , where S A B= ∪ and ,e S∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
F e if e A B
K e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩U
and ( , ) ( , ) ( , )EF A H C N T=∪% , where T A C= ∪ and ,e T∀ ∈
International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015
41
( )
( ),
( ) ( ),
( ), ( ) , ,
F e if e A C
N e H e if e C A
F e H e if e A C
 ∈ −

= ∈ −

∈ ∩U
Since ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E EF A G B F A H C K S N T=∪ ∩ ∪ ∩% % % % , we suppose that ( )( , ) ( , ) ,EK S N T O P=∩%
where ( ) ( )P S T A B A C A B C= ∪ = ∪ ∪ ∪ = ∪ ∪ and ,e P∀ ∈
( )
( )
( )
( )( )
( ),
( ),
( ),
( ) ( ), ( ) , ,
( ), ( ) , ,
( ), ( ) , ,
( ), ( ), ( ) ,
G e if e B C A
H e if e C B A
F e if e A B C
O e G e H e if e B C A
F e H e if e A C B
F e G e if e A B C
F e G e H e if e A B
∈ − −
∈ − −
∈ − −
= ∈ ∩ −
∈ ∩ −
∈ ∩ −
∈ ∩
I
U
U
U I ,C











 ∩
Therefore it is clear that M P= and , ( ) ( )e M J e O e∀ ∈ = , that is “J” and “O” are the same
operators. Thus ( ) ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E E EF A G B H C F A G B F A H C=∪ ∩ ∪ ∩ ∪% % % % % .
3.5. Proposition (Associative Laws)
Let (F, A), (G, B) and (H, C) are three fuzzy soft multi sets over U, then we have the following
properties:
1. ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )F A G B H C F A G B H C∧ ∧ = ∧ ∧
2. ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )F A G B H C F A G B H C∨ ∨ = ∨ ∨
Proof. 1. Assume that ( , ) ( , ) ( , )G B H C I B C∧ = × , where ( ), ,b c B C∀ ∈ ×
{ }( ) ( )min
( , ) ( ) ( ) : :
( ), ( )
i
G b H c
u
I b c G b H c u U i I
u uµ µ
    = ∩ = ∈ ∈ 
    
Since ( )( , ) ( , ) ( , ) ( , ) ( , )F A G B H C F A I B C∧ ∧ = ∧ × , we suppose that ( )( , ) ( , ) , ( )F A I B C K A B C∧ × = × ×
where ( ) ( ), , ,a b c A B C A B C∀ ∈ × × = × ×
( , , )
( , , ) ( ) ( , ) : :
( )
i
K a b c
u
K a b c F a I b c u U i I
uµ
   
= ∩ = ∈ ∈      
{ } { }{ }
{ }
( , , ) ( ) ( , ) ( ) ( ) ( )
( ) ( ) ( )
min min min
min
( ) ( ), ( ) ( ), ( ), ( )
( ), ( ), ( )
K a b c F e I b c F e G b H c
F e G b H c
where u u u u u u
u u u
µ µ µ µ µ µ
µ µ µ
= =
=
We take ( , ) .a b A B∈ × Suppose that ( , ) ( , ) ( , )F A G B J A B∧ = × where ( ), ,a b A B∀ ∈ ×
{ }( ) ( )min
( , ) ( ) ( ) : :
( ), ( )
i
F a G b
u
J a b F a G b u U i I
u uµ µ
    = ∩ = ∈ ∈ 
    
International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015
42
Since ( )( , ) ( , ) ( , ) ( , ) ( , )F A G B H C J A B H C∧ ∧ = × ∧ , we suppose that ( , ) ( , ) ( ,( ) )J A B H C O A B C× ∧ = × ×
where ( ) ( ), , ,a b c A B C A B C∀ ∈ × × = × ×
( , , )
( , , ) ( , ) ( ) : :
( )
i
O a b c
u
O a b c J a b H c u U i I
uµ
   
= ∩ = ∈ ∈      
{ } { }{ }
{ }
( , , ) ( , ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( , , )
min min min
min
( ) ( ), ( ) ( ), ( ) , ( )
( ), ( ), ( ) ( )
O a b c J a b H c F e G b H c
F e G b H c K a b c
u u u u u u
u u u u
µ µ µ µ µ µ
µ µ µ µ
= =
= =
Consequently, K and O are the same operators. Thus
( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ).F A G B H C F A G B H C∧ ∧ = ∧ ∧
2. Assume that ( , ) ( , ) ( , )G B H C I B C∨ = × , where ( ), ,b c B C∀ ∈ ×
{ }( ) ( )max
( , ) ( ) ( ) : :
( ), ( )
i
G b H c
u
I b c G b H c u U i I
u uµ µ
    = ∪ = ∈ ∈ 
    
Since ( )( , ) ( , ) ( , ) ( , ) ( , )F A G B H C F A I B C∨ ∨ = ∨ × , we suppose that ( )( , ) ( , ) , ( )F A I B C K A B C∨ × = × ×
( ) ( )
( , , )
where , , , ( , , ) ( ) ( , ) : :
( )
i
K a b c
u
a b c A B C A B C K a b c F a I b c u U i I
uµ
   
∀ ∈ × × = × × = ∪ = ∈ ∈      
{ } { }{ }
{ }
( , , ) ( ) ( , ) ( ) ( ) ( )
( ) ( ) ( )
max max max
max
( ) ( ), ( ) ( ), ( ), ( )
( ), ( ), ( )
K a b c F e I b c F e G b H c
F e G b H c
where u u u u u u
u u u
µ µ µ µ µ µ
µ µ µ
= =
=
We take ( , ) .a b A B∈ × Suppose that ( , ) ( , ) ( , )F A G B J A B∨ = × where ( ), ,a b A B∀ ∈ ×
{ }( ) ( )max
( , ) ( ) ( ) : :
( ), ( )
i
F a G b
u
J a b F a G b u U i I
u uµ µ
    = ∪ = ∈ ∈ 
    
Since ( )( , ) ( , ) ( , ) ( , ) ( , )F A G B H C J A B H C∨ ∨ = × ∨ , we suppose that ( , ) ( , ) ( ,( ) )J A B H C O A B C× ∨ = × ×
where
( ) ( )
( , , )
, , , ( , , ) ( , ) ( ) : :
( )
i
O a b c
u
a b c A B C A B C O a b c J a b H c u U i I
uµ
   
