SlideShare a Scribd company logo
2
Most read
3
Most read
4
Most read
ppr maths nbk


                           SPM FORMAT QUESTIONS
                                  PAPER 2



                                 ⎛3 − 2⎞ ⎛1 0⎞
1.   M is a 2 x 2 matrix where M ⎜
                                 ⎜     ⎟ =⎜
                                       ⎟ ⎜    ⎟.
                                              ⎟
                                 ⎝5 − 4⎠ ⎝ 0 1⎠
     (a)    Find the matrix M

     (b)    Write the following simultaneous linear equations as matrix equation
                   3x – 2y = 7
                    5x – 4y = 9
            Hence, calculate the values of x and y using matrices.


                                  ⎛3 − 4⎞           ⎛− 6   p⎞
2.   (a)    The inverse matrix of ⎜
                                  ⎜ 5 − 6 ⎟ is m
                                          ⎟         ⎜
                                                    ⎜− 5    ⎟.
                                  ⎝       ⎠         ⎝      3⎟
                                                            ⎠
            Find the value of m and p.

     (b)    Using matrices, calculate the value of x and of y that satisfy the following
            simultaneous linear equations:

                    3x – 4y = -1
                    5x – 6y = 2



                                  ⎛ 2 − 5⎞                   ⎛ 3 h⎞
3.   It is given that matrix P = ⎜⎜ 1 3 ⎟ and matrix Q = k ⎜ − 1 2 ⎟ such that
                                          ⎟                  ⎜        ⎟
                                  ⎝       ⎠                  ⎝        ⎠
             ⎛1 0⎞
     PQ = ⎜  ⎜0 1⎟ .
                   ⎟
             ⎝     ⎠
     (a)       Find the value of k and h.
     (b)       Using matrices, calculate the value of x and of y that satisfy the following
               simultaneous linear equations:

                    2x – 5y = -17
                    x + 3y = 8
ppr maths nbk


                                   ⎛2 1 ⎞             ⎛ − 4 − 1⎞
4.   (a)     The inverse matrix of ⎜
                                   ⎜ 3 − 4 ⎟ is m
                                           ⎟          ⎜
                                                      ⎜ p      ⎟.
                                   ⎝       ⎠          ⎝      2⎟⎠
             Find the value of m and p.

     (b)     Using matrices, calculate the value of x and y that satisfy the following
             simultaneous linear equations:

                        2x + y = 4
                        3x – 4y = 17.

                     1⎛ 4      1 ⎞ ⎛ − 2 m⎞ ⎛1 0⎞
5.   It is given that  ⎜
                       ⎜ − 6 − 2⎟ ⎜ 6 4 ⎟ = ⎜0 1⎟ .
                                  ⎟⎜       ⎟ ⎜        ⎟
                     k ⎝          ⎠⎝       ⎠ ⎝        ⎠
     (a)     Find the value of k.
     (b)     Find the value of m.
     (c)     Hence, using matrices, calculate the value of v and w that satisfy the
             following matrix equation:

                        ⎛ 4    1 ⎞ ⎛v⎞  ⎛ 8 ⎞
                        ⎜        ⎟⎜ ⎟ = ⎜
                        ⎜ − 6 − 2⎟ ⎜ w⎟ ⎜ − 10 ⎟
                                               ⎟
                        ⎝        ⎠⎝ ⎠   ⎝      ⎠



                      ⎛ a 3⎞
6.   Given matrix N = ⎜
                      ⎜ 6 9⎟ .
                           ⎟
                      ⎝    ⎠

     (a) If the determinant for matrix N is zero, find the value of a.
     (b) If a = 1,

             (i)        find the inverse of matrix N,
             (ii)       using matrix method, find the values of h and k that satisfy the
                        following matrix equation :

