SlideShare a Scribd company logo
‹#› Het begint met een idee
ONE SCORE TO
RULE THEM ALL:
SEMANTICS IN
MUSIC NOTATION
Albert Meroño-Peñuela, et al.
DHDK seminar, University of Bologna,
13/02/2018
R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B
R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B
Vrije Universiteit Amsterdam
4
ME
• Postdoc researcher at VU University Amsterdam,
Knowledge Representation & Reasoning
• Computer Science!
• Interfaces between the Digital Humanities and the
Semantic Web
• Representation of and access to cultural knowledge,
such as contained in historical objects, music sheets,
and statistical registers
• Ontologies, Linked Data, Semantic Music, APIs,
reproducibility, provenance
”Refining Statistical Data on the Web”
Vrije Universiteit Amsterdam
5
OUTLINE
• Digital Data-driven Humanities
• The human-machine spectrum of DH
• Beyond text processing
• Enabling a Global & Repeatable Social History
• Data preparation
• Data integration
• Reusing and publishing schemas
• Accessing the data OR Asking the same questions to different datasets
• One score to rule them all
• Music on the Web
• The MIDI Linked Data Cloud
• Creative applications
• This slide deck at http://tinyurl.com/semanticmusic
Vrije Universiteit Amsterdam
6
WHAT IS DIGITAL HUMANITIES?
“to study human culture in a more scientific way”
“to compute data from the humanities”
• Albert: “doing humanities is exactly equal to doing
science”
• Repeatability
• Hypothesis testing
• Pragmatic, clean, idealized
• Jacky: “doing humanities is completely different to
doing science”
• Interpretative approach, relativistic
• Give value to argumentation and vagueness instead of truth
• Focus on the questions we do ask
• https://storify.com/ingorohlfing/overly-honest-methods-in-science
Vrije Universiteit Amsterdam
7
THE HUMAN-MACHINE SPECTRUM OF DH
Purely
machine-based
Purely
human-based
Vrije Universiteit Amsterdam
8
BEYOND TEXT PROCESSING
Vrije Universiteit Amsterdam
9
BEYOND TEXT PROCESSING
Vrije Universiteit Amsterdam
10
BEYOND TEXT PROCESSING
‹#› Het begint met een idee
ENABLING SOCIAL HISTORY
ON THE WEB
Vrije Universiteit Amsterdam
12
WHAT IS SOCIAL HISTORY?
Contrasted with political history, intellectual history and the history of great men
Explains history from the perspective of ordinary people (demography, work, family,
migration)
Uses (to a great degree) social science methods  Data science!
Vrije Universiteit Amsterdam
13
THE (HISTORICAL) KNOWLEDGE DISCOVERY
PROCESS
VolumeVariety
Vrije Universiteit Amsterdam
14
DATA PREPARATION
Present data = high volume
Historical data = high variety
 Multiple legacy (tabular) formats
 Diverse identity, unity, rigidity and dependence
Preparing them to gain knowledge is expensive
 Manual data munging
 Hardly reproducible
Vrije Universiteit Amsterdam
15
DATA PREPARATION
This ‘data preparation’ step can take up to 60% 80% of the total work
R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B
We do this repeatedly for the same datasets!
Vrije Universiteit Amsterdam
17
CEDAR / CLARIAH
?
1795
1830
1889
1930
1971
Vrije Universiteit Amsterdam
18
TOWARDS 5-STAR HISTORICAL STATISTICAL DATA
>4 years ago
4 years ago
Vrije Universiteit Amsterdam
19
LINKED DATA – THE RDF GRAPH DATA MODEL
The Divine Comedy was written by Dante
Vrije Universiteit Amsterdam
20
LINKED DATA – THE RDF GRAPH DATA MODEL
The Divine Comedy was written by Dante
Subject Predicate Object
Vrije Universiteit Amsterdam
21
LINKED DATA – THE RDF GRAPH DATA MODEL
The Divine Comedy was written by Dante
Subject Predicate Object
dbr:Divine_Comedy dbp:author dbr:Dante_Alighieri .
Vrije Universiteit Amsterdam
22
LINKED DATA – THE RDF GRAPH DATA MODEL
The Divine Comedy was written by Dante
Subject Predicate Object
dbr:Divine_Comedy dbp:author dbr:Dante_Alighieri .
dbr: <http://dbpedia.org/resource/...>
dbp: <http://dbpedia.org/property/...>
Vrije Universiteit Amsterdam
23
LINKED DATA – THE RDF GRAPH DATA MODEL
The Divine Comedy was written by Dante
Subject Predicate Object
dbr:Divine_Comedy dbp:author dbr:Dante_Alighieri .
dbr: <http://dbpedia.org/resource/...>
dbp: <http://dbpedia.org/property/...>
dbr:Divine_Comedy rdf:type owl:Thing , dbo:Poem .
dbr:Divine_Comedy :completed “1320” .
…
Vrije Universiteit Amsterdam
24
GENERATING LINKED DATA FROM EXCEL
https://github.com/Data2Semantics/TabLinker
Credits to Rinke Hoekstra
Vrije Universiteit Amsterdam
25
GENERATING LINKED DATA FROM CSV
Semi-automatic
Generic
Domain independent
Microdata =
CSVW
[COW]
Macrodata = RDF
Data Cube [QBer]
[TabLinker]
Credits to Rinke Hoekstra
Vrije Universiteit Amsterdam
LSD DIMENSIONS – FINDING THE VERB
http://lsd-dimensions.org/
Index of statistical dimensions and associated concept schemes on
the Web
R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B
R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B
R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B
R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B
New code lists
• HISCO
http://historyofwork.iisg.nl/ Credits to Richard Zijdeman
R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B
New code lists
• Gemeentegeschiedenis.nl
http://www.gemeentegeschiedenis.nl/ Credits to Ivo Zandhuis
R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B
New code lists
http://licr.io/ Credits to Ashkan Ashkpour
R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B
New code lists
http://licr.io/ Credits to Ashkan Ashkpour
R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B
Credits to Richard Zijdeman
http://nlgis.nl/
‹#› Het begint met een idee35
‹#› Het begint met een idee
36 Het begint met een idee
 One .rq file for SPARQL query
 Good support of query curation
processes
> Versioning
> Branching
> Clone-pull-push
 Web-friendly features!