∀ ∈ × × = × × = ∪ = ∈ ∈      
{ } { }{ }
{ }
( , , ) ( , ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( , , )
max max max
max
( ) ( ), ( ) ( ), ( ) , ( )
( ), ( ), ( ) ( )
O a b c J a b H c F e G b H c
F e G b H c K a b c
where u u u u u u
u u u u
µ µ µ µ µ µ
µ µ µ µ
= =
= =
Consequently, K and O are the same operators. Thus
International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015
43
( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ).F A G B H C F A G B H C∨ ∨ = ∨ ∨
4. An Application Of Fuzzy Soft Multi Set Theory In Information
System
In this section we define some basic supporting tools in information system and also application
of fuzzy soft multi sets in information system are presented and discussed.
4.1. Definition
A fuzzy multi-valued information system is a quadruple ( ), , ,systemInf X A f V= where X is
a non empty finite set of objects, A is a non empty finite set of attribute, a
a A
V V
∈
= ∪ , where V is
the domain (a fuzzy set,) set of attribute, which has multi value and :f X A V× → is a total
function such that ( ), af x a V∈ for every ( ), .x a X A∈ ×
4.1. Proposition
If ( ),F A is a fuzzy soft multi set over universe U, then ( ),F A is a fuzzy multi-valued
information system.
Proof. Let { }:iU i I∈ be a collection of universes such that i I iU φ∈ =I and let { }:iE i I∈
be a collection of sets of parameters. Let ( )i I iU IFS U∈= ∏ where ( )iIFS U denotes the set of
all fuzzy subsets of iU , ii I UE E∈= ∏ and A E⊆ . Let ( ),F A be an fuzzy soft multi set over
U and i
i I
X U
∈
= ∪ . We define a mapping f where :f X A V× → , defined as
( ) ( ) ( ), / F a
f x a x xµ= .
Hence a
a A
V V
∈
= ∪ where aV is the set of all counts of in ( )F a and ∪ represent the classical set
union. Then the fuzzy multi-valued information system ( ), , ,X A f V represents the fuzzy soft
multi set ( ),F A .
4.1. Application in information system
Let us consider three universes { }1 1 2 3 4 5, , , ,U h h h h h= , { }2 1 2 3 4, , ,U c c c c= and
{ }3 1 2 3, ,U v v v= be the sets of “houses,” “cars,” and “hotels”, respectively. Suppose Mr. X has a
budget to buy a house, a car and rent a venue to hold a wedding celebration. Let us consider a
intuitionistic fuzzy soft multi set (F, A) which describes “houses,” “cars,” and “hotels” that Mr. X
is considering for accommodation purchase, transportation purchase, and a venue to hold a
International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015
44
wedding celebration, respectively. Let { }1 2 3
, ,U U UE E E be a collection of sets of decision
parameters related to the above universes, where
{ }
{ }
{ }
1 1 1 1
2 2 2 2
3 3 3 3
,1 ,2 ,3
,1 ,2 ,3
,1 ,2 ,3
expensive, cheap, wooden
beautiful, cheap, sporty ,
expensive, model, beautiful .
U U U U
U U U U
U U U U
E e e e
E e e e
E e e e
= = = =
= = = =
= = = =
Let ( )3
1i iU FS U== ∏ , 3
1 ii UE E== ∏ and A E⊆ , such that
{
}
1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3
1 ,1 ,1 ,1 2 ,1 ,2 ,1 3 ,2 ,3 ,1
4 ,3 ,3 ,1 5 ,1 ,1 ,2 6 ,1 ,2 ,2
( , , ), ( , , ), ( , , ),
( , , ), ( , , ), ( , , ) .
U U U U U U U U U
U U U U U U U U U
A a e e e a e e e a e e e
a e e e a e e e a e e e
= = = =
= = =
Suppose Mr. X wants to choose objects from the sets of given objects with respect to the sets of
choice parameters. Let
( ) { } { } { }( )
( ) { } { } { }( )
( ) { }
1 1 2 3 4 5 1 2 3 4 1 2 3
2 1 2 3 4 5 1 2 3 4 1 2 3
3 1 2 3 4 5 1 2
/ 0.2, / 0.4, / 0, / 0.4, / 0 , / 0.8, / 0.1, / 0, /1 , / 0.8, / 0.7, / 0 ,
/ 0.3, / 0.5, / 0, / 0.4, /1 , / 0.9, / 0.6, /1, / 0 , / 0.6, / 0.6, / 0 ,
/ 0.5, / 0.7, /1, / 0.4, / 0 , / 0.6,
F a h h h h h c c c c v v v
F a h h h h h c c c c v v v
F a h h h h h c c
=
=
= { } { }( )
( ) { } { } { }( )
( ) { } { } { }( )
( )
3 4 1 2 3
4 1 2 3 4 5 1 2 3 4 1 2 3
5 1 2 3 4 5 1 2 3 4 1 2 3
6 1 2
/ 0.1, / 0, /1 , / 0, / 0.7, / 0.7 ,
/ 0.4, / 0.5, / 0.1, / 0, /1 , / 0.8, / 0, / 0.8, /1 , /1, / 0.7, / 0 ,
/ 0.7, / 0.5, /1, / 0.4, /1 , / 0, / 0.1, / 0.7, /1 , /1, / 0.8, / 0 ,
/ 0.6, /
c c v v v
F a h h h h h c c c c v v v
F a h h h h h c c c c v v v
F a h h
=
=
= { } { } { }( )3 4 5 1 2 3 4 1 2 30.4, / 0.8, /1, / 0.1 , / 0, / 0.1, /1, /1 , /1, / 0, /1 ,h h h c c c c v v v
Then the fuzzy soft multi set ( ),F A defined above describes the conditions of some “house”,
“car” and “hotel” in a state. Then the quadruple ( ), , ,X A f V corresponding to the fuzzy soft
multi set given above is a fuzzy multi-valued information system.
Where
3
1
i
i
X U
=
= ∪ and A is the set of parameters in the fuzzy soft multi set and
{ }
{ }
1
2
3
1 2 3 4 5 1 2 3 4 1 2 3
1 2 3 4 5 1 2 3 4 1 2 3
1 2 3 4 5 1 2
/ 0.2, / 0.4, / 0, / 0.4, / 0, / 0.8, / 0.1, / 0, /1, / 0.8, / 0.7, / 0 ,
/ 0.3, / 0.5, / 0, / 0.4, /1, / 0.9, / 0.6, /1, / 0, / 0.6, / 0.6, / 0 ,
/ 0.5, / 0.7, /1, / 0.4, / 0, / 0.6,
a
a
a
V h h h h h c c c c v v v
V h h h h h c c c c v v v
V h h h h h c c
=
=
= { }
{ }
{ }
4
5
6
3 4 1 2 3
1 2 3 4 5 1 2 3 4 1 2 3
1 2 3 4 5 1 2 3 4 1 2 3
1 2
/ 0.1, / 0, /1, / 0, / 0.7, / 0.7 ,
/ 0.4, / 0.5, / 0.1, / 0, /1, / 0.8, / 0, / 0.8, /1, /1, / 0.7, / 0 ,
/ 0.7, / 0.5, /1, / 0.4, /1, / 0, / 0.1, / 0.7, /1, /1, / 0.8, / 0 ,
/ 0.6, /
a
a
a
c c v v v
V h h h h h c c c c v v v
V h h h h h c c c c v v v
V h h
=
=
= { }3 4 5 1 2 3 4 1 2 30.4, / 0.8, /1, / 0.1, / 0, / 0.1, /1, /1, /1, / 0, /1h h h c c c c v v v
,
International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015
45
For the pair ( )1 1,h a we have ( )1 1,f h a = 0.2, for ( )2 1,h a , we have ( )2 1,f h a = 0.4. Continuing
in this way we obtain the values of other pairs. Therefore, according to the result above, it is seen
that fuzzy soft multi sets are fuzzy soft multi-valued information systems. Nevertheless, it is
obvious that fuzzy soft multi-valued information systems are not necessarily fuzzy soft multi sets.
We can construct an information table representing fuzzy soft multi set ( ),F A defined above as
follows.
4.1. An Information Table
Table 2. An information table
X a1 a2 a3 a4 a5 a6
h1
h2
h3
h4
h5
0.2
0.4
0
0.4
0
0.3
0.5
0
0.4
1
0.5
0.7
1
0.4
0
0.4
0.5
0.1
0
1
0.7
0.5
1
0.4
1
0.6
0.4
0.8
1
0.1
c1
c2
c3
c4
0.8
0.1
0
1
0.9
0.6
1
0
0.6
0.1
0
1
0.8
0
0.8
1
0
0.1
0.7
1
0
0.1
1
1
v1
v2
v3
0.8
0.7
0
0.6
0.6
0
0
0.7
0.7
1
0.7
0
1
0.8
0
1
0
1
5. Conclusion
The theory of soft set, fuzzy soft set and multi set are vital mathematical tools used in handling
uncertainties about vague concepts. In this paper, we have introduced the notion of fuzzy multi-
valued information system in fuzzy soft multi set theory. Here we shall present the application of
fuzzy soft multi set in information system and show that every fuzzy soft multi set is a fuzzy
multi valued information system.
References
[1] K.Alhazaymeh & N. Hassan, (2014) “Vague Soft Multiset Theory”, Int. J. Pure and Applied Math.,
Vol. 93, pp511-523.
[2] M.I.Ali, F. Feng, X. Liu, W.K. Minc & M. Shabir, (2009) “On some new operations in soft set
theory”, Comp. Math. Appl., vol. 57, pp1547-1553.
[3] S.Alkhazaleh & A.R. Salleh, (2012) “Fuzzy Soft Multi sets Theory”, Hindawi Publishing
Corporation, Abstract and Applied Analysis, Article ID 350603, 20 pages, doi: 10.1155/2012/350603.
[4] S.Alkhazaleh, A.R. Salleh & N. Hassan, (2011) Soft Multi sets Theory, Appl. Math. Sci., Vol. 5,
pp3561– 3573.
[5] K.V Babitha & S.J. John, (2013) “On Soft Multi sets”, Ann. Fuzzy Math. Inform., Vol. 5 pp35-44.
[6] T. Herewan & M.M. Deris, (2011) “A soft set approach for association rules mining”, Knowl.-Based
Syst. Vol. 24, pp186-195.
[7] A.M. Ibrahim & H.M. Balami, (2013) “Application of soft multiset in decision making problems”, J.
Nig. Ass. of mathematical physics, Vol. 25, pp307- 311.
[8] H.M. Balami & A. M. Ibrahim, (2013) “Soft Multiset and its Application in Information System”,
International Journal of scientific research and management, Vol. 1, pp471-482.
[9] P.K. Maji, R. Biswas & A.R. Roy, (2001) “Fuzzy soft sets”, J. Fuzzy Math., Vol. 9, pp589-602.
International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015
46
[10] P.K. Maji, R. Biswas & A.R. Roy, (2003) “Soft set theory”, Comp. Math. Appl., Vol. 45 pp555-562.
[11] P.K. Maji, R. Biswas & A.R. Roy, (2002) “An application of soft sets in a decision making problem”,
Comput. Math. Appl., Vol. 44, pp1077-1083.
[12] D.Molodtsov, (1999) “Soft set theory-first results”, Comp. Math. Appl., Vol. 37, pp19-31.
[13] A.Mukherjee & A.K. Das, (2015) “Application of fuzzy soft multi sets in decision making problems”,
Smart Innovation Systems and Technologies, Springer Verlag, (Accepted).
[14] A.Mukherjee & A.K. Das, (2015) “Some results on fuzzy soft multi sets. Int. J. Cybernetics &
Informatics. Vol. 4, pp 51-65.
[15] A.Mukherjee & A.K. Das, (2013) “Topological structure formed by fuzzy soft multisets”, Rev. Bull.
Cal.Math.Soc., Vol. 21, No.2, pp193-212.
[16] A.Mukherjee & A.K. Das, (2014) “Topological structure formed by soft multi sets and soft multi
compact space”, Ann. Fuzzy Math. Inform. Vol. 7, pp919-933.
[17] D.Tokat & I. Osmanoglu, (2011) “Soft multi set and soft multi topology”, Nevsehir Universitesi Fen
Bilimleri Enstitusu Dergisi Cilt., Vol. 2, pp109-118.
[18] L.A. Zadeh, (1965) “Fuzzy sets”, Inform. Control., Vol. 8, pp338-353.