                               ⎛ 1 3⎞ ⎛ h ⎞ ⎛ − 5⎞
                               ⎜
                               ⎜ 6 9⎟ ⎜ k ⎟ = ⎜ 6 ⎟
                                    ⎟ ⎜ ⎟ ⎜ ⎟
                               ⎝    ⎠ ⎝ ⎠ ⎝ ⎠
ppr maths nbk


                           ⎛ 6 3⎞                                 1 ⎛− 3 3 ⎞
7.      If A is the matrix ⎜
                           ⎜ a b ⎟ and the inverse matrix of A is a ⎜ a − 6 ⎟ , find the
                                  ⎟                                   ⎜          ⎟
                           ⎝      ⎠                                   ⎝          ⎠
        values of a and b.
        Hence , using matrices, calculate the values of x and y that satisfy the following
        simultaneous linear equation:

                       6x + 3y = 3
                       Ax + by = 5


                            ⎛5 r ⎞
8.      Given matrix G = ⎜  ⎜ 4 − 2⎟ ,
                                     ⎟
                            ⎝        ⎠
        (a) find the value of r if G does not have an inverse matrix,
        (b) find the inverse matrix of G, if r = -2,
        (c) calculate by using matrices, the values of v and w that satisfy the following
            matrix equation :


               ⎛ 5 − 2⎞ ⎛ v ⎞ ⎛1⎞
               ⎜
               ⎜ 4 − 2⎟ ⎜ w⎟ = ⎜ 2⎟
                      ⎟⎜ ⎟ ⎜ ⎟
               ⎝      ⎠⎝ ⎠ ⎝ ⎠


                                            ⎛ 5 − 3⎞       ⎛ − 2 3⎞
9.      (a)Given that the inverse matrix of ⎜
                                            ⎜ 4 − 2 ⎟ is m ⎜ p 5 ⎟ , find the values of m
                                                    ⎟      ⎜      ⎟
                                            ⎝       ⎠      ⎝      ⎠
            and p.

        (b) Using matrices, find the values of x and y that satisfy the following
            simultaneous equations.


               5x – 3y = 1
               4x – 2y = 2

                          ⎛ 4 5⎞                       ⎛1 0⎞
     10. Given matrix P = ⎜
                          ⎜ 6 8 ⎟ and matrix PQ =
                                ⎟                      ⎜
                                                       ⎜0 1⎟
                                                           ⎟
                          ⎝     ⎠                      ⎝   ⎠

           (a) find matrix Q, and
           (b) hence, calculate by using matrix method, the values of m and n that
               satisfy the following simultaneous linear equations:


                       4m + 5n = 7
                       6m + 8n = 1
ppr maths nbk


                              ANSWERS

                                  PAPER 2
                  1 ⎛ − 4 2⎞
1.   (a)   M=-      ⎜      ⎟
                  2 ⎜ − 5 3⎟
                    ⎝      ⎠
           ⎛3 − 2⎞ ⎛ x ⎞ ⎛ 7⎞
     (b)   ⎜
           ⎜5 − 4⎟ ⎜ y ⎟ = ⎜ 9⎟
                    ⎟⎜ ⎟ ⎜ ⎟
           ⎝        ⎠⎝ ⎠ ⎝ ⎠
           x=5
           y = -4



               1
2.   (a)   m=
               2
           p=4
     (b)   x=7
              11
           y=
               2

                1
3.   (a)   k=
               11
           h=5
     (b)   x = -1
           y=3


                  1
4.   (a)   m=-
                 11
           p = -3
     (b)   x=3
           y=-2


5.   (a)   k = -2
           m = -1
     (b)   v=3
           w = -4


6.   (a)   2
ppr maths nbk


              ⎛    1 ⎞
              ⎜−1    ⎟
      (c) (i) ⎜    3 ⎟
              ⎜ 2 − 1⎟
              ⎜      ⎟
              ⎝3    9⎠

         (iii)    h = 7, k = -4



                         2       1
 7.    a= 9, b = 3, x=     ,y= -
                         3       3


             5
 8.    r=-
             2
           ⎛ 1 − 1⎞
       (b) ⎜    5⎟
           ⎜2     ⎟
           ⎝    2⎠

