SlideShare a Scribd company logo
Estimation of numerical 
schemes  
in heat convection  
by OpenFOAM 
Osaka Univ. 
Dept.  
Takuya Yamamoto
Traps in solving diffusion-‐‑‒convection equation 
1. Conserva+veness 
2. Boundedness 
3. Transpor+veness 
Reference 
H. 
K. 
Versteeg 
and 
M. 
Malalasekera 
An 
introduc+on 
to 
computa+onal 
fluid 
dynamics 
translated 
Ver. 
in 
Japanese 
訳; 
松下洋介,斎藤泰洋,青木秀之,三浦隆利 
数値流体力学 
森北出版 
rela+ve 
ra+o 
of 
convec+on 
to 
diffusion 
non-­‐dimensional 
cell 
Peclet 
number 
Pe = 
F 
D 
= 
ρu 
Γ /δ x 
δ x ; 
cell 
width 
ρ ; 
density 
F 
D 
Γ 
; 
momentum 
flux 
(= 
ρu) 
; 
diffusion 
conductance 
(= 
Γ/δx) 
; 
diffusion 
coefficient
Indication of numerical schemes 
• Linear 
scheme 
• QUICK 
scheme 
Boundedness 
Boundedness 
Pe  2 Pe  
8 
3 
The 
other 
condi+ons 
References 
H. 
K. 
Versteeg 
and 
M. 
Malalasekera 
An 
introduc+on 
to 
computa+onal 
fluid 
dynamics 
translated 
Ver, 
in 
Japanese 
訳; 
松下洋介,斎藤泰洋,青木秀之,三浦隆利 
数値流体力学 
森北出版 
Genera+on 
of 
• Undershoot 
• Overshoot
Ex5.1 in Ref. Book 
x 
= 
0 x 
= 
L 
T 
= 
1 
T 
= 
0 
u 
[m/s] 
condi+on 
u 
[m/s] 
δx 
[m] 
L 
[m] 
Pe 
[-­‐] 
1 
0.1 
0.2 
1 
0.2 
2 
2.5 
0.2 
1 
5 
3 
2.5 
0.05 
1 
1.25 
Analy+cal 
solu+on 
T −T0 
TL −T0 
= 
exp(ρux /Γ )−1 
exp(ρuL /Γ )−1 
δ x ; 
ρ =1.0 kg/m3 
Γ = 0.1 kg/m・s 
cell 
width 
ρ ; 
density 
Γ ; 
diffusion 
coeff. 
(kg/m・s)
Numerical method 
• Solver 
scalarTransportFoam 
 
• Numerical scheme 
linear (spatial) 
steadyState (time) 
• Governing 
Equa+on 
d 
dx 
(ρuT) = 
d 
dx 
Γ 
dT 
dx 
! 
 # 
$ 
%
Ex5.1 in Ref. Book 
T 
= 
1 
Condi+on 
1 
Condi+on 
2 
condi+on 
u 
[m/s] 
δx 
[m] 
L 
[m] 
Pe 
[-­‐] 
1 
0.1 
0.2 
1 
0.2 
2 
2.5 
0.2 
1 
5 
3 
2.5 
0.05 
1 
1.25 
T 
= 
0 
x 
= 
0 
u 
[m/s] x 
= 
L 
over-­‐ 
and 
under-­‐shoot 
Linear 
scheme
T 
= 
1 
Ex5.1 in Ref. Book 
Condi+on 
2 
Condi+on 
3 
condi+on 
u 
[m/s] 
δx 
[m] 
L 
[m] 
Pe 
[-­‐] 
1 
0.1 
0.2 
1 
0.2 
2 
2.5 
0.2 
1 
5 
3 
2.5 
0.05 
1 
1.25 
T 
= 
0 
x 
= 
0 
u 
[m/s] x 
= 
L 
over-­‐ 
and 
under-­‐shoot 
Linear 
scheme
Numerical method 
• Solver 
scalarTransportFoam 
 