More Related Content

PDF
On Fuzzy Soft Multi Set and Its Application in Information Systems
PDF
Some results on fuzzy soft multi sets
PDF
A fusion of soft expert set and matrix models
PDF
A fusion of soft expert set and matrix models
PDF
Exponential pareto distribution
PDF
Heuristic Algorithm for Finding Sensitivity Analysis in Interval Solid Transp...
PDF
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
PDF
INDUCTIVE LEARNING OF COMPLEX FUZZY RELATION
On Fuzzy Soft Multi Set and Its Application in Information Systems
Some results on fuzzy soft multi sets
A fusion of soft expert set and matrix models
A fusion of soft expert set and matrix models
Exponential pareto distribution
Heuristic Algorithm for Finding Sensitivity Analysis in Interval Solid Transp...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
INDUCTIVE LEARNING OF COMPLEX FUZZY RELATION

What's hot (15)

PDF
Neutrosophic Soft Topological Spaces on New Operations
PDF
Fixed point and common fixed point theorems in complete metric spaces
PDF
Results from set-operations on Fuzzy soft sets
PDF
Fixed point theorems for random variables in complete metric spaces
PDF
Paper id 71201927
PDF
An approach to decrease dimensions of drift
PDF
Nl2422102215
PDF
Partial ordering in soft set context
PDF
The numerical solution of helmholtz equation via multivariate padé approximation
PDF
Numerical solution of fuzzy differential equations by Milne’s predictor-corre...
PDF
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
PDF
On 1 d fractional supersymmetric theory
PDF
BazzucchiCampolmi
PDF
On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...
PDF
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
Neutrosophic Soft Topological Spaces on New Operations
Fixed point and common fixed point theorems in complete metric spaces
Results from set-operations on Fuzzy soft sets
Fixed point theorems for random variables in complete metric spaces
Paper id 71201927
An approach to decrease dimensions of drift
Nl2422102215
Partial ordering in soft set context
The numerical solution of helmholtz equation via multivariate padé approximation
Numerical solution of fuzzy differential equations by Milne’s predictor-corre...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
On 1 d fractional supersymmetric theory
BazzucchiCampolmi
On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
Ad

Similar to On Fuzzy Soft Multi Set and Its Application in Information Systems (20)

PDF
On Fuzzy Soft Multi Set and Its Application in Information Systems
PDF
On Fuzzy Soft Multi Set and Its Application in Information Systems
PDF
PROBABILISTIC INTERPRETATION OF COMPLEX FUZZY SET
PDF
Fuzzy hypersoft sets and its weightage operator for decision making
PDF
International Journal of Computer Science, Engineering and Information Techno...
PDF
Generalized Neutrosophic Soft Set
PDF
INDUCTIVE LEARNING OF COMPLEX FUZZY RELATION
PDF
hhjhujjijijjjkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
A survey on different definitions of soft points: limitations, comparisons and...
PDF
A common random fixed point theorem for rational inequality in hilbert space
PDF
Neutrosophic soft matrices and its application in medical diagnosis
PDF
An Application of Interval Valued Fuzzy Soft Matrix In Medical Diagnosis
PDF
A Counterexample to the Forward Recursion in Fuzzy Critical Path Analysis Und...
PDF
A COUNTEREXAMPLE TO THE FORWARD RECURSION IN FUZZY CRITICAL PATH ANALYSIS UND...
PDF
Fundamentals of Parameterised Covering Approximation Space
PDF
Multivariate high-order-fuzzy-time-series-forecasting-for-car-road-accidents
PDF
International Journal of Soft Computing, Mathematics and Control (IJSCMC)
PDF
International Journal of Soft Computing, Mathematics and Control (IJSCMC)
PDF
International Journal of Soft Computing, Mathematics and Control (IJSCMC)
On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems
PROBABILISTIC INTERPRETATION OF COMPLEX FUZZY SET
Fuzzy hypersoft sets and its weightage operator for decision making
International Journal of Computer Science, Engineering and Information Techno...
Generalized Neutrosophic Soft Set
INDUCTIVE LEARNING OF COMPLEX FUZZY RELATION
hhjhujjijijjjkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
A survey on different definitions of soft points: limitations, comparisons and...
A common random fixed point theorem for rational inequality in hilbert space
Neutrosophic soft matrices and its application in medical diagnosis
An Application of Interval Valued Fuzzy Soft Matrix In Medical Diagnosis
A Counterexample to the Forward Recursion in Fuzzy Critical Path Analysis Und...
A COUNTEREXAMPLE TO THE FORWARD RECURSION IN FUZZY CRITICAL PATH ANALYSIS UND...
Fundamentals of Parameterised Covering Approximation Space
Multivariate high-order-fuzzy-time-series-forecasting-for-car-road-accidents
International Journal of Soft Computing, Mathematics and Control (IJSCMC)
International Journal of Soft Computing, Mathematics and Control (IJSCMC)
International Journal of Soft Computing, Mathematics and Control (IJSCMC)
Ad

More from ijcax (20)

PDF
On Fuzzy Soft Multi Set And Its Application In Information Systems
PDF
Developing Product Configurator Tool Using Cads’ API With the Help of Paramet...
PDF
The Study Of Cuckoo Optimization Algorithm For Production Planning Problem
PDF
Blind Aid : Travel Aid for Blind - IJCAx
PDF
Data Mining Application in Advertisement Management of Higher Educational Ins...
PDF
Survey on Content Based Image Retrieval - ijcax
PDF
Cell Charge Approximation for Accelerating Molecular Simulation on CUDA-Enabl...
PDF
CFP : 5th International Conference on Advances in Computing & Information Tec...
PDF
Call for Papers - 6th International Conference on Natural Language Processing...
PDF
On Decreasing of Mismatch-Induced Stress During Growth of Films During Magnet...
PDF
On Decreasing of Mismatch-Induced Stress During Growth of Films During Magnet...
PDF
On Increasing of an Integration Rate of Bipolar Heterotransistors in the Fram...
PDF
On Decreasing of Mismatch-Induced Stress During Growth of Films During Magnet...
PDF
On Increasing of an Integration Rate of Bipolar Heterotransistors in the Fram...
PDF
Call for Papers - 2nd International Conference on AI & Civil Engineering (AIC...
PDF
NEW ONTOLOGY RETRIEVAL IMAGE METHOD IN 5K COREL IMAGES
PDF
THE STUDY OF CUCKOO OPTIMIZATION ALGORITHM FOR PRODUCTION PLANNING PROBLEM
PDF
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
PDF
PREDICTING ACADEMIC MAJOR OF STUDENTS USING BAYESIAN NETWORKS TO THE CASE OF ...
PDF
A Multi Criteria Decision Making Based Approach for Semantic Image Annotation
On Fuzzy Soft Multi Set And Its Application In Information Systems
Developing Product Configurator Tool Using Cads’ API With the Help of Paramet...
The Study Of Cuckoo Optimization Algorithm For Production Planning Problem
Blind Aid : Travel Aid for Blind - IJCAx
Data Mining Application in Advertisement Management of Higher Educational Ins...
Survey on Content Based Image Retrieval - ijcax
Cell Charge Approximation for Accelerating Molecular Simulation on CUDA-Enabl...
CFP : 5th International Conference on Advances in Computing & Information Tec...
Call for Papers - 6th International Conference on Natural Language Processing...
On Decreasing of Mismatch-Induced Stress During Growth of Films During Magnet...
On Decreasing of Mismatch-Induced Stress During Growth of Films During Magnet...
On Increasing of an Integration Rate of Bipolar Heterotransistors in the Fram...
On Decreasing of Mismatch-Induced Stress During Growth of Films During Magnet...
On Increasing of an Integration Rate of Bipolar Heterotransistors in the Fram...
Call for Papers - 2nd International Conference on AI & Civil Engineering (AIC...
NEW ONTOLOGY RETRIEVAL IMAGE METHOD IN 5K COREL IMAGES
THE STUDY OF CUCKOO OPTIMIZATION ALGORITHM FOR PRODUCTION PLANNING PROBLEM
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
PREDICTING ACADEMIC MAJOR OF STUDENTS USING BAYESIAN NETWORKS TO THE CASE OF ...
A Multi Criteria Decision Making Based Approach for Semantic Image Annotation

Recently uploaded (20)

PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
Pre independence Education in Inndia.pdf
PPTX
Cell Structure & Organelles in detailed.
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Complications of Minimal Access Surgery at WLH
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
Institutional Correction lecture only . . .
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
Pharma ospi slides which help in ospi learning
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Computing-Curriculum for Schools in Ghana
PDF
Microbial disease of the cardiovascular and lymphatic systems
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Pre independence Education in Inndia.pdf
Cell Structure & Organelles in detailed.
PPH.pptx obstetrics and gynecology in nursing
Microbial diseases, their pathogenesis and prophylaxis
2.FourierTransform-ShortQuestionswithAnswers.pdf
STATICS OF THE RIGID BODIES Hibbelers.pdf
Complications of Minimal Access Surgery at WLH
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
TR - Agricultural Crops Production NC III.pdf
Institutional Correction lecture only . . .
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Pharma ospi slides which help in ospi learning
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
human mycosis Human fungal infections are called human mycosis..pptx
VCE English Exam - Section C Student Revision Booklet
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Computing-Curriculum for Schools in Ghana
Microbial disease of the cardiovascular and lymphatic systems