       (c) v =-1, w = − 3



                 1
 9.    (a) m =     p = -4
                 2

       (b) x = 2, y = 3



        ⎛     5⎞
10. (a) ⎜ 4 − ⎟
        ⎜     2⎟
        ⎝ −3 2 ⎠

      (b) m = 3, n = -1

More Related Content

PDF
Nota math-spm
DOC
Mathematics Mid Year Form 4 Paper 1 Mathematics
PPTX
Bab 9 garis lurus (9.1.1)
PDF
F4 ADD MATH MODULE 2021.pdf
PDF
Modul 4 graf fungsi ori
PDF
Matematik tambahan tingkatan 4 fungsi kuadratik {add math form 4 - quadract...
PDF
MATEMATIK SEM 3 TRIGONOMETRI
DOC
Nota pengamiran
Nota math-spm
Mathematics Mid Year Form 4 Paper 1 Mathematics
Bab 9 garis lurus (9.1.1)
F4 ADD MATH MODULE 2021.pdf
Modul 4 graf fungsi ori
Matematik tambahan tingkatan 4 fungsi kuadratik {add math form 4 - quadract...
MATEMATIK SEM 3 TRIGONOMETRI
Nota pengamiran

What's hot (20)

PDF
Chapter 3 quadratc functions
PDF
Matematik tambahan kertas 2
DOCX
Homework chapter 2& 3 form 2
PDF
Additional Mathematics form 4 (formula)
DOCX
Modul 3 matriks 2019
DOC
Kuiz matematik tingkatan 3(ungkapanalgebra)
PPT
Persamaan garis lurus
PPT
Integration
PDF
Spm Add Maths Formula List Form4
DOCX
Kalkulator
PDF
Chapter 5 indices & logarithms
PDF
MODUL 2 : PERSAMAAN LINEAR (JAWAPAN) A0310
PPTX
Penggunaan Kalkulator Saintifik - Persamaan serentak
PDF
Chapter 11 index number
PDF
Plot dalam karya : nota
PDF
Ujian mac matematik tambahan tingkatan 4 k2
PDF
JAWAPAN BUKU PEPERIKSAAN MATEMATIK SPM.pdf
PDF
Matematik tambahan spm tingkatan 4 indeks dan logaritma {add math form 4 indi...
PPTX
Pelan dan dongakan
PDF
Bab 8 tuas dan momen daya pengiraan
Chapter 3 quadratc functions
Matematik tambahan kertas 2
Homework chapter 2& 3 form 2
Additional Mathematics form 4 (formula)
Modul 3 matriks 2019
Kuiz matematik tingkatan 3(ungkapanalgebra)
Persamaan garis lurus
Integration
Spm Add Maths Formula List Form4
Kalkulator
Chapter 5 indices & logarithms
MODUL 2 : PERSAMAAN LINEAR (JAWAPAN) A0310
Penggunaan Kalkulator Saintifik - Persamaan serentak
Chapter 11 index number
Plot dalam karya : nota
Ujian mac matematik tambahan tingkatan 4 k2
JAWAPAN BUKU PEPERIKSAAN MATEMATIK SPM.pdf
Matematik tambahan spm tingkatan 4 indeks dan logaritma {add math form 4 indi...
Pelan dan dongakan
Bab 8 tuas dan momen daya pengiraan
Ad

Viewers also liked (20)