• Numerical scheme 
QUICK (spatial) 
steadyState (time) 
• Governing 
Equa+on 
d 
dx 
(ρuT) = 
d 
dx 
Γ 
dT 
dx 
! 
 # 
$ 
%
T 
= 
1 
Ex5.4 in Ref. Book 
Condi+on 
1 
Condi+on 
2 
condi+on 
u 
[m/s] 
δx 
[m] 
L 
[m] 
Pe 
[-­‐] 
1 
0.1 
0.2 
1 
0.2 
2 
2.5 
0.2 
1 
5 
3 
2.5 
0.05 
1 
1.25 
T 
= 
0 
x 
= 
0 
u 
[m/s] x 
= 
L 
over-­‐ 
and 
under-­‐shoot 
QUICK 
scheme
T 
= 
1 
Ex5.4 in Ref. Book 
Condi+on 
2 
Condi+on 
3 
condi+on 
u 
[m/s] 
δx 
[m] 
L 
[m] 
Pe 
[-­‐] 
1 
0.1 
0.2 
1 
0.2 
2 
2.5 
0.2 
1 
5 
3 
2.5 
0.05 
1 
1.25 
T 
= 
0 
x 
= 
0 
u 
[m/s] x 
= 
L 
over-­‐ 
and 
under-­‐shoot 
QUICK 
scheme
Summary 
• Be carful for local cell Pe number when we 
solve diffusion-‐‑‒advection equation. 
• Be careful especially in high Pr and Sc number, 
because cell Pe number becomes large.  
• We should use stabilized numerical schemes to 
solve difficult problems. 
Ex) 
molten 
metal  
air 
water 
Pr ≈ O(0.01) 
Pr ≈ O(1) 
Pr ≈ 7
References 
• H. K. Versteeg and M. Malalasekera, “An 
introduction to computational fluid 
dynamics”  
translated Ver. in Japanese 
数値流流体⼒力力学, 訳; 松下洋介,斎藤泰洋,⻘青⽊木秀 
之,三浦隆利利 森北北出版

More Related Content

PDF
Setting and Usage of OpenFOAM multiphase solver (S-CLSVOF)
PDF
Mid term solution
DOCX
Project 5 report 5.13 pm
PPT
Calc 2.6
DOCX
Sampling and filtering
PDF
The lattice Boltzmann equation: background and boundary conditions
PDF
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
PDF
Learning object 1
Setting and Usage of OpenFOAM multiphase solver (S-CLSVOF)
Mid term solution
Project 5 report 5.13 pm
Calc 2.6
Sampling and filtering
The lattice Boltzmann equation: background and boundary conditions
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
Learning object 1

What's hot (20)

PDF
Pinning and facetting in multiphase LBMs
PDF
Workshop presentations l_bworkshop_reis
PDF
Linear integral equations
PDF
Finite-difference modeling, accuracy, and boundary conditions- Arthur Weglein...
PDF
Derivation of the Boltzmann Transport Equation
PDF
Sect5 4
PDF
Understanding lattice Boltzmann boundary conditions through moments
PDF
Mit2 092 f09_lec12
PDF
Controllers for 3R Robot
PDF
Volume_7_avrami
PDF
HOW TO PREDICT HEAT AND MASS TRANSFER FROM FLUID FRICTION
PDF
Task Constrained Motion Planning for Snake Robot
PDF
Jensen's inequality, EM 알고리즘
PPTX
Wk 12 fr bode plot nyquist may 9 2016
PPT
Boltzmann transport equation
PDF
Solution to first semester soil 2015 16
PDF
Solution to 2nd semeter eng. statistics 2015 2016
PPT
periodic functions and Fourier series
PPT
Mathematical Relations
Pinning and facetting in multiphase LBMs
Workshop presentations l_bworkshop_reis
Linear integral equations
Finite-difference modeling, accuracy, and boundary conditions- Arthur Weglein...
Derivation of the Boltzmann Transport Equation
Sect5 4
Understanding lattice Boltzmann boundary conditions through moments
Mit2 092 f09_lec12
Controllers for 3R Robot
Volume_7_avrami
HOW TO PREDICT HEAT AND MASS TRANSFER FROM FLUID FRICTION
Task Constrained Motion Planning for Snake Robot
Jensen's inequality, EM 알고리즘
Wk 12 fr bode plot nyquist may 9 2016
Boltzmann transport equation
Solution to first semester soil 2015 16
Solution to 2nd semeter eng. statistics 2015 2016
periodic functions and Fourier series
Mathematical Relations
Ad

Viewers also liked (16)