On Fuzzy Soft Multi Set and Its Application in Information Systems

  • 1. International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015 DOI:10.5121/ijcax.2015.2303 29 On Fuzzy Soft Multi Set and Its Application in Information Systems Anjan Mukherjee1 and Ajoy Kanti Das2 1 Department of Mathematics,Tripura University, Agartala-799022,Tripura, India 2 Department of Mathematics, ICV-College, Belonia -799155, Tripura, India ABSTRACT Research on information and communication technologies have been developed rapidly since it can be applied easily to several areas like computer science, medical science, economics, environments, engineering, among other. Applications of soft set theory, especially in information systems have been found paramount importance. Recently, Mukherjee and Das defined some new operations in fuzzy soft multi set theory and show that the De-Morgan’s type of results hold in fuzzy soft multi set theory with respect to these newly defined operations. In this paper, we extend their work and study some more basic properties of their defined operations. Also, we define some basic supporting tools in information system also application of fuzzy soft multi sets in information system are presented and discussed. Here we define the notion of fuzzy multi-valued information system in fuzzy soft multi set theory and show that every fuzzy soft multi set is a fuzzy multi valued information system. KEYWORDS Soft set, fuzzy set, soft multi set, fuzzy soft multi set, information system. 1. INTRODUCTION In recent years vague concepts have been used in different areas such as information and communication technologies, medical applications, pharmacology, economics and engineering since; these kinds of problems have their own uncertainties. There are many mathematical tools for dealing with uncertainties; some of them are fuzzy set theory [18] and soft set theory [12]. In soft set theory there is no limited condition to the description of objects; so researchers can choose the form of parameters they need, which greatly simplifies the decision making process and make the process more efficient in the absence of partial information. Although many mathematical tools are available for modelling uncertainties such as probability theory, fuzzy set theory, rough set theory, interval valued mathematics etc, but there are inherent difficulties associated with each of these techniques. Soft set theory is standing in a unique way in the sense that it is free from the above difficulties. Soft set theory has a rich potential for application in many directions, some of which are reported by Molodtsov [12] in his work. Later on Maji et al.[10, 11] presented some new definitions on soft sets and discussed in details the application of soft set in decision making problem. Based on the analysis of several operations on soft sets introduced in [12], Ali et al. [2] presented some new algebraic operations for soft sets and proved that certain De Morgan’s law holds in soft set theory with respect to these new definitions. Combining soft sets [12] with fuzzy sets [18], Maji et al. [9] defined fuzzy soft sets, which are rich potential for solving decision making problems. Alkhazaleh and others [[1], [4], [5], [7], [16], [17]] as a generalization of Molodtsov’s soft set, presented the definition of a soft multi set
  • 2. International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015 30 and its basic operations such as complement, union, and intersection etc. In 2012 Alkhazaleh and Salleh [3] introduced the concept of fuzzy soft multi set theory and studied the application of these sets and recently, Mukherjee and Das[14] defined some new algebraic operations for fuzzy soft multi sets and proved that certain De Morgan's law holds in fuzzy soft multi set theory with respect to these new definitions. They also presented an application of fuzzy soft multi set based decision making problems in [13]. Molodtsov [12] presented some applications of soft set theory in several directions, which includes: the study of smoothness of functions, game theory, operations research, Riemann- integration, probability, theory of measurement, etc. It has been shown that there is compact connection between soft sets and information system. From the concept and the example of fuzzy soft multisets given in the section 4.3, it can be seen that a fuzzy soft multi set is a multi-valued information system. In this paper we define the notion of fuzzy multi-valued information system in fuzzy soft multi set theory and application of fuzzy soft multi sets in information system were presented and discussed. 2. PRELIMINARY NOTES In this section, we recall some basic notions in soft set theory and fuzzy soft multi set theory. Let U be an initial universe and E be a set of parameters. Let P(U) denotes the power set of U and A⊆E. A pair (F, A) is called a soft set over U, where F is a mapping given by F: A→ P(U). In other words, soft set over U is a parameterized family of subsets of the universe U. 2.1. Definition [12] Let { }:iU i I∈ be a collection of universes such that i I iU φ∈ =I and let { }:iUE i I∈ be a collection of sets of parameters. Let ( )i I iU FS U∈= ∏ where ( )iFS U denotes the set of all fuzzy subsets of iU , ii I UE E∈= ∏ and A E⊆ . A pair (F, A) is called a fuzzy soft multi set over U, where :F A U→ is a mapping given by ,e A∀ ∈ ( ) ( ) : : ( ) i F e u F e u U i I uµ     = ∈ ∈       For illustration, we consider the following example. 2.2. Example Let us consider three universes { }1 1 2 3 4 5, , , ,U h h h h h= , { }2 1 2 3 4, , ,U c c c c= and { }3 1 2 3, ,U v v v= be the sets of “houses,” “cars,” and “hotels”, respectively. Suppose Mr. X has a budget to buy a house, a car and rent a venue to hold a wedding celebration. Let us consider a intuitionistic fuzzy soft multi set (F, A) which describes “houses,” “cars,” and “hotels” that Mr. X is considering for accommodation purchase, transportation purchase, and a venue to hold a wedding celebration, respectively. Let { }1 2 3 , ,U U UE E E be a collection of sets of decision parameters related to the above universes, where { }1 1 1 1,1 ,2 ,3expensive, cheap, woodenU U U UE e e e= = = =
  • 3. International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015 31 { }2 2 2 2,1 ,2 ,3beautiful, cheap, sporty ,U U U UE e e e= = = = { }3 3 3 3,1 ,2 ,3expensive, model, beautiful .U U U UE e e e= = = = Let ( )3 1i iU FS U== ∏ , 3 1 ii UE E== ∏ and A E⊆ , such that { }1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 31 ,1 ,1 ,1 2 ,1 ,2 ,1 3 ,2 ,3 ,1 4 ,3 ,3 ,1 5 ,1 ,1 ,2 6 ,1 ,2 ,2( , , ), ( , , ), ( , , ), ( , , ), ( , , ), ( , , ) .U U U U U U U U U U U U U U U U U UA a e e e a e e e a e e e a e e e a e e e a e e e= = = = = = = Suppose Mr. X wants to choose objects from the sets of given objects with respect to the sets of choice parameters. Then fuzzy soft multi set (F, A) can be represent as in Table 1. Table 1. The tabular representation of the fuzzy soft multi-set (F, A) Ui a1 a2 a3 a4 a5 a6 U1 h1 h2 h3 h4 h5 0.8 0.4 0.9 0.4 0.1 0.6 0.5 0 0.4 1 0.5 0.7 1 0.4 0.8 0.4 0.5 0.1 0 0.8 0.7 0.5 1 0.4 1 0.6 0.4 0.8 1 0.1 U2 c1 c2 c3 c4 0.8 1 0.8 1 0.9 0.6 1 0 0.6 0.1 0 1 0.8 0 0.8 1 0 0.1 0.7 1 0.7 0.1 0.9 0.1 U3 v1 v2 v3 0.8 0.7 0.6 0.6 0.6 0 0 0.7 0.7 1 0.7 0 1 0.8 0 0.1 0.9 0.1 2.4. Definition [14] The restricted union of two fuzzy soft multi sets (F, A) and (G, B) over U is a fuzzy soft multi set (H,C)whereC A B= ∩ and ,e C∀ ∈ ( )( ) ( ), ( )H e F e G e= U { }( ) ( ) : : max ( ), ( ) i F e G e u u U i I u uµ µ     = ∈ ∈       and is written as ( , ) ( , ) ( , ).RF A G B H C=∪% 2.5 Definition [14] The extended union of two fuzzy soft multi sets (F, A) and (G, B) over U is a fuzzy soft multi set (H, D), where D A B= ∪ and ,e D∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , F e if e A B H e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩U where ( )( ), ( )F e G eU { }( ) ( ) : : max ( ), ( ) i F e G e u u U i I u uµ µ     = ∈ ∈      