DOC
Mathematics Mid Year Form 5 Paper 2 2010
PDF
Module 12 Matrices
PDF
Module 7 The Straight Lines
DOC
Mathematics Mid Year Form 5 Paper 1 2010
PDF
P2 Matrices Modul
PPT
Matrices
PDF
Intervensi Modul 1 Simultaneous
PDF
MODULE 3-Circle Area and Perimeter
DOCX
Do you know matrix transformations
PPTX
Matriks coontoh soalan
PPTX
Matrices
PDF
Module 9 Lines And Plane In 3 D
PDF
P2 Earth As A Sphere Test
PDF
F4 08 Circles Iii
PDF
P2 Probability
PDF
P2 Area Under A Graph Modul
PDF
MODULE 5- Inequalities
PDF
Module 5 Sets
PDF
F4 09 Trigonometry Ii
PDF
P2 Solid Geometry
Mathematics Mid Year Form 5 Paper 2 2010
Module 12 Matrices
Module 7 The Straight Lines
Mathematics Mid Year Form 5 Paper 1 2010
P2 Matrices Modul
Matrices
Intervensi Modul 1 Simultaneous
MODULE 3-Circle Area and Perimeter
Do you know matrix transformations
Matriks coontoh soalan
Matrices
Module 9 Lines And Plane In 3 D
P2 Earth As A Sphere Test
F4 08 Circles Iii
P2 Probability
P2 Area Under A Graph Modul
MODULE 5- Inequalities
Module 5 Sets
F4 09 Trigonometry Ii
P2 Solid Geometry
Ad

Similar to P2 Matrices Test (20)

PDF
Module 12 Matrices
DOC
Tutorial 2 -_sem_a102
RTF
Module 12 matrices
PDF
PDF
Math 1300: Section 4-6 Matrix Equations and Systems of Linear Equations
PPT
Solving systems of equations algebraically 2
PDF
IMT, col space again
PPTX
Inversematrixpptx 110418192746-phpapp014.7
PPTX
Inverse matrix pptx
KEY
0911 ch 9 day 11
PPTX
Prepared by
PPTX
Prepared by
PDF
Int Math 2 Section 8-5
PDF
Linear (in)dependence
PDF
Matrix Inverse, IMT
PDF
CAIE 9231 FP1 Matrices - Slides for inclass use
PDF
Linear Transformations
DOCX
Class xii practice questions
PDF
Lesson 9: Gaussian Elimination
DOC
Simultaneous eqn2
Module 12 Matrices
Tutorial 2 -_sem_a102
Module 12 matrices
Math 1300: Section 4-6 Matrix Equations and Systems of Linear Equations
Solving systems of equations algebraically 2
IMT, col space again
Inversematrixpptx 110418192746-phpapp014.7
Inverse matrix pptx
0911 ch 9 day 11
Prepared by
Prepared by
Int Math 2 Section 8-5
Linear (in)dependence
Matrix Inverse, IMT
CAIE 9231 FP1 Matrices - Slides for inclass use
Linear Transformations
Class xii practice questions
Lesson 9: Gaussian Elimination
Simultaneous eqn2

More from guestcc333c (20)

PDF
F4 Answer
PDF
F4 11 Lines And Planes In 3 Dim
PDF
F4 10 Angles Of Elevation Dep
PDF
F4 07 Probability I
PDF
F4 06 Statistics Iii
PDF
F4 05 The Straight Line
PDF
F4 04 Mathematical Reasoning
PDF
F4 03 Sets
PDF
F4 02 Quadratic Expressions And
PDF
F4 01 Standard Form
PDF
Probability Modul
PDF
P2 Plans & Elevation Test
PDF
P2 Graphs Function
PPS
Mathematics Keynotes 2
PDF
P1 Bearing Modul
PDF
Module 15 Plan And Elevation
PDF
Module 14 Probability
PDF
Module 13 Gradient And Area Under A Graph
PDF
Module 11 Tansformation
PDF
Module 10 Graphs Of Functions
F4 Answer
F4 11 Lines And Planes In 3 Dim
F4 10 Angles Of Elevation Dep
F4 07 Probability I
F4 06 Statistics Iii
F4 05 The Straight Line
F4 04 Mathematical Reasoning
F4 03 Sets
F4 02 Quadratic Expressions And
F4 01 Standard Form
Probability Modul
P2 Plans & Elevation Test
P2 Graphs Function
Mathematics Keynotes 2
P1 Bearing Modul
Module 15 Plan And Elevation
Module 14 Probability
Module 13 Gradient And Area Under A Graph
Module 11 Tansformation
Module 10 Graphs Of Functions

