SlideShare a Scribd company logo
OpenFOAM benchmark
for EPYC server
- GAMG solver
coarsestLevelCorr -
Osaka Metropolitan University
Takuya YAMAMOTO
2023/8/23
GAMG solver control
p OpenFOAM v1906
https://www.openfoam.com/news/main-
news/openfoam-v1906/numerics#numerics-
adjoint
Improved GAMG solver controls
マルチグリッドで解く際に最も粗い格⼦レベルでの格⼦数が⾮常に少ない
(数⼗セル)
並列計算時にこの粗い格⼦レベルでの通信量がボトルネックになることで、
並列化効率が悪化
これを改善するために、最も粗い格⼦レベルでの解法を選択できるように
pFinal
{
solver GAMG;
tolerance 1e-6;
relTol 0;
smoother GaussSeidel;
coarsestLevelCorr
{
solver PCG;
preconditioner DIC;
relTol 0.05;
}
}
GAMG solver control
p OpenFOAM v2206
https://www.openfoam.com/news/main-
news/openfoam-v20-06/solvers-and-
physics#solver-and-physics-pipelined-cg-
solvers
New pipelined Conjugate Gradient solvers
並列計算時に共役勾配系(CG) solverでは全てのプロセッサーで同じ探索⽅向に
解く必要があり、並列計算時のボトルネックになることがある
パイプラインCG solverではオーバーヘッド、通信を減らすことができる
特に、GAMGの最も粗いレベルの格⼦にこの⼿法を取り⼊れると有効である
PPCR, PPCGが選択可能
pFinal
{
$p;
relTol 0;
coarsestLevelCorr
{
solver PPCR;
preconditioner DIC;
relTol 0.05;
}
}
これらの⼿法が果たしてどれだけEPYCサーバーで効くのか?
OpenFOAM benchmark
p Benchmark of High Performance Computing (HPC) Technical
Committee
• Small, S (1M)
• Medium, M (8M)
• Extra-Large, XL (64M)
Ø 3-D Lid Driven cavity flow
Ø HPC Motorbike
Ø Conical Diffuser
Ø …
Many benchmark has been prepared.
In this study, we use 3-D Lid Driven Cavity Flow, S and M.
The used OpenFOAM is ESI v2212 version.
https://develop.openfoam.com/committees/hpc/-/tree/develop/
Server resource
p Used server
• Server 1: EPYC 7352 Dual CPU (2.3 GHz x 48 cores)
RAM 128 GB (8GB x 16 channel)
BW 187.7 GB/s (2933 MT/s x 8 channel x 8)
L3 Cache 128 MB
• Server 2: EPYC 7513 Dual CPU (2.6 GHz x 64 cores)
RAM 128 GB (8GB x 16 channel)
BW 204.8 GB/s (3200 MT/s x 8 channel x 8)
L3 Cache 128 MB
EPYC 3rd Gen
EPYC 2nd Gen
• Server 3: EPYC 7542 Dual CPU (2.9 GHz x 64 cores)
RAM 128 GB (8GB x 16 channel)
BW 187.7 GB/s (2933 MT/s x 8 channel x 8)
L3 Cache 128 MB
EPYC 2nd Gen
Server resource
p Used server
• Server 4: EPYC 7713 Dual CPU (2.0 GHz x 128 cores)
RAM 256 GB (16GB x 16 channel)
BW 204.8 GB/s (3200 MT/s x 8 channel x 8)
L3 Cache 256 MB
EPYC 3rd Gen
• Server 5: EPYC 7763 Dual CPU (2.45 GHz x 128 cores)
RAM 128 GB (8GB x 16 channel)
BW 204.8 GB/s (3200 MT/s x 8 channel x 8)
L3 Cache 256 MB
EPYC 3rd Gen
Solver of algebraic matrix
p solver
• Solver 1: solver, p GAMG
GAMG preconditioner, p GaussSeidel
tolerance, p 1 x 10-4
solver, U smoothSolver
preconditioner, U GaussSeidel
tolerance, U 0
relTol, U 0
maxIter, U 5
• Solver 2: solver, p GAMG
GAMG-PPCR preconditioner, p GaussSeidel
tolerance, p 1 x 10-4
solver, U smoothSolver
preconditioner, U GaussSeidel
tolerance, U 0
relTol, U 0
maxIter, U 5
coarsestLevelCorr
{
solver PPCR;
preconditioner DIC;
relTol 0.05;
}
Server 1
EPYC-DualCPU-7352
3D- Lid Driven cavity flow (S, 1M)
3D- Lid Driven cavity flow (M, 8M)
Server 2
EPYC-DualCPU-7513
3D- Lid Driven cavity flow (S, 1M)
3D- Lid Driven cavity flow (M, 8M)
Server 3
EPYC-DualCPU-7542
3D- Lid Driven cavity flow (S, 1M)
3D- Lid Driven cavity flow (M, 8M)
Server 4
EPYC-DualCPU-7713
3D- Lid Driven cavity flow (S, 1M)
3D- Lid Driven cavity flow (M, 8M)
Server 5
EPYC-DualCPU-7763
3D- Lid Driven cavity flow (S, 1M)
3D- Lid Driven cavity flow (M, 8M)
Comparison between
servers
3D- Lid Driven cavity flow (S, 1M)
3D- Lid Driven cavity flow (M, 8M)