  • 4. International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015 32 and is written as ( , ) ( , ) ( , ).EF A G B H D=∪% 2.6 Definition [14] The restricted intersection of two intuitionistic fuzzy soft multi sets (F, A) and (G, B) over U is a fuzzy soft multi set (H, D) where D A B= ∩ and ,e D∀ ∈ ( )( ) ( ), ( )H e F e G e= I { }( ) ( ) : : min ( ), ( ) i F e G e u u U i I u uµ µ     = ∈ ∈       and is written as ( , ) ( , ) ( , ).RF A G B H D=∩% 2.7 Definition [14] The extended intersection of two fuzzy soft multi sets (F, A) and (G, B) over U is a fuzzy soft multi set (H, D), where D A B= ∪ and ,e D∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , F e if e A B H e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩I Where ( )( ), ( )F e G eI { }( ) ( ) : : min ( ), ( ) i F e G e u u U i I u uµ µ     = ∈ ∈       and is written as ( , ) ( , ) ( , ).EF A G B H D=∩% 2.8. Definition [14] If (F, A) and (G, B) be two fuzzy soft multi sets over U, then ( ) ( )" , AND , "F A G B is a fuzzy soft multi set denoted by ( ) ( ), ,F A G B∧ and is defined by ( ) ( ) ( ), , , ,F A G B H A B∧ = × where H is mapping given by H: A×B→U and ( ) { }( ) ( ) , , ( , ) : : . min ( ), ( ) i F a G b u a b A B H a b u U i I u uµ µ     ∀ ∈ × = ∈ ∈       2.9. Definition [14] If (F, A) and (G, B) be two fuzzy soft multi sets over U, then ( ) ( )" , OR , "F A G B is a fuzzy soft multi set denoted by ( ) ( ), ,F A G B∨ and is defined by ( ) ( ) ( ), , , ,F A G B K A B∨ = × where K is mapping given by K: A×B→U and ( ) { }( ) ( ) , , ( , ) : : max ( ), ( ) i F a G b u a b A B K a b u U i I u uµ µ     ∀ ∈ × = ∈ ∈       2.10. Definition [8]
  • 5. International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015 33 An information system is a 4-tuple S = (U, A, V, f ), where U = {u1, u2, u3, …., un} is a non-empty finite set of objects, A = {a1, a2, a3,…., am} is a non-empty finite set of attributes, V =∪a∈A Va, Va is the domain of attribute a, f : U × A→V is an information function, such that f (u, a) ∈ Va for every (u, a) ∈ U × A, called information(knowledge) function. 3. MAIN RESULTS Mukherjee and Das [14] defined some new operations in fuzzy soft multi set theory and show that the De Morgan’s types of results hold in fuzzy soft multi set theory with respect to these newly defined operations. In this section, we extend their work and study some more basic properties of their defined operations. 3.1. Proposition (Associative Laws) Let (F, A), (G, B) and (H, C) are three fuzzy soft multi sets over U, then we have the following properties: 1. ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )R R R RF A G B H C F A G B H C=∩ ∩ ∩ ∩% % % % 2. ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )R R R RF A G B H C F A G B H C=∪ ∪ ∪ ∪% % % % Proof. 1. Assume that ( , ) ( , ) ( , )RG B H C I D=∩% , where D B C= ∩ and ,e D∀ ∈ { }( ) ( )min ( ) ( ) ( ) : : ( ), ( ) i G e H e u I e G e H e u U i I u uµ µ     = ∩ = ∈ ∈       Since ( )( , ) ( , ) ( , ) ( , ) ( , )R R RF A G B H C F A I D=∩ ∩ ∩% % % , we suppose that ( )( , ) ( , ) ,RF A I D K M=∩% where M A D A B C= ∩ = ∩ ∩ and ,e M∀ ∈ ( ) ( ) ( ) ( ) : : ( ) i K e u K e F e I e u U i I uµ     = ∩ = ∈ ∈       { } { }{ } { }( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )min min min min( ) ( ), ( ) ( ), ( ), ( ) ( ), ( ), ( )K e F e I e F e G e H e F e G e H e where u u u u u u u u uµ µ µ µ µ µ µ µ µ= = = Suppose that ( , ) ( , ) ( , ),RF A G B J N=∩% where N A B= ∩ and ,e N∀ ∈ { }( ) ( )min ( ) ( ) ( ) : : ( ), ( ) i F e G e u J e F e G e u U i I u uµ µ     = ∩ = ∈ ∈       Since ( )( , ) ( , ) ( , ) ( , ) ( , )R R RF A G B H C J N H C=∩ ∩ ∩% % % , we suppose that ( , ) ( , ) ( , )RJ N H C O N C= ∩∩% where
  • 6. International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015 34 ( ) , ( ) ( ) ( ) : : ( ) i O e u e N C A B C O e J e H e u U i I uµ     ∀ ∈ ∩ = ∩ ∩ = ∩ = ∈ ∈       { } { }{ } { } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) min min min min ( ) ( ), ( ) ( ), ( ) , ( ) ( ), ( ), ( ) ( ) O e J e H e F e G e H e F e G e H e K e u u u u u u u u u u µ µ µ µ µ µ µ µ µ µ = = = = Consequently, K and O are the same operators. Thus ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ).R R R RF A G B H C F A G B H C=∩ ∩ ∩ ∩% % % % 2. Assume that ( , ) ( , ) ( , )RG B H C I D=∪% , where D B C= ∩ and ,e D∀ ∈ { }( ) ( )max ( ) ( ) ( ) : : ( ), ( ) i G e H e u I e G e H e u U i I u uµ µ     = ∪ = ∈ ∈       Since ( )( , ) ( , ) ( , ) ( , ) ( , )R R RF A G B H C F A I D=∪ ∪ ∪% % % , we suppose that ( )( , ) ( , ) ,RF A I D K M=∪% where M A D A B C= ∩ = ∩ ∩ and ,e M∀ ∈ ( ) ( ) ( ) ( ) : : ( ) i K e u K e F e I e u U i I uµ     = ∪ = ∈ ∈       { } { }{ } { }( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )max max max max( ) ( ), ( ) ( ), ( ), ( ) ( ), ( ), ( )K e F e I e F e G e H e F e G e H e where u u u u u u u u uµ µ µ µ µ µ µ µ µ= = = Suppose that ( , ) ( , ) ( , ),RF A G B J N=∪% where N A B= ∩ and ,e N∀ ∈ { }( ) ( )max ( ) ( ) ( ) : : ( ), ( ) i F e G e u J e F e G e u U i I u uµ µ     = ∪ = ∈ ∈       Since ( )( , ) ( , ) ( , ) ( , ) ( , )R R RF A G B H C J N H C=∪ ∪ ∪% % % , we suppose that ( , ) ( , ) ( , )RJ N H C O N C= ∩∪% where ( ) , ( ) ( ) ( ) : : ( ) i O e u e N C A B C O e J e H e u U i I uµ     ∀ ∈ ∩ = ∩ ∩ = ∪ = ∈ ∈       { } { }{ } { } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) max max max max ( ) ( ), ( ) ( ), ( ) , ( ) ( ), ( ), ( ) ( ) O e J e H e F e G e H e F e G e H e K e u u u u u u u u u u µ µ µ µ µ µ µ µ µ µ = = = = Consequently, K and O are the same operators. Thus ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ).R R R RF A G B H C F A G B H C=∪ ∪ ∪ ∪% % % %
  • 7. International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015 35 3.2. Proposition (Distributive Laws) Let (F, A), (G, B) and (H, C) are three fuzzy soft multi sets over U, then we have the following properties: ( ) ( ) ( )(1). ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )R R R R RF A G B H C F A G B F A H C=∪ ∩ ∪ ∩ ∪% % % % % ( ) ( ) ( )(2). ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )R R R R RF A G B H C F A G B F A H C=∩ ∪ ∩ ∪ ∩% % % % % Proof. (1). Assume that ( , ) ( , ) ( , )RG B H C I D=∩% , where D B C= ∩ and ,e D∀ ∈ ( ) ( ) ( )I e G e H e= ∩ = { }( ) ( )min : : ( ), ( ) i G e H e u u U i I u uµ µ     ∈ ∈       Since ( )( , ) ( , ) ( , ) ( , ) ( , )R R RF A G B H C F A I D=∪ ∩ ∪% % % , we suppose that ( )( , ) ( , ) ,RF A I D K M=∪% where M A D A B C= ∩ = ∩ ∩ and ,e M∀ ∈ ( ) ( ) ( ) ( ) : : ( ) i K e u K e F e I e u U i I uµ     = ∪ = ∈ ∈       { } { }{ } { } { }{ } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) max max min min ( ) ( ), ( ) ( ), ( ), ( ) max ( ), ( ) ,max ( ), ( ) K e F e I e F e G e H e F e G e F e H e where u u u u u u u u u u µ µ µ µ µ µ µ µ µ µ = = = Suppose that ( , ) ( , ) ( , ),RF A G B J N=∪% where N A B= ∩ and ,e N∀ ∈ { }( ) ( )max ( ) ( ) ( ) : : ( ), ( ) i F e G e u J e F e G e u U i I u uµ µ     = ∪ = ∈ ∈       Again, let ( , ) ( , ) ( , ),RF A H C S T=∪% where T A C= ∩ and ,e T∀ ∈ { }( ) ( )max ( ) ( ) ( ) : : ( ), ( ) i F e H e u S e F e H e u U i I u uµ µ     = ∪ = ∈ ∈       Since ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )R R R RF A G B F A H C J N S T=∪ ∩ ∪ ∩% % % % , we suppose that ( , ) ( , ) ( , )RJ N S T O N T= ∩∩% where ,e N T A B C∀ ∈ ∩ = ∩ ∩ ( ) ( ) ( ) ( ) : : ( ) i O e u O e J e S e u U i I uµ     = ∩ = ∈ ∈      