Recently uploaded (20)

PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPTX
Spectroscopy.pptx food analysis technology
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PPTX
sap open course for s4hana steps from ECC to s4
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Approach and Philosophy of On baking technology
PDF
Electronic commerce courselecture one. Pdf
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Diabetes mellitus diagnosis method based random forest with bat algorithm
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Spectroscopy.pptx food analysis technology
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
sap open course for s4hana steps from ECC to s4
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Reach Out and Touch Someone: Haptics and Empathic Computing
Approach and Philosophy of On baking technology
Electronic commerce courselecture one. Pdf
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
NewMind AI Weekly Chronicles - August'25 Week I
Per capita expenditure prediction using model stacking based on satellite ima...
MYSQL Presentation for SQL database connectivity
Advanced methodologies resolving dimensionality complications for autism neur...
Understanding_Digital_Forensics_Presentation.pptx
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Build a system with the filesystem maintained by OSTree @ COSCUP 2025

P2 Matrices Test

  • 1. ppr maths nbk SPM FORMAT QUESTIONS PAPER 2 ⎛3 − 2⎞ ⎛1 0⎞ 1. M is a 2 x 2 matrix where M ⎜ ⎜ ⎟ =⎜ ⎟ ⎜ ⎟. ⎟ ⎝5 − 4⎠ ⎝ 0 1⎠ (a) Find the matrix M (b) Write the following simultaneous linear equations as matrix equation 3x – 2y = 7 5x – 4y = 9 Hence, calculate the values of x and y using matrices. ⎛3 − 4⎞ ⎛− 6 p⎞ 2. (a) The inverse matrix of ⎜ ⎜ 5 − 6 ⎟ is m ⎟ ⎜ ⎜− 5 ⎟. ⎝ ⎠ ⎝ 3⎟ ⎠ Find the value of m and p. (b) Using matrices, calculate the value of x and of y that satisfy the following simultaneous linear equations: 3x – 4y = -1 5x – 6y = 2 ⎛ 2 − 5⎞ ⎛ 3 h⎞ 3. It is given that matrix P = ⎜⎜ 1 3 ⎟ and matrix Q = k ⎜ − 1 2 ⎟ such that ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎛1 0⎞ PQ = ⎜ ⎜0 1⎟ . ⎟ ⎝ ⎠ (a) Find the value of k and h. (b) Using matrices, calculate the value of x and of y that satisfy the following simultaneous linear equations: 2x – 5y = -17 x + 3y = 8
