This document describes using a genetic algorithm to optimize the parameters of a vehicle suspension system. A quarter-car model with 5 parameters is developed in Matlab and Simulink. The objective is to minimize sprung mass acceleration. A genetic algorithm is run for 51 generations to optimize the parameters. The optimized parameters found are reported, and plots show the parameter values converging over generations. One can see the maximum, minimum, and average parameter values approaching the optimum, indicating the genetic algorithm is functioning correctly. The optimized suspension parameters found provide a strong solution for reducing sprung mass acceleration.