  • 8. International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015 36 { } { } { }{ } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) min min max max ( ) ( ), ( ) ( ), ( ) , ( ), ( ) ( ) O e J e S e F e G e F e H e K e u u u u u u u u µ µ µ µ µ µ µ µ = = = Consequently, K and O are the same operators. Thus ( ) ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )R R R R RF A G B H C F A G B F A H C=∪ ∩ ∪ ∩ ∪% % % % % (2). Assume that ( , ) ( , ) ( , )RG B H C I D=∪% , where D B C= ∩ and ,e D∀ ∈ ( ) ( ) ( )I e G e H e= ∪ { }( ) ( )max : : ( ), ( ) i G e H e u u U i I u uµ µ     = ∈ ∈       Since ( )( , ) ( , ) ( , ) ( , ) ( , )R R RF A G B H C F A I D=∩ ∪ ∩% % % , we suppose that ( )( , ) ( , ) ,RF A I D K M=∩% where M A D A B C= ∩ = ∩ ∩ and ,e M∀ ∈ ( ) ( ) ( ) ( ) : : ( ) i K e u K e F e I e u U i I uµ     = ∩ = ∈ ∈       { } { }{ } { } { }{ } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) min min max max ( ) ( ), ( ) ( ), ( ), ( ) min ( ), ( ) ,min ( ), ( ) K e F e I e F e G e H e F e G e F e H e where u u u u u u u u u u µ µ µ µ µ µ µ µ µ µ = = = Suppose that ( , ) ( , ) ( , ),RF A G B J N=∩% where N A B= ∩ and ,e N∀ ∈ { }( ) ( )min ( ) ( ) ( ) : : ( ), ( ) i F e G e u J e F e G e u U i I u uµ µ     = ∩ = ∈ ∈       Again, let ( , ) ( , ) ( , ),RF A H C S T=∩% where T A C= ∩ and ,e T∀ ∈ { }( ) ( )min ( ) ( ) ( ) : : ( ), ( ) i F e H e u S e F e H e u U i I u uµ µ     = ∩ = ∈ ∈       Since ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )R R R RF A G B F A H C J N S T=∩ ∪ ∩ ∪% % % % , we suppose that ( , ) ( , ) ( , )RJ N S T O N T= ∩∪% where ,e N T A B C∀ ∈ ∩ = ∩ ∩ ( ) ( ) ( ) ( ) : : ( ) i O e u O e J e S e u U i I uµ     = ∪ = ∈ ∈      
  • 9. International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015 37 { } { } { }{ } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) max max min min ( ) ( ), ( ) ( ), ( ) , ( ), ( ) ( ) O e J e S e F e G e F e H e K e u u u u u u u u µ µ µ µ µ µ µ µ = = = Consequently, K and O are the same operators. Thus ( ) ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )R R R R RF A G B H C F A G B F A H C=∩ ∪ ∩ ∪ ∩% % % % % 3.3. Proposition (Associative Laws) Let (F, A), (G, B) and (H, C) are three fuzzy soft multi sets over U, then we have the following properties: 1. ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E EF A G B H C F A G B H C=∪ ∪ ∪ ∪% % % % 2. ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E EF A G B H C F A G B H C=∩ ∩ ∩ ∩% % % % Proof. 1. Suppose that ( , ) ( , ) ( , )EG B H C I D=∪% , where D B C= ∪ and ,e D∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , G e if e B C I e H e if e C B G e H e if e B C  ∈ −  = ∈ −  ∈ ∩U Since ( )( , ) ( , ) ( , ) ( , ) ( , )E E EF A G B H C F A I D=∪ ∪ ∪% % % , we suppose that ( )( , ) ( , ) ,EF A I D J M=∪% where M A D A B C= ∪ = ∪ ∪ and ,e M∀ ∈ ( ) ( ) ( ) ( ) ( ), ( ), ( ), ( ) ( ), ( ) , , ( ), ( ) , , ( ), ( ) , , ( ), ( ), ( ) , G e if e B C A H e if e C B A F e if e A B C J e G e H e if e B C A F e H e if e A C B G e F e if e A B C F e G e H e if e A B ∈ − − ∈ − − ∈ − − = ∈ ∩ − ∈ ∩ − ∈ ∩ − ∈ ∩ ∩ U U U U ,C              Assume that ( , ) ( , ) ( , )EF A G B K S=∪% , where S A B= ∪ and ,e S∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , F e if e A B K e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩U Since ( )( , ) ( , ) ( , ) ( , ) ( , )E E EF A G B H C K S H C=∪ ∪ ∪% % % , we suppose that ( )( , ) ( , ) ,EK S H C L T=∪% where T S C A B C= ∪ = ∪ ∪ and ,e T∀ ∈
  • 10. International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015 38 ( ) ( ) ( ) ( ) ( ), ( ), ( ), ( ) ( ), ( ) , , ( ), ( ) , , ( ), ( ) , , ( ), ( ), ( ) , G e if e B C A H e if e C B A F e if e A B C L e G e H e if e B C A F e H e if e A C B G e F e if e A B C F e G e H e if e A B ∈ − − ∈ − − ∈ − − = ∈ ∩ − ∈ ∩ − ∈ ∩ − ∈ ∩ ∩ U U U U ,C              Therefore it is clear that M T= and , ( ) ( )e M J e L e∀ ∈ = , that is J and L are the same operators. Thus ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E EF A G B H C F A G B H C=∪ ∪ ∪ ∪% % % % . 2. Suppose that ( , ) ( , ) ( , )EG B H C I D=∩% , where D B C= ∪ and ,e D∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , G e if e B C I e H e if e C B G e H e if e B C  ∈ −  = ∈ −  ∈ ∩I Since ( )( , ) ( , ) ( , ) ( , ) ( , )E E EF A G B H C F A I D=∩ ∩ ∩% % % , we suppose that ( )( , ) ( , ) ,EF A I D J M=∩% where M A D A B C= ∪ = ∪ ∪ and ,e M∀ ∈ ( ) ( ) ( ) ( ) ( ), ( ), ( ), ( ) ( ), ( ) , , ( ), ( ) , , ( ), ( ) , , ( ), ( ), ( ) , G e if e B C A H e if e C B A F e if e A B C J e G e H e if e B C A F e H e if e A C B G e F e if e A B C F e G e H e if e A B ∈ − − ∈ − − ∈ − − = ∈ ∩ − ∈ ∩ − ∈ ∩ − ∈ ∩ ∩ I I I I ,C              Assume that ( , ) ( , ) ( , )EF A G B K S=∩% , where S A B= ∪ and ,e S∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , F e if e A B K e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩I Since ( )( , ) ( , ) ( , ) ( , ) ( , )E E EF A G B H C K S H C=∩ ∩ ∩% % % , we suppose that ( )( , ) ( , ) ,EK S H C L T=∩% where T S C A B C= ∪ = ∪ ∪ and ,e T∀ ∈
  • 11. International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015 39 ( ) ( ) ( ) ( ) ( ), ( ), ( ), ( ) ( ), ( ) , , ( ), ( ) , , ( ), ( ) , , ( ), ( ), ( ) , G e if e B C A H e if e C B A F e if e A B C L e G e H e if e B C A F e H e if e A C B G e F e if e A B C F e G e H e if e A B ∈ − − ∈ − − ∈ − − = ∈ ∩ − ∈ ∩ − ∈ ∩ − ∈ ∩ ∩ I I I I ,C              Therefore it is clear that M T= and , ( ) ( )e M J e L e∀ ∈ = , that is J and L are the same operators. Thus ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E EF A G B H C F A G B H C=∩ ∩ ∩ ∩% % % % . 3.4. Proposition (Distributive Laws) Let (F, A), (G, B) and (H, C) are three fuzzy soft multi sets over U, then we have the following properties: ( ) ( ) ( )(1). ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E E EF A G B H C F A G B F A H C=∩ ∪ ∩ ∪ ∩% % % % % ( ) ( ) ( )(2). ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E E EF A G B H C F A G B F A H C=∪ ∩ ∪ ∩ ∪% % % % % Proof. (1). Suppose that ( , ) ( , ) ( , )EG B H C I D=∪% , where D B C= ∪ and ,e D∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , G e if e B C I e H e if e C B G e H e if e B C  ∈ −  = ∈ −  ∈ ∩U Since ( )( , ) ( , ) ( , ) ( , ) ( , )E E EF A G B H C F A I D=∩ ∪ ∩% % % , we suppose that ( )( , ) ( , ) ,EF A I D J M=∩% where M A D A B C= ∪ = ∪ ∪ and ,e M∀ ∈ ( ) ( ) ( ) ( )( ) ( ), ( ), ( ), ( ) ( ), ( ) , , ( ), ( ) , , ( ), ( ) , , ( ), ( ), ( ) , G e if e B C A H e if e C B A F e if e A B C J e G e H e if e B C A F e H e if e A C B F e G e if e A B C F e G e H e if e A B ∈ − − ∈ − − ∈ − − = ∈ ∩ − ∈ ∩ − ∈ ∩ − ∈ ∩ U I I I U ,C             ∩ Assume that ( , ) ( , ) ( , )EF A G B K S=∩% , where S A B= ∪ and ,e S∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , F e if e A B K e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩I and ( , ) ( , ) ( , )EF A H C N T=∩% , where T A C= ∪ and ,e T∀ ∈