> One URI per query
> Uniquely identifiable
> De-referenceable
(raw.githubusercontent.com)
36 Faculty / department / title presentation
GITHUB AS A HUB OF
SPARQL QUERIES
‹#› Het begint met een idee
37 Het begint met een idee
http://grlc.io/
Vrije Universiteit Amsterdam
38
THE GRLC SERVICE
 Assuming your repo is at https://github.com/:owner/:repo
and your grlc instance at :host,
> http://:host/:owner/:repo/spec returns the JSON swagger spec
> http://:host/:owner/:repo/api-docs returns the swagger UI
> http://:host/:owner/:repo/:operation?p_1=v_1...p_n=v_n calls
operation with specifiec parameter values
> Uses BASIL’s SPARQL variable name convention for query parameters
 Sends requests to
> https://api.github.com/repos/:owner/:repo to look for SPARQL queries and their
decorators
> https://raw.githubusercontent.com/:owner/:repo/master/file.rq to dereference
queries, get the SPARQL, and parse it
Vrije Universiteit Amsterdam
39
SPARQL DECORATOR SYNTAX
Vrije Universiteit Amsterdam
40
SPICED-UP SWAGGER UI
Vrije Universiteit Amsterdam
41
EVALUATION – USE CASES
 CEDAR: Access to census data for
historians
> Hides SPARQL
> Allows them to fill query parameters
through forms
> Co-existence of SPARQL and non-SPARQL
clients
 CLARIAH - Born Under a Bad Sign:
Do prenatal and early-life
conditions have an impact on
socioeconomic and health
outcomes later in life? (uses 1891
Canada and Sweden Linked Census Data)
> Reduction of coupling between SPARQL
libs and R
> Shorter R code – input stream as CSV
Vrije Universiteit Amsterdam
> “multiple copies of the same queries in different places (…)
was problematic. grlc allows queries to be maintained in a
single location”
> “with grlc the R code becomes clearer due to the decoupling
with SPARQL; and shorter, since a curl suffices to retrieve the
data”
> “it allows us to manage SPARQL queries separate from the rest
of the API – this enables, for instance, to have different queries
without having to deploy a new version of the API”
> “we use grlc to provide FAQ for those who would prefer REST
over SPARQL, but also to explore the data”
> “we use grlc to expose the ECAI conference proceedings not
only as Linked Data that can be used by Semantic Web
practitioners, but also as a Web API that web developers can
consume”
> “grlc helps to share, extend and repurpose queries by
providing a URI for the resulted queries and by supporting
collaborative update of those queries”
42
QUALITATIVE EVALUATION
Vrije Universiteit Amsterdam
43
QUANTITATIVE EVALUATION
The cost of grlc is independent of the dataset size
HTTP requests and payloads are important costs
‹#› Het begint met een idee
ONE SCORE
TO RULE THEM ALL
Vrije Universiteit Amsterdam
 The “digital” as an instrument for the Humanities
45
SEMANTIC WEB AND THE HUMANITIES
Vrije Universiteit Amsterdam
46
ISWC 2013 JAM SESSION
Jam’s “metadata”
Vrije Universiteit Amsterdam
 The jam became global (i.e. de-referenceable URIs from
anywhere) rather than local
> But any video stream would have been more accurate (for humans)
 The jam became machine readable
> But not all of it
 Digital music as Linked Data?
 But why?
47
REPRESENTING MUSIC IN RDF?
Vrije Universiteit Amsterdam
48
THE WEB MUSIC ECOSYSTEM
Vrije Universiteit Amsterdam
49
LINKED MUSIC ON THE WEB
Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar,
Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/
Etree
See Daquino et al. 2017 (WHiSe II)
Characterizing the Landscape of
Musical Data on the Web: state of
the art and challenges
Vrije Universiteit Amsterdam
Symbolic music databases (MusicXML, MIDI, NIFF, MEI) are non-interoperable
From Daquino et al.’s (WHiSe 2017):
 “Repositories and digital libraries are the most representative resources
collecting musical data. They mainly offer digitisations of scores and lyrics
(77%), published as PDF and/or JPG (40%)”
 “The more the scale of repositories increases, the less structured formats for
representing symbolic notation seem to be used and the less depth of
analysis is provided”
 “Larger collections are more likely to feature melody”
Can we find ways of increasing the level of structure of musical data
without compromising its scalability?
50
COOL, BUT…
Vrije Universiteit Amsterdam
 MIDI: Digital music representation protocol
> (i.e. leaving nothing to analog signals  actual instruments)
 Popular/abundant, production, standard
 Musical Instrument Digital Interface (1983)
> Universal synthesizer interface
> Roland (I. Kakehashi), Yamaha, Korg, Kawai (1981)
> Digital, fine-grained representation of musical tracks and events
> Wide range of controllers and instruments
51
MIDI
Vrije Universiteit Amsterdam
[ 144, 60, 100 ]
52
BUT WHAT IS MIDI?
Thanks @rumyra! https://www.youtube.com/watch?v=khsBjXKJOPs
Vrije Universiteit Amsterdam
[ 144, 60, 100 ]
[ 128, 60, 64 ]
53
BUT WHAT IS MIDI?
Thanks @rumyra! https://www.youtube.com/watch?v=khsBjXKJOPs
Vrije Universiteit Amsterdam
midi2rdf: lossless conversion of MIDI to RDF (and back)
Albert Meroño-Peñuela, Rinke Hoekstra. “The Song Remains the Same: Lossless Conversion and
Streaming of MIDI to RDF and Back”. In: 13th Extended Semantic Web Conference (ESWC 2016),
posters and demos track. May 29th — June 2nd, Heraklion, Crete, Greece (2016).