PDF
熱流体解析における離散スキームの評価
PDF
How to get contour surface position by openfoam
PDF
Paraviewの等高面を綺麗に出力する
PDF
OpenFOAMにおけるDEM計算の力モデルの解読
PDF
OpenFOAMのDEM解析のpatchInteractionModelクラスの解読
PDF
OpenFOAMを用いた計算後の等高面データの取得方法
PDF
interFoamの検証
PDF
OpenFOAMにおける混相流計算
PDF
OpenFoamの混相流solver interFoamのパラメータによる解の変化
PDF
OpenFOAMの混相流用改造solver(S-CLSVOF法)の設定・使い方
PDF
ParaviewでのParticle Tracerを用いた可視化
PDF
OpenFOAMに実装したS-CLSVOF法検証(静止気泡のLaplace圧)
PDF
OpenFOAMにおけるDEM計算の衝突モデルの解読
PDF
Spatial Interpolation Schemes in OpenFOAM
PDF
Boundary Conditions in OpenFOAM
PDF
Optimization of relaxation factor for simple solver, OpenFOAM Study Meeting f...
熱流体解析における離散スキームの評価
How to get contour surface position by openfoam
Paraviewの等高面を綺麗に出力する
OpenFOAMにおけるDEM計算の力モデルの解読
OpenFOAMのDEM解析のpatchInteractionModelクラスの解読
OpenFOAMを用いた計算後の等高面データの取得方法
interFoamの検証
OpenFOAMにおける混相流計算
OpenFoamの混相流solver interFoamのパラメータによる解の変化
OpenFOAMの混相流用改造solver(S-CLSVOF法)の設定・使い方
ParaviewでのParticle Tracerを用いた可視化
OpenFOAMに実装したS-CLSVOF法検証(静止気泡のLaplace圧)
OpenFOAMにおけるDEM計算の衝突モデルの解読
Spatial Interpolation Schemes in OpenFOAM
Boundary Conditions in OpenFOAM
Optimization of relaxation factor for simple solver, OpenFOAM Study Meeting f...
Ad

More from takuyayamamoto1800 (9)

PDF
OpenFOAM solver for Helmholtz equation, helmholtzFoam / helmholtzBubbleFoam
PDF
OpenCAEシンポジウム発表資料-OpenFOAMのVOF法における計算時間、計算誤差最小条件の探索
PDF
OpenFOAM benchmark for EPYC server: cavity medium
PDF
OpenFOAM benchmark for EPYC server cavity flow small
PDF
OpenFOAM benchmark for EPYC server -Influence of coarsestLevelCorr in GAMG so...
PDF
OpenFOAMによる混相流シミュレーション入門
PPTX
OpenFOAMにおける相変化解析
PPTX
OpenFOAMによる気液2相流解析の基礎と設定例
PDF
OpenFOAMのinterfoamによる誤差
OpenFOAM solver for Helmholtz equation, helmholtzFoam / helmholtzBubbleFoam
OpenCAEシンポジウム発表資料-OpenFOAMのVOF法における計算時間、計算誤差最小条件の探索
OpenFOAM benchmark for EPYC server: cavity medium
OpenFOAM benchmark for EPYC server cavity flow small
OpenFOAM benchmark for EPYC server -Influence of coarsestLevelCorr in GAMG so...
OpenFOAMによる混相流シミュレーション入門
OpenFOAMにおける相変化解析
OpenFOAMによる気液2相流解析の基礎と設定例
OpenFOAMのinterfoamによる誤差

Recently uploaded (20)

PDF
Approach and Philosophy of On baking technology
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
project resource management chapter-09.pdf
PPTX
OMC Textile Division Presentation 2021.pptx
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Mushroom cultivation and it's methods.pdf
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
Enhancing emotion recognition model for a student engagement use case through...
PPTX
Chapter 5: Probability Theory and Statistics
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PDF
Hybrid model detection and classification of lung cancer
PPTX
cloud_computing_Infrastucture_as_cloud_p
PDF
August Patch Tuesday
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PPTX
A Presentation on Touch Screen Technology
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
Approach and Philosophy of On baking technology
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Unlocking AI with Model Context Protocol (MCP)
A comparative analysis of optical character recognition models for extracting...
project resource management chapter-09.pdf
OMC Textile Division Presentation 2021.pptx
Digital-Transformation-Roadmap-for-Companies.pptx
Mushroom cultivation and it's methods.pdf
NewMind AI Weekly Chronicles - August'25-Week II
Enhancing emotion recognition model for a student engagement use case through...
Chapter 5: Probability Theory and Statistics
SOPHOS-XG Firewall Administrator PPT.pptx
Hybrid model detection and classification of lung cancer
cloud_computing_Infrastucture_as_cloud_p
August Patch Tuesday
MIND Revenue Release Quarter 2 2025 Press Release
Agricultural_Statistics_at_a_Glance_2022_0.pdf
A Presentation on Touch Screen Technology
Group 1 Presentation -Planning and Decision Making .pptx