  • 12. International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015 40 ( ) ( ), ( ) ( ), ( ), ( ) , , F e if e A C N e H e if e C A F e H e if e A C  ∈ −  = ∈ −  ∈ ∩I Since ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E EF A G B F A H C K S N T=∩ ∪ ∩ ∪% % % % , we suppose that ( )( , ) ( , ) ,EK S N T O P=∪% where ( ) ( )P S T A B A C A B C= ∪ = ∪ ∪ ∪ = ∪ ∪ and ,e P∀ ∈ ( ) ( ) ( ) ( )( ) ( ), ( ), ( ), ( ) ( ), ( ) , , ( ), ( ) , , ( ), ( ) , , ( ), ( ), ( ) , G e if e B C A H e if e C B A F e if e A B C O e G e H e if e B C A F e H e if e A C B F e G e if e A B C F e G e H e if e A B ∈ − − ∈ − − ∈ − − = ∈ ∩ − ∈ ∩ − ∈ ∩ − ∈ ∩ U I I I U ,C             ∩ Therefore it is clear that M P= and , ( ) ( )e M J e O e∀ ∈ = , that is “J” and “O” are the same operators. Thus ( ) ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E E EF A G B H C F A G B F A H C=∩ ∪ ∩ ∪ ∩% % % % % . (2). Suppose that ( , ) ( , ) ( , )EG B H C I D=∩% , where D B C= ∪ and ,e D∀ ∈ Since ( )( , ) ( , ) ( , ) ( , ) ( , )E E EF A G B H C F A I D=∪ ∩ ∪% % % , we suppose that ( )( , ) ( , ) ,EF A I D J M=∪% where M A D A B C= ∪ = ∪ ∪ and ,e M∀ ∈ ( ) ( ) ( ) ( )( ) ( ), ( ), ( ), ( ) ( ), ( ) , , ( ), ( ) , , ( ), ( ) , , ( ), ( ), ( ) , G e if e B C A H e if e C B A F e if e A B C J e G e H e if e B C A F e H e if e A C B F e G e if e A B C F e G e H e if e A B ∈ − − ∈ − − ∈ − − = ∈ ∩ − ∈ ∩ − ∈ ∩ − ∈ ∩ I U U U I ,C             ∩ Assume that ( , ) ( , ) ( , )EF A G B K S=∪% , where S A B= ∪ and ,e S∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , F e if e A B K e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩U and ( , ) ( , ) ( , )EF A H C N T=∪% , where T A C= ∪ and ,e T∀ ∈
  • 13. International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015 41 ( ) ( ), ( ) ( ), ( ), ( ) , , F e if e A C N e H e if e C A F e H e if e A C  ∈ −  = ∈ −  ∈ ∩U Since ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E EF A G B F A H C K S N T=∪ ∩ ∪ ∩% % % % , we suppose that ( )( , ) ( , ) ,EK S N T O P=∩% where ( ) ( )P S T A B A C A B C= ∪ = ∪ ∪ ∪ = ∪ ∪ and ,e P∀ ∈ ( ) ( ) ( ) ( )( ) ( ), ( ), ( ), ( ) ( ), ( ) , , ( ), ( ) , , ( ), ( ) , , ( ), ( ), ( ) , G e if e B C A H e if e C B A F e if e A B C O e G e H e if e B C A F e H e if e A C B F e G e if e A B C F e G e H e if e A B ∈ − − ∈ − − ∈ − − = ∈ ∩ − ∈ ∩ − ∈ ∩ − ∈ ∩ I U U U I ,C             ∩ Therefore it is clear that M P= and , ( ) ( )e M J e O e∀ ∈ = , that is “J” and “O” are the same operators. Thus ( ) ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E E EF A G B H C F A G B F A H C=∪ ∩ ∪ ∩ ∪% % % % % . 3.5. Proposition (Associative Laws) Let (F, A), (G, B) and (H, C) are three fuzzy soft multi sets over U, then we have the following properties: 1. ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )F A G B H C F A G B H C∧ ∧ = ∧ ∧ 2. ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )F A G B H C F A G B H C∨ ∨ = ∨ ∨ Proof. 1. Assume that ( , ) ( , ) ( , )G B H C I B C∧ = × , where ( ), ,b c B C∀ ∈ × { }( ) ( )min ( , ) ( ) ( ) : : ( ), ( ) i G b H c u I b c G b H c u U i I u uµ µ     = ∩ = ∈ ∈       Since ( )( , ) ( , ) ( , ) ( , ) ( , )F A G B H C F A I B C∧ ∧ = ∧ × , we suppose that ( )( , ) ( , ) , ( )F A I B C K A B C∧ × = × × where ( ) ( ), , ,a b c A B C A B C∀ ∈ × × = × × ( , , ) ( , , ) ( ) ( , ) : : ( ) i K a b c u K a b c F a I b c u U i I uµ     = ∩ = ∈ ∈       { } { }{ } { } ( , , ) ( ) ( , ) ( ) ( ) ( ) ( ) ( ) ( ) min min min min ( ) ( ), ( ) ( ), ( ), ( ) ( ), ( ), ( ) K a b c F e I b c F e G b H c F e G b H c where u u u u u u u u u µ µ µ µ µ µ µ µ µ = = = We take ( , ) .a b A B∈ × Suppose that ( , ) ( , ) ( , )F A G B J A B∧ = × where ( ), ,a b A B∀ ∈ × { }( ) ( )min ( , ) ( ) ( ) : : ( ), ( ) i F a G b u J a b F a G b u U i I u uµ µ     = ∩ = ∈ ∈      
  • 14. International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015 42 Since ( )( , ) ( , ) ( , ) ( , ) ( , )F A G B H C J A B H C∧ ∧ = × ∧ , we suppose that ( , ) ( , ) ( ,( ) )J A B H C O A B C× ∧ = × × where ( ) ( ), , ,a b c A B C A B C∀ ∈ × × = × × ( , , ) ( , , ) ( , ) ( ) : : ( ) i O a b c u O a b c J a b H c u U i I uµ     = ∩ = ∈ ∈       { } { }{ } { } ( , , ) ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , , ) min min min min ( ) ( ), ( ) ( ), ( ) , ( ) ( ), ( ), ( ) ( ) O a b c J a b H c F e G b H c F e G b H c K a b c u u u u u u u u u u µ µ µ µ µ µ µ µ µ µ = = = = Consequently, K and O are the same operators. Thus ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ).F A G B H C F A G B H C∧ ∧ = ∧ ∧ 2. Assume that ( , ) ( , ) ( , )G B H C I B C∨ = × , where ( ), ,b c B C∀ ∈ × { }( ) ( )max ( , ) ( ) ( ) : : ( ), ( ) i G b H c u I b c G b H c u U i I u uµ µ     = ∪ = ∈ ∈       Since ( )( , ) ( , ) ( , ) ( , ) ( , )F A G B H C F A I B C∨ ∨ = ∨ × , we suppose that ( )( , ) ( , ) , ( )F A I B C K A B C∨ × = × × ( ) ( ) ( , , ) where , , , ( , , ) ( ) ( , ) : : ( ) i K a b c u a b c A B C A B C K a b c F a I b c u U i I uµ     ∀ ∈ × × = × × = ∪ = ∈ ∈       { } { }{ } { } ( , , ) ( ) ( , ) ( ) ( ) ( ) ( ) ( ) ( ) max max max max ( ) ( ), ( ) ( ), ( ), ( ) ( ), ( ), ( ) K a b c F e I b c F e G b H c F e G b H c where u u u u u u u u u µ µ µ µ µ µ µ µ µ = = = We take ( , ) .a b A B∈ × Suppose that ( , ) ( , ) ( , )F A G B J A B∨ = × where ( ), ,a b A B∀ ∈ × { }( ) ( )max ( , ) ( ) ( ) : : ( ), ( ) i F a G b u J a b F a G b u U i I u uµ µ     = ∪ = ∈ ∈       Since ( )( , ) ( , ) ( , ) ( , ) ( , )F A G B H C J A B H C∨ ∨ = × ∨ , we suppose that ( , ) ( , ) ( ,( ) )J A B H C O A B C× ∨ = × × where ( ) ( ) ( , , ) , , , ( , , ) ( , ) ( ) : : ( ) i O a b c u a b c A B C A B C O a b c J a b H c u U i I uµ     ∀ ∈ × × = × × = ∪ = ∈ ∈       { } { }{ } { } ( , , ) ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , , ) max max max max ( ) ( ), ( ) ( ), ( ) , ( ) ( ), ( ), ( ) ( ) O a b c J a b H c F e G b H c F e G b H c K a b c where u u u u u u u u u u µ µ µ µ µ µ µ µ µ µ = = = = Consequently, K and O are the same operators. Thus
  • 15. International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015 43 ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ).F A G B H C F A G B H C∨ ∨ = ∨ ∨ 4. An Application Of Fuzzy Soft Multi Set Theory In Information System In this section we define some basic supporting tools in information system and also application of fuzzy soft multi sets in information system are presented and discussed. 4.1. Definition A fuzzy multi-valued information system is a quadruple ( ), , ,systemInf X A f V= where X is a non empty finite set of objects, A is a non empty finite set of attribute, a a A V V ∈ = ∪ , where V is the domain (a fuzzy set,) set of attribute, which has multi value and :f X A V× → is a total function such that ( ), af x a V∈ for every ( ), .x a X A∈ × 4.1. Proposition If ( ),F A is a fuzzy soft multi set over universe U, then ( ),F A is a fuzzy multi-valued information system. Proof. Let { }:iU i I∈ be a collection of universes such that i I iU φ∈ =I and let { }:iE i I∈ be a collection of sets of parameters. Let ( )i I iU IFS U∈= ∏ where ( )iIFS U denotes the set of all fuzzy subsets of iU , ii I UE E∈= ∏ and A E⊆ . Let ( ),F A be an fuzzy soft multi set over U and i i I X U ∈ = ∪ . We define a mapping f where :f X A V× → , defined as ( ) ( ) ( ), / F a f x a x xµ= . Hence a a A V V ∈ = ∪ where aV is the set of all counts of in ( )F a and ∪ represent the classical set union. Then the fuzzy multi-valued information system ( ), , ,X A f V represents the fuzzy soft multi set ( ),F A . 4.1. Application in information system Let us consider three universes { }1 1 2 3 4 5, , , ,U h h h h h= , { }2 1 2 3 4, , ,U c c c c= and { }3 1 2 3, ,U v v v= be the sets of “houses,” “cars,” and “hotels”, respectively. Suppose Mr. X has a budget to buy a house, a car and rent a venue to hold a wedding celebration. Let us consider a intuitionistic fuzzy soft multi set (F, A) which describes “houses,” “cars,” and “hotels” that Mr. X is considering for accommodation purchase, transportation purchase, and a venue to hold a