 rdf2midi, direct stream mapping
54
MIDI2RDF & RDF2MIDI
https://midi-ld.github.io/
Vrije Universiteit Amsterdam
 Music representation format which is
> 100% digital (i.e. leaving nothing to analog signals)
> Secundary list
 MIDI (Musical Instrument Digital Interface)
> Universal synthesizer interface
> Roland (I. Kakehashi), Yamaha, Korg, Kawai (1981)
> Digital, fine-grained representation of musical events
> Wide range of controllers and instruments
55
WEEKEND EXPERIMENT
Vrije Universiteit Amsterdam
56
MIDI LINKED DATA
http://purl.org/midi-ld/pattern/635f0b49bb3f62c3a76cc58f979bd858
Vrije Universiteit Amsterdam
57
MIDI SCHEMA
http://purl.org/midi-ld/midi#
Vrije Universiteit Amsterdam
58
MIDI LINKED DATA RESOURCES
 MIDI Pieces http://purl.org/midi-ld/piece/
> Access to MIDI level triples
> Cryptographic hash for unique MIDI content
http://purl.org/midi-ld/pattern/87dd99fb346cd4c7934cb36a00868cbe
 MIDI Notes http://purl.org/midi-ld/notes/
> Type, label, octave, pitch value
 MIDI Programs http://purl.org/midi-ld/programs/
> All instruments linked to DBpedia
 MIDI Chords http://purl.org/midi-ld/chords/
> Label, quality, number of pitch classes, intervals
 Enrichments
> Provenance
> Integrated lyrics (mostly from karaoke data)
> Key (Krumhansl-Schumkler), scale degree, metric accents
Vrije Universiteit Amsterdam
59
MIDI LINKED DATA RESOURCES
Current collections
 The largest MIDI collection on the Internet (thanks @midi_man)
 Lakh MIDI dataset (thanks @colinraffel)
 MySongBook MIDI
 Yours! https://midi-ld.github.com
 308,443 interconnected MIDI files
 10,215,557,355 triples
 Full dump, SPARQL endpoint, RESTful API
Vrije Universiteit Amsterdam
60
ENABLING SEMANTIC WEB RESEARCH
 Data integration
> Further format interoperability: MIDI, MusicXML, NIFF, MEI
> Integration with formats of other arts: LabanXML
 Entity linking
> Audio (Spotify URIs), symbolic notation (MIDI), metadata (MusicBrainz)
> High heterogeneity, low overlap
> Challenge to entity linking algorithms
 Semantics and ontologies
> Music Ontology, Chord Ontology, Timeline Ontology
> Underspecification of musical concepts
> Reasoning
> Challenge for ontology alignment
Vrije Universiteit Amsterdam
61
ENABLING MUSICOLOGY RESEARCH
 Analysis of chords, patterns and melodies at Web scale
> Integrating knowledge from external databases
> Historical, geographical, cultural, economic, sylistic contexts
 Everything has a URI
> Annotation tasks, workflow descriptions
 Establishing standard Web vocabularies
> Chords (iReal Pro), melodies, metadata
 Recommender systems
> Collaborative filtering, content-based feature extraction, hybrid
> Notation-based support for abstract representation of musical concepts
 Machine learning (multimodal training data, convincing samples)
 Audiolisation
Vrije Universiteit Amsterdam
Vrije Universiteit Amsterdam
63
SPARQL-DJ
Web-based tool that finds, selects, plays, mixes, beat-
syncs and generates MIDI mashups from a very large MIDI
Linked Data collection
Vrije Universiteit Amsterdam
64
SONIC PI
Vrije Universiteit Amsterdam
65
RDF PI
https://github.com/midi-ld/Web-MIDI-API
Live coding music directly in RDF (MIDI)
Everything happens in your browser (RDF
parsing, Web MIDI API)
Vrije Universiteit Amsterdam
66
THE MUSIC SEMANTIC GAP
• MIR tasks have a
performance ceiling
of 65% accuracy,
independently of
the method
• Cause: semantic
gap
• The closer to the
gap, the harder the
task
Some ontologies in
place, BUT:
• Metadata
• Audio features
• Ignore notation
Vrije Universiteit Amsterdam
67
THE MUSIC SEMANTIC GAP
What knowledge representations
and algorithms are needed to
generalize music symbolic notation
and include it into the existing
music retrieval formalisms, in order
to reduce the semantic gap?
• A knowledge graph of symbolic
notation
• Data and methods
Challenges:
1. KR for notation (horizontal gap)
← machine learning, ontology
engineering
2. Bridging notation and humans
(vertical gap) ← ontology
matching
3. Multimodal entity linking
(inter-dataset gap) ← hybrid
FT, DTW + LIMES
Music and Knowledge
Representation
"Music impregnates every person’s memory,
reasoning, and language. And yet, we lack a global
view of all of humankind’s musical knowledge,
telling us precisely what music we know, how
much there is, and how it differs across societies."
Vrije Universiteit Amsterdam
69
CONCLUSIONS (I)
 Semantic Web and Digital Humanities: to science, or not to
science?
 Data preparation = 80% of work
> We throw it away after use!
 Linked Data based solutions
> Use RDF to make research repeatable – but more intuitive tools needed
> Statistical dimensions & codelists – but hard to find, might be missing
> GitHub for queries as Linked Data APIs – enables reproducibility, you need
an expert JUST ONCE
Vrije Universiteit Amsterdam
70
CONCLUSIONS (AND II)
 One score to rule them all
> General knowledge representation language (RDF) for music (MIDI)
> Mappings for MusicXML, MEI, NIFF, and others
> The spectrum of symbolic music vs low level audio signal
 Quality (& automatic) links to external Linked Datasets
> MusicBrainz, DBpedia, etc.
> Hybrid approaches (metadata, lyrics, incipits, MIR algorithms)
 Tools
> (Contextual) querying
> Annotation (every note has a URL!)
> Workflow recording
 Your ideas & contributions most welcome! https://midi-ld.github.io/
Vrije Universiteit Amsterdam
> Albert Meroño-Peñuela. “Humanists And Scientists: More Alike Than Different”. eHumanities Magazine,
number 7, February 2016 (HTML)
> Albert Meroño-Peñuela, Rinke Hoekstra. “grlc Makes GitHub Taste Like Linked Data APIs”. SALAD 2016 —
Services and Applications over Linked Data APIs and Data. International workshop, ESWC 2016, May 29th,
Heraklion, Crete, Greece (2016). (PDF)
> Rinke Hoekstra, Albert Meroño-Peñuela, Kathrin Dentler, Auke Rijpma, Richard Zijdeman, Ivo Zandhuis. “An
Ecosystem for Linked Humanities Data”. In: Proceedings of the 1st Workshop on Humanities in the SEmantic
web (WHiSE 2016). ESWC 2016, May 29th, Heraklion, Crete, Greece (2016). (PDF)
> Albert Meroño-Peñuela, Rinke Hoekstra. “The Song Remains the Same: Lossless Conversion and Streaming of
MIDI to RDF and Back”. In: 13th Extended Semantic Web Conference (ESWC 2016), posters and demos track.