More Related Content

PPTX
OpenFOAMにおける相変化解析
PDF
OpenFOAMの混相流用改造solver(S-CLSVOF法)の設定・使い方
PPTX
OpenFOAMによる気液2相流解析の基礎と設定例
PDF
OpenFOAM の Function Object 機能について
PDF
OpenCAEシンポジウム発表資料-OpenFOAMのVOF法における計算時間、計算誤差最小条件の探索
PDF
OpenFOAMにおける混相流計算
PDF
OpenFOAM LES乱流モデルカスタマイズ
PDF
OpenFOAMのinterfoamによる誤差
OpenFOAMにおける相変化解析
OpenFOAMの混相流用改造solver(S-CLSVOF法)の設定・使い方
OpenFOAMによる気液2相流解析の基礎と設定例
OpenFOAM の Function Object 機能について
OpenCAEシンポジウム発表資料-OpenFOAMのVOF法における計算時間、計算誤差最小条件の探索
OpenFOAMにおける混相流計算
OpenFOAM LES乱流モデルカスタマイズ
OpenFOAMのinterfoamによる誤差

What's hot (20)

PDF
OpenFOAMによる混相流シミュレーション入門
PDF
OpenFOAMにおけるDEM計算の力モデルの解読
PDF
OpenFOAMソルバの実行時ベイズ最適化
PDF
OpenFOAM -回転領域を含む流体計算 (Rotating Geometry)-
PDF
OpenFoamの混相流solver interFoamのパラメータによる解の変化
PDF
OpenFOAMにおけるDEM計算の衝突モデルの解読
PDF
interFoamの検証
PDF
Turbulence Models in OpenFOAM
PDF
OpenFOAMを用いた計算後の等高面データの取得方法
PDF
OpenFOAM -空間の離散化と係数行列の取り扱い(Spatial Discretization and Coefficient Matrix)-
PDF
Boundary Conditions in OpenFOAM
PDF
OpenFOAM の cyclic、cyclicAMI、cyclicACMI 条件について
PDF
OpenFOAMの壁関数
PDF
OpenFOAMに実装したS-CLSVOF法検証(静止気泡のLaplace圧)
PDF
OpenFOAM の境界条件をまとめよう!
PDF
Optimization of relaxation factor for simple solver, OpenFOAM Study Meeting f...
PDF
Motor bike by cfmesh
PPTX
FreeCAD OpenFOAM Workbenchセットアップ方法と課題
PDF
OpenFOAMのチュートリアルを作ってみた#1 『くさび油膜効果の計算』
PDF
Mixer vessel by cfmesh
OpenFOAMによる混相流シミュレーション入門
OpenFOAMにおけるDEM計算の力モデルの解読
OpenFOAMソルバの実行時ベイズ最適化
OpenFOAM -回転領域を含む流体計算 (Rotating Geometry)-
OpenFoamの混相流solver interFoamのパラメータによる解の変化
OpenFOAMにおけるDEM計算の衝突モデルの解読
interFoamの検証
Turbulence Models in OpenFOAM
OpenFOAMを用いた計算後の等高面データの取得方法
OpenFOAM -空間の離散化と係数行列の取り扱い(Spatial Discretization and Coefficient Matrix)-
Boundary Conditions in OpenFOAM
OpenFOAM の cyclic、cyclicAMI、cyclicACMI 条件について
OpenFOAMの壁関数
OpenFOAMに実装したS-CLSVOF法検証(静止気泡のLaplace圧)
OpenFOAM の境界条件をまとめよう!
Optimization of relaxation factor for simple solver, OpenFOAM Study Meeting f...
Motor bike by cfmesh
FreeCAD OpenFOAM Workbenchセットアップ方法と課題
OpenFOAMのチュートリアルを作ってみた#1 『くさび油膜効果の計算』
Mixer vessel by cfmesh
Ad

Similar to OpenFOAM benchmark for EPYC server -Influence of coarsestLevelCorr in GAMG solver - (20)