  • 16. International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015 44 wedding celebration, respectively. Let { }1 2 3 , ,U U UE E E be a collection of sets of decision parameters related to the above universes, where { } { } { } 1 1 1 1 2 2 2 2 3 3 3 3 ,1 ,2 ,3 ,1 ,2 ,3 ,1 ,2 ,3 expensive, cheap, wooden beautiful, cheap, sporty , expensive, model, beautiful . U U U U U U U U U U U U E e e e E e e e E e e e = = = = = = = = = = = = Let ( )3 1i iU FS U== ∏ , 3 1 ii UE E== ∏ and A E⊆ , such that { } 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 ,1 ,1 ,1 2 ,1 ,2 ,1 3 ,2 ,3 ,1 4 ,3 ,3 ,1 5 ,1 ,1 ,2 6 ,1 ,2 ,2 ( , , ), ( , , ), ( , , ), ( , , ), ( , , ), ( , , ) . U U U U U U U U U U U U U U U U U U A a e e e a e e e a e e e a e e e a e e e a e e e = = = = = = = Suppose Mr. X wants to choose objects from the sets of given objects with respect to the sets of choice parameters. Let ( ) { } { } { }( ) ( ) { } { } { }( ) ( ) { } 1 1 2 3 4 5 1 2 3 4 1 2 3 2 1 2 3 4 5 1 2 3 4 1 2 3 3 1 2 3 4 5 1 2 / 0.2, / 0.4, / 0, / 0.4, / 0 , / 0.8, / 0.1, / 0, /1 , / 0.8, / 0.7, / 0 , / 0.3, / 0.5, / 0, / 0.4, /1 , / 0.9, / 0.6, /1, / 0 , / 0.6, / 0.6, / 0 , / 0.5, / 0.7, /1, / 0.4, / 0 , / 0.6, F a h h h h h c c c c v v v F a h h h h h c c c c v v v F a h h h h h c c = = = { } { }( ) ( ) { } { } { }( ) ( ) { } { } { }( ) ( ) 3 4 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 5 1 2 3 4 5 1 2 3 4 1 2 3 6 1 2 / 0.1, / 0, /1 , / 0, / 0.7, / 0.7 , / 0.4, / 0.5, / 0.1, / 0, /1 , / 0.8, / 0, / 0.8, /1 , /1, / 0.7, / 0 , / 0.7, / 0.5, /1, / 0.4, /1 , / 0, / 0.1, / 0.7, /1 , /1, / 0.8, / 0 , / 0.6, / c c v v v F a h h h h h c c c c v v v F a h h h h h c c c c v v v F a h h = = = { } { } { }( )3 4 5 1 2 3 4 1 2 30.4, / 0.8, /1, / 0.1 , / 0, / 0.1, /1, /1 , /1, / 0, /1 ,h h h c c c c v v v Then the fuzzy soft multi set ( ),F A defined above describes the conditions of some “house”, “car” and “hotel” in a state. Then the quadruple ( ), , ,X A f V corresponding to the fuzzy soft multi set given above is a fuzzy multi-valued information system. Where 3 1 i i X U = = ∪ and A is the set of parameters in the fuzzy soft multi set and { } { } 1 2 3 1 2 3 4 5 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 4 1 2 3 1 2 3 4 5 1 2 / 0.2, / 0.4, / 0, / 0.4, / 0, / 0.8, / 0.1, / 0, /1, / 0.8, / 0.7, / 0 , / 0.3, / 0.5, / 0, / 0.4, /1, / 0.9, / 0.6, /1, / 0, / 0.6, / 0.6, / 0 , / 0.5, / 0.7, /1, / 0.4, / 0, / 0.6, a a a V h h h h h c c c c v v v V h h h h h c c c c v v v V h h h h h c c = = = { } { } { } 4 5 6 3 4 1 2 3 1 2 3 4 5 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 4 1 2 3 1 2 / 0.1, / 0, /1, / 0, / 0.7, / 0.7 , / 0.4, / 0.5, / 0.1, / 0, /1, / 0.8, / 0, / 0.8, /1, /1, / 0.7, / 0 , / 0.7, / 0.5, /1, / 0.4, /1, / 0, / 0.1, / 0.7, /1, /1, / 0.8, / 0 , / 0.6, / a a a c c v v v V h h h h h c c c c v v v V h h h h h c c c c v v v V h h = = = { }3 4 5 1 2 3 4 1 2 30.4, / 0.8, /1, / 0.1, / 0, / 0.1, /1, /1, /1, / 0, /1h h h c c c c v v v ,
  • 17. International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015 45 For the pair ( )1 1,h a we have ( )1 1,f h a = 0.2, for ( )2 1,h a , we have ( )2 1,f h a = 0.4. Continuing in this way we obtain the values of other pairs. Therefore, according to the result above, it is seen that fuzzy soft multi sets are fuzzy soft multi-valued information systems. Nevertheless, it is obvious that fuzzy soft multi-valued information systems are not necessarily fuzzy soft multi sets. We can construct an information table representing fuzzy soft multi set ( ),F A defined above as follows. 4.1. An Information Table Table 2. An information table X a1 a2 a3 a4 a5 a6 h1 h2 h3 h4 h5 0.2 0.4 0 0.4 0 0.3 0.5 0 0.4 1 0.5 0.7 1 0.4 0 0.4 0.5 0.1 0 1 0.7 0.5 1 0.4 1 0.6 0.4 0.8 1 0.1 c1 c2 c3 c4 0.8 0.1 0 1 0.9 0.6 1 0 0.6 0.1 0 1 0.8 0 0.8 1 0 0.1 0.7 1 0 0.1 1 1 v1 v2 v3 0.8 0.7 0 0.6 0.6 0 0 0.7 0.7 1 0.7 0 1 0.8 0 1 0 1 5. Conclusion The theory of soft set, fuzzy soft set and multi set are vital mathematical tools used in handling uncertainties about vague concepts. In this paper, we have introduced the notion of fuzzy multi- valued information system in fuzzy soft multi set theory. Here we shall present the application of fuzzy soft multi set in information system and show that every fuzzy soft multi set is a fuzzy multi valued information system. References [1] K.Alhazaymeh & N. Hassan, (2014) “Vague Soft Multiset Theory”, Int. J. Pure and Applied Math., Vol. 93, pp511-523. [2] M.I.Ali, F. Feng, X. Liu, W.K. Minc & M. Shabir, (2009) “On some new operations in soft set theory”, Comp. Math. Appl., vol. 57, pp1547-1553. [3] S.Alkhazaleh & A.R. Salleh, (2012) “Fuzzy Soft Multi sets Theory”, Hindawi Publishing Corporation, Abstract and Applied Analysis, Article ID 350603, 20 pages, doi: 10.1155/2012/350603. [4] S.Alkhazaleh, A.R. Salleh & N. Hassan, (2011) Soft Multi sets Theory, Appl. Math. Sci., Vol. 5, pp3561– 3573. [5] K.V Babitha & S.J. John, (2013) “On Soft Multi sets”, Ann. Fuzzy Math. Inform., Vol. 5 pp35-44. [6] T. Herewan & M.M. Deris, (2011) “A soft set approach for association rules mining”, Knowl.-Based Syst. Vol. 24, pp186-195. [7] A.M. Ibrahim & H.M. Balami, (2013) “Application of soft multiset in decision making problems”, J. Nig. Ass. of mathematical physics, Vol. 25, pp307- 311. [8] H.M. Balami & A. M. Ibrahim, (2013) “Soft Multiset and its Application in Information System”, International Journal of scientific research and management, Vol. 1, pp471-482. [9] P.K. Maji, R. Biswas & A.R. Roy, (2001) “Fuzzy soft sets”, J. Fuzzy Math., Vol. 9, pp589-602.
  • 18. International Journal of Computer-Aided Technologies (IJCAx) Vol.2, No.3, July 2015 46 [10] P.K. Maji, R. Biswas & A.R. Roy, (2003) “Soft set theory”, Comp. Math. Appl., Vol. 45 pp555-562. [11] P.K. Maji, R. Biswas & A.R. Roy, (2002) “An application of soft sets in a decision making problem”, Comput. Math. Appl., Vol. 44, pp1077-1083. [12] D.Molodtsov, (1999) “Soft set theory-first results”, Comp. Math. Appl., Vol. 37, pp19-31. [13] A.Mukherjee & A.K. Das, (2015) “Application of fuzzy soft multi sets in decision making problems”, Smart Innovation Systems and Technologies, Springer Verlag, (Accepted). [14] A.Mukherjee & A.K. Das, (2015) “Some results on fuzzy soft multi sets. Int. J. Cybernetics & Informatics. Vol. 4, pp 51-65. [15] A.Mukherjee & A.K. Das, (2013) “Topological structure formed by fuzzy soft multisets”, Rev. Bull. Cal.Math.Soc., Vol. 21, No.2, pp193-212. [16] A.Mukherjee & A.K. Das, (2014) “Topological structure formed by soft multi sets and soft multi compact space”, Ann. Fuzzy Math. Inform. Vol. 7, pp919-933. [17] D.Tokat & I. Osmanoglu, (2011) “Soft multi set and soft multi topology”, Nevsehir Universitesi Fen Bilimleri Enstitusu Dergisi Cilt., Vol. 2, pp109-118. [18] L.A. Zadeh, (1965) “Fuzzy sets”, Inform. Control., Vol. 8, pp338-353.