May 29th — June 2nd, Heraklion, Crete, Greece (2016). (PDF)
> Albert Meroño-Peñuela. “Refining Statistical Data on the Web”. Vrije Universiteit Amsterdam (2016) (Amazon)
(VU-DARE)
> Albert Meroño-Peñuela, Christophe Guéret, Stefan Schlobach. “Linked Edit Rules: A Web Friendly Way of
Checking Quality of RDF Data Cubes”. Proceedings of the 3rd International Workshop on Semantic Statistics
(SemStats 2015), ISWC 2015, Bethlehem, PA, USA (2015). (PDF)
> Bas Stringer, Albert Meroño-Peñuela, Antonis Loizou, Sanne Abeln, Jaap Heringa. “To SCRY Linked Data:
Extending SPARQL the Easy Way”. Diversity++ workshop, ISWC 2015, Bethlehem, PA, USA (2015). (PDF)
> Albert Meroño-Peñuela, Ashkan Ashkpour, Marieke van Erp, Kees Mandemakers, Leen Breure, Andrea
Scharnhorst, Stefan Schlobach, Frank van Harmelen. “Semantic Technologies for Historical Research: A
Survey”. Semantic Web — Interoperability, Usability, Applicability, 6(6), pp. 539–564. IOS Press (2015).
> Albert Meroño-Peñuela, Ashkan Ashkpour, Christophe Guéret, Stefan Schlobach. “CEDAR: The Dutch
Historical Censuses as Linked Open Data”. Semantic Web — Interoperability, Usability, Applicability, 8(2), pp.
297–310. IOS Press (2015).71
PUBLICATIONS
‹#› Het begint met een idee
THANK YOU!
@albertmeronyo
DATALEGEND.NET
CLARIAH.NL
72
Vrije Universiteit Amsterdam
73
A BASIC WEB SYSTEMS COMMUNICATION TOOLKIT
1. Endpoint location is volatile
Names encapsulate semantics of operations → Should be
meaningless, just as email addresses
HTTP : http://example.org/canihasdata
2. Consensus on data semantics is necessary
Simple object exchange format + 15 years of Web ontology
development to semantically describe data
JSON+LD : [{ "@id": "eg:Albert",
"rdf:type": [{ "@id": "foaf:Person" }]}]
Vrije Universiteit Amsterdam
74
LINKED DATA NOTIFICATIONS
https://www.w3.org/TR/ldn/
Thanks to Sarven Capadisli
Vrije Universiteit Amsterdam
75
IMPLEMENTATIONS
http://pyldn.amp.ops.labs.vu.nl/
https://github.com/albertmeronyo/pyldn/

More Related Content

PPT
The Danish case: What does the danish web talk about
PDF
Wimmics Overview 2021
PDF
From Open Linked Data towards an Ecosystem of Interlinked Knowledge
PPT
A researcher driven data description for the archived web: Why and how?
PDF
Introduction to Graph Databases
PPTX
Das Semantische Daten Web für Unternehmen
PDF
Semantic Web: an introduction
PDF
Introduction of Knowledge Graphs
The Danish case: What does the danish web talk about
Wimmics Overview 2021
From Open Linked Data towards an Ecosystem of Interlinked Knowledge
A researcher driven data description for the archived web: Why and how?
Introduction to Graph Databases
Das Semantische Daten Web für Unternehmen
Semantic Web: an introduction
Introduction of Knowledge Graphs

What's hot (12)

PPTX
Hiberlink: Investigating Reference Rot, December 2013
PPTX
To the Rescue of the Orphans of Scholarly Communication
PPTX
Researcher Pod: Scholarly Communication Using the Decentralized Web
PDF
Linked Data, Cultural Heritage & the Karma Mapping Software
PPTX
Sw4 sh slides
PPTX
Knowledge Graph Introduction
PDF
Wimmics Research Team Overview 2017
PPTX
PID Signposting Pattern
PDF
Overview of the Research in Wimmics 2018
PPT
Knowledge graphs in search engines
PDF
The Web We Mix - benevolent AIs for a resilient web
PPTX
Reinhard LAWDI Presentation
Hiberlink: Investigating Reference Rot, December 2013
To the Rescue of the Orphans of Scholarly Communication
Researcher Pod: Scholarly Communication Using the Decentralized Web
Linked Data, Cultural Heritage & the Karma Mapping Software
Sw4 sh slides
Knowledge Graph Introduction
Wimmics Research Team Overview 2017
PID Signposting Pattern
Overview of the Research in Wimmics 2018
Knowledge graphs in search engines
The Web We Mix - benevolent AIs for a resilient web
Reinhard LAWDI Presentation
Ad

Similar to One Score To Rule Them All: Semantics in Music Notation (20)

PPTX
The Statistics of Stairway to Heaven: A Semantic Story About Digital Humanities
PPTX
Repeatable Semantic Queries for the Linked Data Agnostic
PPTX
Making social science more reproducible by encapsulating access to linked data
PPTX
grlc Makes GitHub Taste Like Linked Data APIs
PDF
Open data and linked data
PPT
RDF and Open Linked Data, a first approach
PPTX
Usage of Linked Data: Introduction and Application Scenarios
PPTX
Linked Data MLA 2015
PPTX
Linked data MLA 2015
PPT
Linked Data for Libraries: Benefits of a Conceptual Shift from Library-Specif...
PPT
W3C Library Linked Data Incubator Group - 2011
PDF
ALIAOnline Practical Linked (Open) Data for Libraries, Archives & Museums
PPTX
Automatic Query-Centric API for Routine Access to Linked Data
PDF
Ld4 dh tutorial
PDF
Open semantic linked data
PDF
The state of the art in Linked Data
PDF
WebGUI And The Semantic Web
PDF
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRM
PPTX
Semantics and the Humanities: some lessons from my journey 2000-2012
PPTX
Edina cigs-21-september-2012
The Statistics of Stairway to Heaven: A Semantic Story About Digital Humanities
Repeatable Semantic Queries for the Linked Data Agnostic
Making social science more reproducible by encapsulating access to linked data
grlc Makes GitHub Taste Like Linked Data APIs
Open data and linked data
RDF and Open Linked Data, a first approach
Usage of Linked Data: Introduction and Application Scenarios
Linked Data MLA 2015
Linked data MLA 2015
Linked Data for Libraries: Benefits of a Conceptual Shift from Library-Specif...