  • 2. ppr maths nbk ⎛2 1 ⎞ ⎛ − 4 − 1⎞ 4. (a) The inverse matrix of ⎜ ⎜ 3 − 4 ⎟ is m ⎟ ⎜ ⎜ p ⎟. ⎝ ⎠ ⎝ 2⎟⎠ Find the value of m and p. (b) Using matrices, calculate the value of x and y that satisfy the following simultaneous linear equations: 2x + y = 4 3x – 4y = 17. 1⎛ 4 1 ⎞ ⎛ − 2 m⎞ ⎛1 0⎞ 5. It is given that ⎜ ⎜ − 6 − 2⎟ ⎜ 6 4 ⎟ = ⎜0 1⎟ . ⎟⎜ ⎟ ⎜ ⎟ k ⎝ ⎠⎝ ⎠ ⎝ ⎠ (a) Find the value of k. (b) Find the value of m. (c) Hence, using matrices, calculate the value of v and w that satisfy the following matrix equation: ⎛ 4 1 ⎞ ⎛v⎞ ⎛ 8 ⎞ ⎜ ⎟⎜ ⎟ = ⎜ ⎜ − 6 − 2⎟ ⎜ w⎟ ⎜ − 10 ⎟ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎛ a 3⎞ 6. Given matrix N = ⎜ ⎜ 6 9⎟ . ⎟ ⎝ ⎠ (a) If the determinant for matrix N is zero, find the value of a. (b) If a = 1, (i) find the inverse of matrix N, (ii) using matrix method, find the values of h and k that satisfy the following matrix equation : ⎛ 1 3⎞ ⎛ h ⎞ ⎛ − 5⎞ ⎜ ⎜ 6 9⎟ ⎜ k ⎟ = ⎜ 6 ⎟ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  • 3. ppr maths nbk ⎛ 6 3⎞ 1 ⎛− 3 3 ⎞ 7. If A is the matrix ⎜ ⎜ a b ⎟ and the inverse matrix of A is a ⎜ a − 6 ⎟ , find the ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ values of a and b. Hence , using matrices, calculate the values of x and y that satisfy the following simultaneous linear equation: 6x + 3y = 3 Ax + by = 5 ⎛5 r ⎞ 8. Given matrix G = ⎜ ⎜ 4 − 2⎟ , ⎟ ⎝ ⎠ (a) find the value of r if G does not have an inverse matrix, (b) find the inverse matrix of G, if r = -2, (c) calculate by using matrices, the values of v and w that satisfy the following matrix equation : ⎛ 5 − 2⎞ ⎛ v ⎞ ⎛1⎞ ⎜ ⎜ 4 − 2⎟ ⎜ w⎟ = ⎜ 2⎟ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎛ 5 − 3⎞ ⎛ − 2 3⎞ 9. (a)Given that the inverse matrix of ⎜ ⎜ 4 − 2 ⎟ is m ⎜ p 5 ⎟ , find the values of m ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ and p. (b) Using matrices, find the values of x and y that satisfy the following simultaneous equations. 5x – 3y = 1 4x – 2y = 2 ⎛ 4 5⎞ ⎛1 0⎞ 10. Given matrix P = ⎜ ⎜ 6 8 ⎟ and matrix PQ = ⎟ ⎜ ⎜0 1⎟ ⎟ ⎝ ⎠ ⎝ ⎠ (a) find matrix Q, and (b) hence, calculate by using matrix method, the values of m and n that satisfy the following simultaneous linear equations: 4m + 5n = 7 6m + 8n = 1
  • 4. ppr maths nbk ANSWERS PAPER 2 1 ⎛ − 4 2⎞ 1. (a) M=- ⎜ ⎟ 2 ⎜ − 5 3⎟ ⎝ ⎠ ⎛3 − 2⎞ ⎛ x ⎞ ⎛ 7⎞ (b) ⎜ ⎜5 − 4⎟ ⎜ y ⎟ = ⎜ 9⎟ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ x=5 y = -4 1 2. (a) m= 2 p=4 (b) x=7 11 y= 2 1 3. (a) k= 11 h=5 (b) x = -1 y=3 1 4. (a) m=- 11 p = -3 (b) x=3 y=-2 5. (a) k = -2 m = -1 (b) v=3 w = -4 6. (a) 2
  • 5. ppr maths nbk ⎛ 1 ⎞ ⎜−1 ⎟ (c) (i) ⎜ 3 ⎟ ⎜ 2 − 1⎟ ⎜ ⎟ ⎝3 9⎠ (iii) h = 7, k = -4 2 1 7. a= 9, b = 3, x= ,y= - 3 3 5 8. r=- 2 ⎛ 1 − 1⎞ (b) ⎜ 5⎟ ⎜2 ⎟ ⎝ 2⎠ (c) v =-1, w = − 3 1 9. (a) m = p = -4 2 (b) x = 2, y = 3 ⎛ 5⎞ 10. (a) ⎜ 4 − ⎟ ⎜ 2⎟ ⎝ −3 2 ⎠ (b) m = 3, n = -1