Estimation of numerical schemes in heat convection by OpenFOAM

  • 1. Estimation of numerical schemes in heat convection by OpenFOAM Osaka Univ. Dept. Takuya Yamamoto
  • 2. Traps in solving diffusion-‐‑‒convection equation 1. Conserva+veness 2. Boundedness 3. Transpor+veness Reference H. K. Versteeg and M. Malalasekera An introduc+on to computa+onal fluid dynamics translated Ver. in Japanese 訳; 松下洋介,斎藤泰洋,青木秀之,三浦隆利 数値流体力学 森北出版 rela+ve ra+o of convec+on to diffusion non-­‐dimensional cell Peclet number Pe = F D = ρu Γ /δ x δ x ; cell width ρ ; density F D Γ ; momentum flux (= ρu) ; diffusion conductance (= Γ/δx) ; diffusion coefficient
  • 3. Indication of numerical schemes • Linear scheme • QUICK scheme Boundedness Boundedness Pe 2 Pe 8 3 The other condi+ons References H. K. Versteeg and M. Malalasekera An introduc+on to computa+onal fluid dynamics translated Ver, in Japanese 訳; 松下洋介,斎藤泰洋,青木秀之,三浦隆利 数値流体力学 森北出版 Genera+on of • Undershoot • Overshoot
  • 4. Ex5.1 in Ref. Book x = 0 x = L T = 1 T = 0 u [m/s] condi+on u [m/s] δx [m] L [m] Pe [-­‐] 1 0.1 0.2 1 0.2 2 2.5 0.2 1 5 3 2.5 0.05 1 1.25 Analy+cal solu+on T −T0 TL −T0 = exp(ρux /Γ )−1 exp(ρuL /Γ )−1 δ x ; ρ =1.0 kg/m3 Γ = 0.1 kg/m・s cell width ρ ; density Γ ; diffusion coeff. (kg/m・s)
  • 5. Numerical method • Solver scalarTransportFoam • Numerical scheme linear (spatial) steadyState (time) • Governing Equa+on d dx (ρuT) = d dx Γ dT dx ! # $ %
  • 6. Ex5.1 in Ref. Book T = 1 Condi+on 1 Condi+on 2 condi+on u [m/s] δx [m] L [m] Pe [-­‐] 1 0.1 0.2 1 0.2 2 2.5 0.2 1 5 3 2.5 0.05 1 1.25 T = 0 x = 0 u [m/s] x = L over-­‐ and under-­‐shoot Linear scheme
  • 7. T = 1 Ex5.1 in Ref. Book Condi+on 2 Condi+on 3 condi+on u [m/s] δx [m] L [m] Pe [-­‐] 1 0.1 0.2 1 0.2 2 2.5 0.2 1 5 3 2.5 0.05 1 1.25 T = 0 x = 0 u [m/s] x = L over-­‐ and under-­‐shoot Linear scheme
  • 8. Numerical method • Solver scalarTransportFoam • Numerical scheme QUICK (spatial) steadyState (time) • Governing Equa+on d dx (ρuT) = d dx Γ dT dx ! # $ %
  • 9. T = 1 Ex5.4 in Ref. Book Condi+on 1 Condi+on 2 condi+on u [m/s] δx [m] L [m] Pe [-­‐] 1 0.1 0.2 1 0.2 2 2.5 0.2 1 5 3 2.5 0.05 1 1.25 T = 0 x = 0 u [m/s] x = L over-­‐ and under-­‐shoot QUICK scheme
  • 10. T = 1 Ex5.4 in Ref. Book Condi+on 2 Condi+on 3 condi+on u [m/s] δx [m] L [m] Pe [-­‐] 1 0.1 0.2 1 0.2 2 2.5 0.2 1 5 3 2.5 0.05 1 1.25 T = 0 x = 0 u [m/s] x = L over-­‐ and under-­‐shoot QUICK scheme
  • 11. Summary • Be carful for local cell Pe number when we solve diffusion-‐‑‒advection equation. • Be careful especially in high Pr and Sc number, because cell Pe number becomes large. • We should use stabilized numerical schemes to solve difficult problems. Ex) molten metal  air water Pr ≈ O(0.01) Pr ≈ O(1) Pr ≈ 7
  • 12. References • H. K. Versteeg and M. Malalasekera, “An introduction to computational fluid dynamics” translated Ver. in Japanese 数値流流体⼒力力学, 訳; 松下洋介,斎藤泰洋,⻘青⽊木秀 之,三浦隆利利 森北北出版