W3C Library Linked Data Incubator Group - 2011
ALIAOnline Practical Linked (Open) Data for Libraries, Archives & Museums
Automatic Query-Centric API for Routine Access to Linked Data
Ld4 dh tutorial
Open semantic linked data
The state of the art in Linked Data
WebGUI And The Semantic Web
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRM
Semantics and the Humanities: some lessons from my journey 2000-2012
Edina cigs-21-september-2012
Ad

More from Albert Meroño-Peñuela (15)

PPTX
List.MID: A MIDI-Based Benchmark for RDF Lists
PPTX
Modelling and Querying Lists in RDF. A Pragmatic Study
PPTX
What can I expect from an academic career? Valuable skills
PPTX
The MIDI Linked Data Cloud
PPTX
grlc: Bridging the Gap Between RESTful APIs and Linked Data
PPTX
Historical Reasoning on the Web
PPTX
How does a knowledge graph sound like? (or: music is a graph)
PPTX
What Is Linked Historical Data?
PPTX
CBS CEDAR Presentation
PPTX
LSD Dimensions: Use and Reuse of Linked Statistical Data as RDF Data Cube
PDF
Non-Temporal Orderings for Extensional Concept Drift
PDF
Detecting and Reporting Extensional Concept Drift in Statistical Linked Data
PDF
Semantic Web for the Humanities
PPT
Linked Census Data
PPTX
Linked Humanities data
List.MID: A MIDI-Based Benchmark for RDF Lists
Modelling and Querying Lists in RDF. A Pragmatic Study
What can I expect from an academic career? Valuable skills
The MIDI Linked Data Cloud
grlc: Bridging the Gap Between RESTful APIs and Linked Data
Historical Reasoning on the Web
How does a knowledge graph sound like? (or: music is a graph)
What Is Linked Historical Data?
CBS CEDAR Presentation
LSD Dimensions: Use and Reuse of Linked Statistical Data as RDF Data Cube
Non-Temporal Orderings for Extensional Concept Drift
Detecting and Reporting Extensional Concept Drift in Statistical Linked Data
Semantic Web for the Humanities
Linked Census Data
Linked Humanities data

Recently uploaded (20)

PPTX
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
PDF
.pdf is not working space design for the following data for the following dat...
PPT
Quality review (1)_presentation of this 21
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PPT
Reliability_Chapter_ presentation 1221.5784
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PPTX
SAP 2 completion done . PRESENTATION.pptx
PDF
[EN] Industrial Machine Downtime Prediction
PPTX
Database Infoormation System (DBIS).pptx
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PPT
Miokarditis (Inflamasi pada Otot Jantung)
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PDF
annual-report-2024-2025 original latest.
PDF
Lecture1 pattern recognition............
PDF
Galatica Smart Energy Infrastructure Startup Pitch Deck
PDF
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
PPTX
Acceptance and paychological effects of mandatory extra coach I classes.pptx
PDF
Mega Projects Data Mega Projects Data
PPTX
Leprosy and NLEP programme community medicine
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
.pdf is not working space design for the following data for the following dat...
Quality review (1)_presentation of this 21
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
Reliability_Chapter_ presentation 1221.5784
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
SAP 2 completion done . PRESENTATION.pptx
[EN] Industrial Machine Downtime Prediction
Database Infoormation System (DBIS).pptx
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
Miokarditis (Inflamasi pada Otot Jantung)
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
annual-report-2024-2025 original latest.
Lecture1 pattern recognition............
Galatica Smart Energy Infrastructure Startup Pitch Deck
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
Acceptance and paychological effects of mandatory extra coach I classes.pptx
Mega Projects Data Mega Projects Data
Leprosy and NLEP programme community medicine

One Score To Rule Them All: Semantics in Music Notation

  • 1. ‹#› Het begint met een idee ONE SCORE TO RULE THEM ALL: SEMANTICS IN MUSIC NOTATION Albert Meroño-Peñuela, et al. DHDK seminar, University of Bologna, 13/02/2018
  • 2. R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B
  • 3. R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B
  • 4. Vrije Universiteit Amsterdam 4 ME • Postdoc researcher at VU University Amsterdam, Knowledge Representation & Reasoning • Computer Science! • Interfaces between the Digital Humanities and the Semantic Web • Representation of and access to cultural knowledge, such as contained in historical objects, music sheets, and statistical registers • Ontologies, Linked Data, Semantic Music, APIs, reproducibility, provenance ”Refining Statistical Data on the Web”
  • 5. Vrije Universiteit Amsterdam 5 OUTLINE • Digital Data-driven Humanities • The human-machine spectrum of DH • Beyond text processing • Enabling a Global & Repeatable Social History • Data preparation • Data integration • Reusing and publishing schemas • Accessing the data OR Asking the same questions to different datasets • One score to rule them all • Music on the Web • The MIDI Linked Data Cloud • Creative applications • This slide deck at http://tinyurl.com/semanticmusic
  • 6. Vrije Universiteit Amsterdam 6 WHAT IS DIGITAL HUMANITIES? “to study human culture in a more scientific way” “to compute data from the humanities” • Albert: “doing humanities is exactly equal to doing science” • Repeatability • Hypothesis testing • Pragmatic, clean, idealized • Jacky: “doing humanities is completely different to doing science” • Interpretative approach, relativistic • Give value to argumentation and vagueness instead of truth • Focus on the questions we do ask • https://storify.com/ingorohlfing/overly-honest-methods-in-science
  • 7. Vrije Universiteit Amsterdam 7 THE HUMAN-MACHINE SPECTRUM OF DH Purely machine-based Purely human-based
  • 11. ‹#› Het begint met een idee ENABLING SOCIAL HISTORY ON THE WEB
  • 12. Vrije Universiteit Amsterdam 12 WHAT IS SOCIAL HISTORY? Contrasted with political history, intellectual history and the history of great men Explains history from the perspective of ordinary people (demography, work, family, migration) Uses (to a great degree) social science methods  Data science!