PDF
OpenFOAM benchmark for EPYC server cavity flow small
PDF
OpenFOAM benchmark for EPYC server: cavity medium
PDF
Druinsky_SIAMCSE15
PDF
AMD technologies for HPC
ODP
Java GC, Off-heap workshop
PPTX
Jvm & Garbage collection tuning for low latencies application
PDF
Performance Optimization of CGYRO for Multiscale Turbulence Simulations
PDF
PG-Strom - GPGPU meets PostgreSQL, PGcon2015
PDF
Optimization of parameter settings for GAMG solver in simple solver, OpenFOAM...
PDF
Machine Learning - Supervised Learning
PDF
ParallelRandom-mannyko
PDF
Parallel Random Generator - GDC 2015
PDF
Speedrunning the Open Street Map osm2pgsql Loader
PDF
Custom Computer Engine for Optimizing for the Inner kernel of Matrix Multipli...
PDF
hbaseconasia2017: HBase Practice At XiaoMi
PDF
On the Capability and Achievable Performance of FPGAs for HPC Applications
PPTX
JVM memory management & Diagnostics
PPTX
Qnap nas ts 1679 introduction-02
PPTX
Qnap nas TS 1679 introduction_info tech Middle east
PDF
customization of a deep learning accelerator, based on NVDLA
OpenFOAM benchmark for EPYC server cavity flow small
OpenFOAM benchmark for EPYC server: cavity medium
Druinsky_SIAMCSE15
AMD technologies for HPC
Java GC, Off-heap workshop
Jvm & Garbage collection tuning for low latencies application
Performance Optimization of CGYRO for Multiscale Turbulence Simulations
PG-Strom - GPGPU meets PostgreSQL, PGcon2015
Optimization of parameter settings for GAMG solver in simple solver, OpenFOAM...
Machine Learning - Supervised Learning
ParallelRandom-mannyko
Parallel Random Generator - GDC 2015
Speedrunning the Open Street Map osm2pgsql Loader
Custom Computer Engine for Optimizing for the Inner kernel of Matrix Multipli...
hbaseconasia2017: HBase Practice At XiaoMi
On the Capability and Achievable Performance of FPGAs for HPC Applications
JVM memory management & Diagnostics
Qnap nas ts 1679 introduction-02
Qnap nas TS 1679 introduction_info tech Middle east
customization of a deep learning accelerator, based on NVDLA
Ad

More from takuyayamamoto1800 (8)

PDF
OpenFOAM solver for Helmholtz equation, helmholtzFoam / helmholtzBubbleFoam
PDF
OpenFOAMのDEM解析のpatchInteractionModelクラスの解読
PDF
How to get contour surface position by openfoam
PDF
ParaviewでのParticle Tracerを用いた可視化
PDF
Estimation of numerical schemes in heat convection by OpenFOAM
PDF
Paraviewの等高面を綺麗に出力する
PDF
熱流体解析における離散スキームの評価
PDF
Setting and Usage of OpenFOAM multiphase solver (S-CLSVOF)
OpenFOAM solver for Helmholtz equation, helmholtzFoam / helmholtzBubbleFoam
OpenFOAMのDEM解析のpatchInteractionModelクラスの解読
How to get contour surface position by openfoam
ParaviewでのParticle Tracerを用いた可視化
Estimation of numerical schemes in heat convection by OpenFOAM
Paraviewの等高面を綺麗に出力する
熱流体解析における離散スキームの評価
Setting and Usage of OpenFOAM multiphase solver (S-CLSVOF)

Recently uploaded (20)

PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Machine learning based COVID-19 study performance prediction
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
KodekX | Application Modernization Development
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PPTX
Big Data Technologies - Introduction.pptx
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Electronic commerce courselecture one. Pdf
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
cuic standard and advanced reporting.pdf
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Encapsulation_ Review paper, used for researhc scholars
Advanced methodologies resolving dimensionality complications for autism neur...
Machine learning based COVID-19 study performance prediction
20250228 LYD VKU AI Blended-Learning.pptx
Unlocking AI with Model Context Protocol (MCP)
MIND Revenue Release Quarter 2 2025 Press Release
Agricultural_Statistics_at_a_Glance_2022_0.pdf
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
KodekX | Application Modernization Development
Diabetes mellitus diagnosis method based random forest with bat algorithm
Big Data Technologies - Introduction.pptx
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Electronic commerce courselecture one. Pdf
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
NewMind AI Weekly Chronicles - August'25 Week I
cuic standard and advanced reporting.pdf
“AI and Expert System Decision Support & Business Intelligence Systems”
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
The Rise and Fall of 3GPP – Time for a Sabbatical?
Encapsulation_ Review paper, used for researhc scholars

OpenFOAM benchmark for EPYC server -Influence of coarsestLevelCorr in GAMG solver -