  • 13. Vrije Universiteit Amsterdam 13 THE (HISTORICAL) KNOWLEDGE DISCOVERY PROCESS VolumeVariety
  • 14. Vrije Universiteit Amsterdam 14 DATA PREPARATION Present data = high volume Historical data = high variety  Multiple legacy (tabular) formats  Diverse identity, unity, rigidity and dependence Preparing them to gain knowledge is expensive  Manual data munging  Hardly reproducible
  • 15. Vrije Universiteit Amsterdam 15 DATA PREPARATION This ‘data preparation’ step can take up to 60% 80% of the total work
  • 16. R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B We do this repeatedly for the same datasets!
  • 17. Vrije Universiteit Amsterdam 17 CEDAR / CLARIAH ? 1795 1830 1889 1930 1971
  • 18. Vrije Universiteit Amsterdam 18 TOWARDS 5-STAR HISTORICAL STATISTICAL DATA >4 years ago 4 years ago
  • 19. Vrije Universiteit Amsterdam 19 LINKED DATA – THE RDF GRAPH DATA MODEL The Divine Comedy was written by Dante
  • 20. Vrije Universiteit Amsterdam 20 LINKED DATA – THE RDF GRAPH DATA MODEL The Divine Comedy was written by Dante Subject Predicate Object
  • 21. Vrije Universiteit Amsterdam 21 LINKED DATA – THE RDF GRAPH DATA MODEL The Divine Comedy was written by Dante Subject Predicate Object dbr:Divine_Comedy dbp:author dbr:Dante_Alighieri .
  • 22. Vrije Universiteit Amsterdam 22 LINKED DATA – THE RDF GRAPH DATA MODEL The Divine Comedy was written by Dante Subject Predicate Object dbr:Divine_Comedy dbp:author dbr:Dante_Alighieri . dbr: <http://dbpedia.org/resource/...> dbp: <http://dbpedia.org/property/...>
  • 23. Vrije Universiteit Amsterdam 23 LINKED DATA – THE RDF GRAPH DATA MODEL The Divine Comedy was written by Dante Subject Predicate Object dbr:Divine_Comedy dbp:author dbr:Dante_Alighieri . dbr: <http://dbpedia.org/resource/...> dbp: <http://dbpedia.org/property/...> dbr:Divine_Comedy rdf:type owl:Thing , dbo:Poem . dbr:Divine_Comedy :completed “1320” . …
  • 24. Vrije Universiteit Amsterdam 24 GENERATING LINKED DATA FROM EXCEL https://github.com/Data2Semantics/TabLinker Credits to Rinke Hoekstra
  • 25. Vrije Universiteit Amsterdam 25 GENERATING LINKED DATA FROM CSV Semi-automatic Generic Domain independent Microdata = CSVW [COW] Macrodata = RDF Data Cube [QBer] [TabLinker] Credits to Rinke Hoekstra
  • 26. Vrije Universiteit Amsterdam LSD DIMENSIONS – FINDING THE VERB http://lsd-dimensions.org/ Index of statistical dimensions and associated concept schemes on the Web
  • 27. R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B
  • 28. R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B
  • 29. R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B
  • 30. R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B New code lists • HISCO http://historyofwork.iisg.nl/ Credits to Richard Zijdeman
  • 31. R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B New code lists • Gemeentegeschiedenis.nl http://www.gemeentegeschiedenis.nl/ Credits to Ivo Zandhuis
  • 32. R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B New code lists http://licr.io/ Credits to Ashkan Ashkpour
  • 33. R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B New code lists http://licr.io/ Credits to Ashkan Ashkpour
  • 34. R E F I N I N G S TAT I S T I C A L D ATA O N T H E W E B Credits to Richard Zijdeman http://nlgis.nl/
  • 35. ‹#› Het begint met een idee35
  • 36. ‹#› Het begint met een idee 36 Het begint met een idee  One .rq file for SPARQL query  Good support of query curation processes > Versioning > Branching > Clone-pull-push  Web-friendly features! > One URI per query > Uniquely identifiable > De-referenceable (raw.githubusercontent.com) 36 Faculty / department / title presentation GITHUB AS A HUB OF SPARQL QUERIES
  • 37. ‹#› Het begint met een idee 37 Het begint met een idee http://grlc.io/
  • 38. Vrije Universiteit Amsterdam 38 THE GRLC SERVICE  Assuming your repo is at https://github.com/:owner/:repo and your grlc instance at :host, > http://:host/:owner/:repo/spec returns the JSON swagger spec > http://:host/:owner/:repo/api-docs returns the swagger UI > http://:host/:owner/:repo/:operation?p_1=v_1...p_n=v_n calls operation with specifiec parameter values > Uses BASIL’s SPARQL variable name convention for query parameters  Sends requests to > https://api.github.com/repos/:owner/:repo to look for SPARQL queries and their decorators > https://raw.githubusercontent.com/:owner/:repo/master/file.rq to dereference queries, get the SPARQL, and parse it
  • 41. Vrije Universiteit Amsterdam 41 EVALUATION – USE CASES  CEDAR: Access to census data for historians > Hides SPARQL > Allows them to fill query parameters through forms > Co-existence of SPARQL and non-SPARQL clients  CLARIAH - Born Under a Bad Sign: Do prenatal and early-life conditions have an impact on socioeconomic and health outcomes later in life? (uses 1891 Canada and Sweden Linked Census Data) > Reduction of coupling between SPARQL libs and R > Shorter R code – input stream as CSV
  • 42. Vrije Universiteit Amsterdam > “multiple copies of the same queries in different places (…) was problematic. grlc allows queries to be maintained in a single location” > “with grlc the R code becomes clearer due to the decoupling with SPARQL; and shorter, since a curl suffices to retrieve the data” > “it allows us to manage SPARQL queries separate from the rest of the API – this enables, for instance, to have different queries without having to deploy a new version of the API” > “we use grlc to provide FAQ for those who would prefer REST over SPARQL, but also to explore the data” > “we use grlc to expose the ECAI conference proceedings not only as Linked Data that can be used by Semantic Web practitioners, but also as a Web API that web developers can consume” > “grlc helps to share, extend and repurpose queries by providing a URI for the resulted queries and by supporting collaborative update of those queries” 42 QUALITATIVE EVALUATION
  • 43. Vrije Universiteit Amsterdam 43 QUANTITATIVE EVALUATION The cost of grlc is independent of the dataset size HTTP requests and payloads are important costs
  • 44. ‹#› Het begint met een idee ONE SCORE TO RULE THEM ALL
  • 45. Vrije Universiteit Amsterdam  The “digital” as an instrument for the Humanities 45 SEMANTIC WEB AND THE HUMANITIES
  • 46. Vrije Universiteit Amsterdam 46 ISWC 2013 JAM SESSION Jam’s “metadata”
  • 47. Vrije Universiteit Amsterdam  The jam became global (i.e. de-referenceable URIs from anywhere) rather than local > But any video stream would have been more accurate (for humans)  The jam became machine readable > But not all of it  Digital music as Linked Data?  But why? 47 REPRESENTING MUSIC IN RDF?
  • 48. Vrije Universiteit Amsterdam 48 THE WEB MUSIC ECOSYSTEM
  • 49. Vrije Universiteit Amsterdam 49 LINKED MUSIC ON THE WEB Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/ Etree See Daquino et al. 2017 (WHiSe II) Characterizing the Landscape of Musical Data on the Web: state of the art and challenges
  • 50. Vrije Universiteit Amsterdam Symbolic music databases (MusicXML, MIDI, NIFF, MEI) are non-interoperable From Daquino et al.’s (WHiSe 2017):  “Repositories and digital libraries are the most representative resources collecting musical data. They mainly offer digitisations of scores and lyrics (77%), published as PDF and/or JPG (40%)”  “The more the scale of repositories increases, the less structured formats for representing symbolic notation seem to be used and the less depth of analysis is provided”  “Larger collections are more likely to feature melody” Can we find ways of increasing the level of structure of musical data without compromising its scalability? 50 COOL, BUT…
  • 51. Vrije Universiteit Amsterdam  MIDI: Digital music representation protocol > (i.e. leaving nothing to analog signals  actual instruments)  Popular/abundant, production, standard  Musical Instrument Digital Interface (1983) > Universal synthesizer interface > Roland (I. Kakehashi), Yamaha, Korg, Kawai (1981) > Digital, fine-grained representation of musical tracks and events > Wide range of controllers and instruments 51 MIDI
  • 52. Vrije Universiteit Amsterdam [ 144, 60, 100 ] 52 BUT WHAT IS MIDI? Thanks @rumyra! https://www.youtube.com/watch?v=khsBjXKJOPs
  • 53. Vrije Universiteit Amsterdam [ 144, 60, 100 ] [ 128, 60, 64 ] 53 BUT WHAT IS MIDI? Thanks @rumyra! https://www.youtube.com/watch?v=khsBjXKJOPs
  • 54. Vrije Universiteit Amsterdam midi2rdf: lossless conversion of MIDI to RDF (and back) Albert Meroño-Peñuela, Rinke Hoekstra. “The Song Remains the Same: Lossless Conversion and Streaming of MIDI to RDF and Back”. In: 13th Extended Semantic Web Conference (ESWC 2016), posters and demos track. May 29th — June 2nd, Heraklion, Crete, Greece (2016).  rdf2midi, direct stream mapping 54 MIDI2RDF & RDF2MIDI https://midi-ld.github.io/
  • 55. Vrije Universiteit Amsterdam  Music representation format which is > 100% digital (i.e. leaving nothing to analog signals) > Secundary list  MIDI (Musical Instrument Digital Interface) > Universal synthesizer interface > Roland (I. Kakehashi), Yamaha, Korg, Kawai (1981) > Digital, fine-grained representation of musical events > Wide range of controllers and instruments 55 WEEKEND EXPERIMENT
  • 56. Vrije Universiteit Amsterdam 56 MIDI LINKED DATA http://purl.org/midi-ld/pattern/635f0b49bb3f62c3a76cc58f979bd858
  • 57. Vrije Universiteit Amsterdam 57 MIDI SCHEMA http://purl.org/midi-ld/midi#
  • 58. Vrije Universiteit Amsterdam 58 MIDI LINKED DATA RESOURCES  MIDI Pieces http://purl.org/midi-ld/piece/ > Access to MIDI level triples > Cryptographic hash for unique MIDI content http://purl.org/midi-ld/pattern/87dd99fb346cd4c7934cb36a00868cbe  MIDI Notes http://purl.org/midi-ld/notes/ > Type, label, octave, pitch value  MIDI Programs http://purl.org/midi-ld/programs/ > All instruments linked to DBpedia  MIDI Chords http://purl.org/midi-ld/chords/ > Label, quality, number of pitch classes, intervals  Enrichments > Provenance > Integrated lyrics (mostly from karaoke data) > Key (Krumhansl-Schumkler), scale degree, metric accents
  • 59. Vrije Universiteit Amsterdam 59 MIDI LINKED DATA RESOURCES Current collections  The largest MIDI collection on the Internet (thanks @midi_man)  Lakh MIDI dataset (thanks @colinraffel)  MySongBook MIDI  Yours! https://midi-ld.github.com  308,443 interconnected MIDI files  10,215,557,355 triples  Full dump, SPARQL endpoint, RESTful API
  • 60. Vrije Universiteit Amsterdam 60 ENABLING SEMANTIC WEB RESEARCH  Data integration > Further format interoperability: MIDI, MusicXML, NIFF, MEI > Integration with formats of other arts: LabanXML  Entity linking > Audio (Spotify URIs), symbolic notation (MIDI), metadata (MusicBrainz) > High heterogeneity, low overlap > Challenge to entity linking algorithms  Semantics and ontologies > Music Ontology, Chord Ontology, Timeline Ontology > Underspecification of musical concepts > Reasoning > Challenge for ontology alignment
  • 61. Vrije Universiteit Amsterdam 61 ENABLING MUSICOLOGY RESEARCH  Analysis of chords, patterns and melodies at Web scale > Integrating knowledge from external databases > Historical, geographical, cultural, economic, sylistic contexts  Everything has a URI > Annotation tasks, workflow descriptions  Establishing standard Web vocabularies > Chords (iReal Pro), melodies, metadata  Recommender systems > Collaborative filtering, content-based feature extraction, hybrid > Notation-based support for abstract representation of musical concepts  Machine learning (multimodal training data, convincing samples)  Audiolisation
  • 63. Vrije Universiteit Amsterdam 63 SPARQL-DJ Web-based tool that finds, selects, plays, mixes, beat- syncs and generates MIDI mashups from a very large MIDI Linked Data collection
  • 65. Vrije Universiteit Amsterdam 65 RDF PI https://github.com/midi-ld/Web-MIDI-API Live coding music directly in RDF (MIDI) Everything happens in your browser (RDF parsing, Web MIDI API)
  • 66. Vrije Universiteit Amsterdam 66 THE MUSIC SEMANTIC GAP • MIR tasks have a performance ceiling of 65% accuracy, independently of the method • Cause: semantic gap • The closer to the gap, the harder the task Some ontologies in place, BUT: • Metadata • Audio features • Ignore notation
  • 67. Vrije Universiteit Amsterdam 67 THE MUSIC SEMANTIC GAP What knowledge representations and algorithms are needed to generalize music symbolic notation and include it into the existing music retrieval formalisms, in order to reduce the semantic gap? • A knowledge graph of symbolic notation • Data and methods Challenges: 1. KR for notation (horizontal gap) ← machine learning, ontology engineering 2. Bridging notation and humans (vertical gap) ← ontology matching 3. Multimodal entity linking (inter-dataset gap) ← hybrid FT, DTW + LIMES
  • 68. Music and Knowledge Representation "Music impregnates every person’s memory, reasoning, and language. And yet, we lack a global view of all of humankind’s musical knowledge, telling us precisely what music we know, how much there is, and how it differs across societies."