  • 1. OpenFOAM benchmark for EPYC server - GAMG solver coarsestLevelCorr - Osaka Metropolitan University Takuya YAMAMOTO 2023/8/23
  • 2. GAMG solver control p OpenFOAM v1906 https://www.openfoam.com/news/main- news/openfoam-v1906/numerics#numerics- adjoint Improved GAMG solver controls マルチグリッドで解く際に最も粗い格⼦レベルでの格⼦数が⾮常に少ない (数⼗セル) 並列計算時にこの粗い格⼦レベルでの通信量がボトルネックになることで、 並列化効率が悪化 これを改善するために、最も粗い格⼦レベルでの解法を選択できるように pFinal { solver GAMG; tolerance 1e-6; relTol 0; smoother GaussSeidel; coarsestLevelCorr { solver PCG; preconditioner DIC; relTol 0.05; } }
  • 3. GAMG solver control p OpenFOAM v2206 https://www.openfoam.com/news/main- news/openfoam-v20-06/solvers-and- physics#solver-and-physics-pipelined-cg- solvers New pipelined Conjugate Gradient solvers 並列計算時に共役勾配系(CG) solverでは全てのプロセッサーで同じ探索⽅向に 解く必要があり、並列計算時のボトルネックになることがある パイプラインCG solverではオーバーヘッド、通信を減らすことができる 特に、GAMGの最も粗いレベルの格⼦にこの⼿法を取り⼊れると有効である PPCR, PPCGが選択可能 pFinal { $p; relTol 0; coarsestLevelCorr { solver PPCR; preconditioner DIC; relTol 0.05; } } これらの⼿法が果たしてどれだけEPYCサーバーで効くのか?
  • 4. OpenFOAM benchmark p Benchmark of High Performance Computing (HPC) Technical Committee • Small, S (1M) • Medium, M (8M) • Extra-Large, XL (64M) Ø 3-D Lid Driven cavity flow Ø HPC Motorbike Ø Conical Diffuser Ø … Many benchmark has been prepared. In this study, we use 3-D Lid Driven Cavity Flow, S and M. The used OpenFOAM is ESI v2212 version. https://develop.openfoam.com/committees/hpc/-/tree/develop/
  • 5. Server resource p Used server • Server 1: EPYC 7352 Dual CPU (2.3 GHz x 48 cores) RAM 128 GB (8GB x 16 channel) BW 187.7 GB/s (2933 MT/s x 8 channel x 8) L3 Cache 128 MB • Server 2: EPYC 7513 Dual CPU (2.6 GHz x 64 cores) RAM 128 GB (8GB x 16 channel) BW 204.8 GB/s (3200 MT/s x 8 channel x 8) L3 Cache 128 MB EPYC 3rd Gen EPYC 2nd Gen • Server 3: EPYC 7542 Dual CPU (2.9 GHz x 64 cores) RAM 128 GB (8GB x 16 channel) BW 187.7 GB/s (2933 MT/s x 8 channel x 8) L3 Cache 128 MB EPYC 2nd Gen
  • 6. Server resource p Used server • Server 4: EPYC 7713 Dual CPU (2.0 GHz x 128 cores) RAM 256 GB (16GB x 16 channel) BW 204.8 GB/s (3200 MT/s x 8 channel x 8) L3 Cache 256 MB EPYC 3rd Gen • Server 5: EPYC 7763 Dual CPU (2.45 GHz x 128 cores) RAM 128 GB (8GB x 16 channel) BW 204.8 GB/s (3200 MT/s x 8 channel x 8) L3 Cache 256 MB EPYC 3rd Gen
  • 7. Solver of algebraic matrix p solver • Solver 1: solver, p GAMG GAMG preconditioner, p GaussSeidel tolerance, p 1 x 10-4 solver, U smoothSolver preconditioner, U GaussSeidel tolerance, U 0 relTol, U 0 maxIter, U 5 • Solver 2: solver, p GAMG GAMG-PPCR preconditioner, p GaussSeidel tolerance, p 1 x 10-4 solver, U smoothSolver preconditioner, U GaussSeidel tolerance, U 0 relTol, U 0 maxIter, U 5 coarsestLevelCorr { solver PPCR; preconditioner DIC; relTol 0.05; }
  • 9. 3D- Lid Driven cavity flow (S, 1M)
  • 10. 3D- Lid Driven cavity flow (M, 8M)
  • 12. 3D- Lid Driven cavity flow (S, 1M)
  • 13. 3D- Lid Driven cavity flow (M, 8M)
  • 15. 3D- Lid Driven cavity flow (S, 1M)
  • 16. 3D- Lid Driven cavity flow (M, 8M)
  • 18. 3D- Lid Driven cavity flow (S, 1M)
  • 19. 3D- Lid Driven cavity flow (M, 8M)
  • 21. 3D- Lid Driven cavity flow (S, 1M)
  • 22. 3D- Lid Driven cavity flow (M, 8M)
  • 24. 3D- Lid Driven cavity flow (S, 1M)
  • 25. 3D- Lid Driven cavity flow (M, 8M)