  • 69. Vrije Universiteit Amsterdam 69 CONCLUSIONS (I)  Semantic Web and Digital Humanities: to science, or not to science?  Data preparation = 80% of work > We throw it away after use!  Linked Data based solutions > Use RDF to make research repeatable – but more intuitive tools needed > Statistical dimensions & codelists – but hard to find, might be missing > GitHub for queries as Linked Data APIs – enables reproducibility, you need an expert JUST ONCE
  • 70. Vrije Universiteit Amsterdam 70 CONCLUSIONS (AND II)  One score to rule them all > General knowledge representation language (RDF) for music (MIDI) > Mappings for MusicXML, MEI, NIFF, and others > The spectrum of symbolic music vs low level audio signal  Quality (& automatic) links to external Linked Datasets > MusicBrainz, DBpedia, etc. > Hybrid approaches (metadata, lyrics, incipits, MIR algorithms)  Tools > (Contextual) querying > Annotation (every note has a URL!) > Workflow recording  Your ideas & contributions most welcome! https://midi-ld.github.io/
  • 71. Vrije Universiteit Amsterdam > Albert Meroño-Peñuela. “Humanists And Scientists: More Alike Than Different”. eHumanities Magazine, number 7, February 2016 (HTML) > Albert Meroño-Peñuela, Rinke Hoekstra. “grlc Makes GitHub Taste Like Linked Data APIs”. SALAD 2016 — Services and Applications over Linked Data APIs and Data. International workshop, ESWC 2016, May 29th, Heraklion, Crete, Greece (2016). (PDF) > Rinke Hoekstra, Albert Meroño-Peñuela, Kathrin Dentler, Auke Rijpma, Richard Zijdeman, Ivo Zandhuis. “An Ecosystem for Linked Humanities Data”. In: Proceedings of the 1st Workshop on Humanities in the SEmantic web (WHiSE 2016). ESWC 2016, May 29th, Heraklion, Crete, Greece (2016). (PDF) > Albert Meroño-Peñuela, Rinke Hoekstra. “The Song Remains the Same: Lossless Conversion and Streaming of MIDI to RDF and Back”. In: 13th Extended Semantic Web Conference (ESWC 2016), posters and demos track. May 29th — June 2nd, Heraklion, Crete, Greece (2016). (PDF) > Albert Meroño-Peñuela. “Refining Statistical Data on the Web”. Vrije Universiteit Amsterdam (2016) (Amazon) (VU-DARE) > Albert Meroño-Peñuela, Christophe Guéret, Stefan Schlobach. “Linked Edit Rules: A Web Friendly Way of Checking Quality of RDF Data Cubes”. Proceedings of the 3rd International Workshop on Semantic Statistics (SemStats 2015), ISWC 2015, Bethlehem, PA, USA (2015). (PDF) > Bas Stringer, Albert Meroño-Peñuela, Antonis Loizou, Sanne Abeln, Jaap Heringa. “To SCRY Linked Data: Extending SPARQL the Easy Way”. Diversity++ workshop, ISWC 2015, Bethlehem, PA, USA (2015). (PDF) > Albert Meroño-Peñuela, Ashkan Ashkpour, Marieke van Erp, Kees Mandemakers, Leen Breure, Andrea Scharnhorst, Stefan Schlobach, Frank van Harmelen. “Semantic Technologies for Historical Research: A Survey”. Semantic Web — Interoperability, Usability, Applicability, 6(6), pp. 539–564. IOS Press (2015). > Albert Meroño-Peñuela, Ashkan Ashkpour, Christophe Guéret, Stefan Schlobach. “CEDAR: The Dutch Historical Censuses as Linked Open Data”. Semantic Web — Interoperability, Usability, Applicability, 8(2), pp. 297–310. IOS Press (2015).71 PUBLICATIONS
  • 72. ‹#› Het begint met een idee THANK YOU! @albertmeronyo DATALEGEND.NET CLARIAH.NL 72
  • 73. Vrije Universiteit Amsterdam 73 A BASIC WEB SYSTEMS COMMUNICATION TOOLKIT 1. Endpoint location is volatile Names encapsulate semantics of operations → Should be meaningless, just as email addresses HTTP : http://example.org/canihasdata 2. Consensus on data semantics is necessary Simple object exchange format + 15 years of Web ontology development to semantically describe data JSON+LD : [{ "@id": "eg:Albert", "rdf:type": [{ "@id": "foaf:Person" }]}]
  • 74. Vrije Universiteit Amsterdam 74 LINKED DATA NOTIFICATIONS https://www.w3.org/TR/ldn/ Thanks to Sarven Capadisli